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Abstract: By expanding each kernel using the orthonormal Laguerre series, a Volterra
functional series is used to represent the input-output relation of a nonlinear dynamic system.
With the feedback of the modeling error, we give a novel nonlinear observer-controller design,
based on which both the stabilization and tracking problems are solved. To illustrate the
effectiveness of the design algorithm, we present the analysis of stability and steady-state
performance. The algorithm is further applied on a chemical reactor temperature control system.
The Laguerre-Volterra observer-controller design has shown its great potential for a large class
of nonlinear dynamic systems frequently encountered in industrial applications.

1. INTRODUCTION

Although most industrial processes display nonlinear dy-
namics, in practice most control systems are based on
linear control design methods. For a mild nonlinearity, a
linear approximation of the process dynamics around the
operating point is generally satisfactory. If large deviations
from this operating point occur, then the model and con-
trol system have to be retuned (Dumont & Fu [1993]).
If such retuning is frequently required, then automatic
tuning or adaptive control becomes attractive. Obviously,
an accurate knowledge of the process nonlinearity com-
bined with a reliable nonlinear control design technique
would eliminate the need for adaptive control under such
circumstances, which is the approach taken here.

In this paper, we will use the Laguerre-filter-based non-
linear dynamic model (Dumont & Fu [1993], Wahlberg
& Mäkilä [1996], Heuberger et al. [1995]) to represent
a stable nonlinear system with fading memory (i.e., the
effects of past inputs on the output are negligible after
some finite time). Feeding back the modeling error, we will
later design a nonlinear state observer and then derive an
output feedback control law for both the stabilization and
the tracking problems. The general Volterra series repre-
sentation, whose kernels are assumed to be in the L2 space,
is further approximated by Laguerre series. When higher-
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order Volterra kernels are neglected and a proper Laguerre
filter pole is selected, the number of model parameters
required to describe the plant will be small. In recent years,
Laguerre filters have been successfully applied to design
linear adaptive controllers (Adel et al. [1999], Dumont et
al. [1990], Zhang et al. [2006]). As a result, there has been
a renewed interest in using Laguerre filters to describe sta-
ble linear plants. Compared with the FIR (Finite Impulse)
or ARMA (Auto-Regressive Moving Average) model, the
advantages of using the Laguerre model include: good
approximation of systems with varying time-delay; toler-
ance to unmodelled dynamics and reduced sensitivity to
the estimated parameters; orthogonality of the regression
vector under white excitation; no need for the model
order and process delay assumption; good low frequency
match between the estimated and true plants (Zervos &
Dumont [1988]). For a given accuracy requirement, the
truncation length of the Laguerre series approximation can
be reduced by properly choosing the Laguerre filter pole.
The optimum pole selection method has been discussed for
the continuous-time linear case (Wang & Cluett [1994]),
the discrete-time linear case (Fu & Dumont [1993]) and
discrete-time nonlinear case (Campello et al. [2004]).

The Laguerre-Volterra model was first proposed and ana-
lyzed by Schetzen [1980]. Boyd & Chua [1985] proved the
superiority of this model structure compared with some
other empirical models such as the NARMAX (Nonlinear
Auto-regressive Moving Average with eXogenous inputs)
model, and NARX (Nonlinear Auto-regressive with eXoge-
nous inputs ) model (Henson [1997]), etc., when capturing
the dynamics of FMNSs (Fading Memory Nonlinear Sys-
tems). Thereafter, more and more researchers recognize
the potential of the Laguerre-Volterra model. One of the
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typical methods is the NMPC (Nonlinear Model Predictive
Control) with single-step control horizon, which was suc-
cessfully applied to a wood chip refiner motor load control
system for mechanical pulping (Dumont et al. [1994]).
Parker & Doyle [1998] extended these results from ter-
minal point tracking to dynamic error analysis, extended
the control horizon to double-step to handle more com-
plex nonlinear dynamics, and validated its efficiency by
results on a continuous bioreactor (Dumont et al. [1994]).
However, due to the complex nature of moving horizon
optimization of NMPC, two key theoretical issues, i.e.
closed-loop stability and steady-state performance, have
not been intensively investigated by the existing methods.
The most relevant recent results are Lyapunov-based pre-
dictive controllers that guarantee feasibility and closed-
loop stability form an explicitly characterized set of initial
conditions for nonlinearity (Mhaskar et al. [2005]) and
uncertainty (Mhaskar [2006]) of industrial processes. As
to the steady-state performance analysis, although steady-
state tracking has been demonstrated for reachable and
unreachable set-points, no formal proof is provided so far
(Parker & Doyle [1998, 2001]).

Aiming at resolving these serious problems, we bring
a new Laguerre-Volterra observer-controller design algo-
rithm. The main contributions of this paper are: a) By
feeding back the error of the outputs of the plant and the
Laguerre-Volterra model, we propose a new state observer,
which can facilitate the later design of a linear control
law. b) For the tracking problem, a pre-optimized offset is
introduced into a state feedback control law, which mini-
mizes the steady-state error provided that the Laguerre
filter pole is chosen properly. c) The design is further
applied on a chemical reactor temperature control system
to illustrate its effectiveness. This method is expected to
make full use of the advantages of the Laguerre-Volterra
model. It is worth mentioning that, by extending the
Laguerre state to a general system state, this nonlinear
observer may be improved to a more general one called
the Volterra observer, which has the potential of yielding
a novel research method for a larger class of nonlinear
dynamic systems.

The rest of this paper is organized as follows: the Laguerre-
Volterra model is introduced in Section 2. In Section
3, a novel Laguerre-Volterra observer-controller design
is proposed, based on which both the stabilization and
tracking problems are solved. Two theorems addressing
the closed-loop stability and steady-state performances are
given, respectively. Section 4 presents the experimental
control performances. Finally, the conclusion is given in
Section 5.

2. LAGUERRE-VOLTERRA MODEL

For nonlinear systems, if their dependencies on past inputs
decrease rapidly enough with time, their input-output
relations can be precisely described by the Volterra series
as follows:

y(t) = h0(t)

+
∞
∑

n=1

∫

· · ·

∫

hn(τ1, · · · , τn)
n

∏

i=1

u(t − τi)dτi, (1)

where the functions hn(τ1, · · · , τn) are the Volterra kernels
representing the nonlinear dynamics. This kind of system
is called a FMNS (Fading Memory Nonlinear System)
(Boyd & Chua [1985]), which is well-behaved in the sense
that it will not exhibit multiple steady-states or other re-
lated phenomena like chaotic responses. Fortunately, most
industrial processes, such as pH neutralization process,
heat exchange process, etc, are FMNSs. In practice, the
Volterra series is usually truncated to some small finite
value M .

Now, we denote the ith-order Laguerre time function by

li(t) =

∞
∫

0

φi(τ)u(t − τ)dτ. (2)

Since {φi} forms a complete orthonormal set in the L2

space and assume that the Volterra kernels are stable, we
can write

hn(τ1, · · · , τn) =

∞
∑

i1=1

· · ·

∞
∑

in=1

ci1,···,in

n
∏

j=1

φij
(τj), (3)

where ci1,···,in
(n ≥ 1) are constant coefficients. By using

the orthonormal properties of Laguerre functions, the
input/output model becomes

ym(t) = c0(t) +

N
∑

i=1

cili(t)

+
N

∑

n=1

N
∑

m=1

cnmln(τ1)lm(τ2) + · · · (4)

with cij = cji. The expansion error approaches zero as N
and M tend to infinity. However, to simplify the analysis in
a finitely dimensional state apace, we make the following
assumption in this paper.

A1. The input-output model (1) can be accurately repre-
sented by (4) with finite Volterra series truncation length
M and finite Laguerre series truncation length N of each
Volterra kernel.

Under A1, we can define a state

x(t) = [l1(t), · · · , lN (t)]T,

and the discrete-time Laguerre-Volterra model becomes

x(t + 1) = Ax(t) + Bu(t), (5)

ym(t) = c0 + Cx(t) + σ(x(t)), (6)

where the nonlinear function σ is the sum of 2-th to N -th
order polynomials in the form of

σ(x) = xTDx + · · · .

From Wang [2004], the matrices in the above model are
given as follows

A =













p 0 0 · · · 0
β p 0 · · · 0

−pβ β p · · · 0
...

...
...

. . .
...

(−p)N−2β (−p)N−3β · · · β p













,
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Fig. 1. Laguerre-Volterra nonlinear model

B = [β1/2, (−p)β1/2, · · · , (−p)N−1β1/2]T,

C = [c1, · · · , cN ], D =







c11 · · · c1N

...
. . .

...
cN1 · · · cNN






,

where β =
√

1 − p2 and p is the Laguerre filter pole. The
structure of the discrete-time Laguerre-Volterra model is
shown in Fig. 1. In general, the initial value x(0) can

be pre-optimized as x(0) =
√

1 − p2[1,−p, · · · , (−p)N−1].
Here, a finite number of Laguere filters are used, indicating
that the true plant is stable and observable in finite time.
Eqs. (5) and (6) are an approximation of the Volterra
functional series representation for a nonlinear system.

The model parameters c0, C, D, · · · are in a linear regres-
sive form and can be easily estimated by LSE (least square
estimation) as follows (Dumont et al. [1994]). Assume

θ = [c0, · · · , cN , c11, · · · , c1N , c21, · · · , c2N , · · · , cNN , · · ·],(7)

Φ(t) = [1, l1(t), · · · , lN (t), l2
1
(t), l1(t)l2(t), · · · ,

l1(t)lN (t), l2(t)lN (t), · · · , l2(t)lN (t), · · · , l2N (t), · · ·],
(8)

one has

y(t) = θΦ(t). (9)

By Eq. (5), Φ(t) can be calculated with u(t) at each
sampling time, so the coefficients θ can be identified by
RLSE (Recursive Least Square Estimation) (Ljung [1999])
with a forgetting factor λ .

Remark 1. In fact, each stable Volterra kernel in the
L2 space can be accurately approximated by a more
general type of models called orthonormal functional series
(OFS). The pulse series, Laguerre series and Kautz series
are the three typical OFS of 0-, 1st-, and 2nd-order,
respectively. In addition, Heuberger et al. proposed a
method to generate high order OFS. Along with the
increase of the OFS order, the OFS model can handle
more complex dynamics or higher order plant behaviors
with higher speed of convergence. Thus, in order to obtain
more efficient Volterra model for complex nonlinearities,
one may turn to higher order OFS.

3. OBSERVER-CONTROLLER DESIGN

3.1 Stabilization Problem

Taking x(t) and x̂(t) as the system state and estimated
state, respectively, we extend the routine linear state
observer

x̂(t + 1) = Ax̂(t) + Bu(t) + Γ[ym(t) − c0 − Cx̂(t)]

to a nonlinear observer as follows:

x̂(t + 1) = Ax̂(t) + Bu(t)

+Γ[ym(t) − c0 − Cx̂(t) − σ(x̂)] (10)

where Γ ∈ R
N×1 is the observer gain. Then, we design the

output feedback controller as

u(t) = Kx̂(t) (11)

where K ∈ R
1×N is the state-feedback gain. Let e := x− x̂

be the state estimation error, and hence, xc = [xT eT]T

be the state vector of the closed-loop system (5), (6), (10)
and (11). As a result, the closed-loop system can be put
in a compact form of

xc(t + 1) = Acxc(t) + Γcδ(xc(t)) (12)

where

Ac :=

[

A + BK −BK
0 A − ΓC

]

, Γc :=

[

0
−Γ

]

,

δ(xc) := σ(x) − σ(x − e).

The following theorem provides a necessary stabilization
condition and the attraction region of the closed-loop
system. The advantage of the nonlinear observer (10) over
the traditional linear one will be discussed in Section 4.

Theorem 2. Consider the system (5) and (6) under the
following assumption:

A2. The pair (A, B) is controllable and the pair (A, C) is
observable.

Then, there exist matrices K and Γ such that,

(i) A+BK and A−ΓC are Schur matrices (i.e., matrices
with eigenvalues inside the unit circle in the complex
plane) and hence the closed-loop system (12) is (lo-
cally) asymptotically stable.

(ii) Let P = P T > 0 and Q = QT > 0 be any solution to
the Lyapunov equation

AT

cPAc − P = −Q.

Define a compact set

Bǫ := {xc ∈ R
2N | xT

cPxc ≤ ǫ}.

Then, there exist ǫ, ε > 0 such that

2xT

cAT

cPΓcδ(xc) + ΓT

cPΓcδ
2(xc)≤ (1 − ε)xT

cQxc,

∀xc ∈ Bǫ. (13)

(iii) Any set Bǫ given in (13) is a region of attraction for
the closed-loop system (12), i.e., any trajectory of (12)
starting from an initial state xc(0) ∈ Bǫ converges to
the equilibrium point xc = 0.

Proof. See Appendix A.

3.2 Tracking Problem

For the tracking problem, following Chen’s strategy (Chen
[1999]) of tracking the set-point, one can set the control
law as

u(t) = Kx̂(t) + ρ (14)

where the offset ρ is determined by the set-point r(t) = a.
Provided that Assumptions A1 and A2 are fulfilled, one
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has limt→∞ x̂(t) − x(t) = 0. Accordingly, substituting
Eq. (14) into Eq. (5) yields

lim
k→∞

x̂(t) = lim
k→∞

x(t) = (I − A − BK)−1Bρ, (15)

which can be substituted into Eq. (6) to yield the following
polynomial equation in ρ:

α0 + α1ρ + α2ρ
2 + α3ρ

3 + · · · = a (16)

with α0 = c0, α1 = C(I − A − BK)−1B, α2 = BT((I −
A − BK)−1)TD(I − A − BK)−1B, · · ·.

In this way, the offset ρ can be obtained by solving
Eq. (16), hence one can obtain the control law (14) or
tracking the set-point r(t) = a . The structure of this
controller is shown in Fig. 2.

Fig. 2. Controller structure

Remark 3. If M is an odd number, Eq. (16) has at least
one real root. Otherwise, the existence of roots cannot be
ensured, in which case we must make compromise between
approximation accuracy and feasibility, and decrease M by
one. One feasible solution is returned for each intersection
of the set point with the steady-state locus, and a single
viable root is returned when the reference is not reachable
(e.g., below the steady state locus in a minimization
objective). Theoretically, the larger M (Volterra series
truncation length), the higher approaching accuracy can
be obtained. However, in practice, most nonlinear systems
can be solved with satisfaction for M ≤ 3.

Remark 4. The Laguerre-Volterra model is suitable for
FMNS with time-delay, especially variational time-delay.
Experience with the Laguerre-Volterra model indicates
that the Laguerre series truncation length N can be
selected from 5 to 15 in general. For processes with long
time-delay, N should be further increased. Furthermore,
for fixed N and M , it is not difficult to find suitable p, K
and Γ satisfying A2 .

Now, we will analyze the tracking accuracy of this algo-
rithm. Recall the Laguerre-Volterra model (4) in contin-
uous time domain, which can be written in discrete-time
from as

ym(t) =
M
∑

m=1

∞
∑

t1=0

· · ·
∞
∑

tm=0

hm(t1, · · · , tm)
m
∏

j=1

u(t − tj) (17)

with

hm(t1, · · · , tm) =

∞
∑

i1=1

· · ·

∞
∑

im=0

ci1,···,im

m
∏

j=1

φij
(tj).

Inspired by Fu’s method (Fu & Dumont [1993]), Campello
et al. [2004] have proven that a reasonable optimization
index for the Laguerre filter pole p is

min
−1<p<1

J :=

M
∑

m=1

Jm

m

with Jm :=
∑

∞

i1=1
· · ·

∑

∞

im=1
(i1 + · · · + im)c2

i1,···,im
. With

the assistance of such optimization method, we can give
a theorem to analyze the steady-state performance of the
present control algorithm.

Lemma 5. (Campello et al. [2004]) Assume that a non-
linear time-invariant stable system is represented by the
Laguerre-Volterra model (17), where the kernels satisfy
the stability and unit delay conditions, i.e.

∑

∞

i1=0
· · ·

∑

∞

im=0
|hm(t1, · · · , tm)| < ∞,

hm(t1, · · · , tm) = 0 (if ∃l ∈ {1, · · · , m} such that tl = 0)

and the Laguerre filter pole p (see Eq. (5)) is pre-optimized
by

p =
2Q̄1 − 1 − Q̄2

2Q̄1 − 1 +
√

4Q̄1Q̄2 − Q̄2

2
− 2Q̄2

(18)

where the definitions of Q̄1 and Q̄2 are displayed in
Campello et al. [2004]. Then it minimizes the upper bound
of the squared norm of the error resulting from the finite
Volterra series truncation length M and finite Laguerre
series truncation length N of each Volterra kernel.

Theorem 6. (Steady-state Performance Theorem) Given
a system satisfying the conditions in Lemma 5 and the
control law is given by Eqs. (14)–(16), then the upper
bound of the 2-norm of the closed-loop system’s steady-
state error e = limt→∞(y(t) − a) can be minimized if the
filter pole p is pre-optimized by Eq. (18), where r(t) = a
is the set-point curve.

Proof. As t → ∞ , or z → 1, substituting Eq. (15) into
Eq. (6) yields

lim
t→∞

ym(t) = α0 + α1δ + α2δ
2 + α3δ

3 + · · · .

Therefore, the steady-state error can be written as

e = limt→∞(y(t) − a) = limt→∞(y(t) − ym(t) + ym(t) − a)
= limt→∞(y(t) − ym(t)) + limt→∞(ym(t) − a)
= limt→∞(y(t) − ym(t)).

Thus, by Lemma 5, we have that if p is calculated by
Eq. (18), the upper bound of the 2-norm of the steady
error can be minimized. �

Remark 7. In real world systems, if all the Volterra kernels
are expanded by using a single Laguerre basis, and is set
according to Eq. (18), then the 2-norm of the steady-state
error of the closed-loop system decreases quickly along
with the increasing Laguerre Series truncation length N .
Thus, if M and N are large enough, the error can be
adjusted to be satisfactorily small or even eliminated in
the absence of unmodelled dynamics. However, if these
two parameters are too large, the online computational
complexity would be increased remarkably, so we must
trade-off between the steady-state performance and the
real-time efficiency.
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Fig. 3. Control system of a simulation chemical reactor
embraced by a cold water jacket

4. CASE STUDY

Fig. 3 shows a chemical reactor with cold water jacket. The
input and output fluxes of the inner tanks Q1 and Q3 are
controlled by an electromagnetic valve R1 and a manual
valve R3 respectively, while the input and output fluxes
of the cold water jacket Q2 and Q4 by an electromagnetic
valve R2 and a manual valve R4 respectively. In the upper
subfigure of Fig. 3, the lower part is the long time-delay
pipeline device, of which the mechanism is shown in the
lower subfigure of Fig. 3. The control objective is to make
the temperature stable at this pipeline’s exit. The pipeline
consists of three sub-pipelines with identical time-delay τ0.
One can modulate the valves R5 ∼ R8 to set the length of
the system’s time-delay. Note that this system is really a
heated tank system rather than a CSTR in the sense that
there is no chemical reaction inside.

There are two PT thermal resistance sensors (WZP-270S-
typed), whose accuracy is ±0.1◦C, to measure the tem-
peratures of the hot water at the pipeline exit and the
cold water at the jacket, respectively. The control signal
is constrained by 4mA ≤ u ≤ 20mA . The water levels of
the inner tank and the jacket are h1 and h2 respectively.
Owing to its intrinsic mechanism, this system can be seen
as a FMNS with long time-delays and uncertainties.

Control performances of Algorithm b (our proposed al-
gorithm) in contrast to Algorithm a (a typical NMPC
(Henson [1997]) based on NAARX (Nonlinear Additive
Auto-Regressive models with eXogeneous inputs) model
with prediction horizon Hp = 7, control horizon Hu = 7,
input memory s = 5 and out memories q = 3 are shown in
Figs. 4 and 5. Q2 and h1 are initially set to be 60l/h and

Fig. 4. Control performances of tracking 60◦C − 65◦C

Fig. 5. Control performances of tracking 33.5◦C − 35◦C

200mm, respectively. Control performances are shown in
Fig. 4 (tracking the double-step 60◦C − 65◦C ) and Fig. 5
(tracking the double-step 30◦C − 35◦C).

In Fig. 4, initially, R5, R6 are open and R7, R8 are
closed to set time-delay as τ0. In order to examine the
present method’s robustness to variational time-dalay, in
the 1500th period, we open R7, R8 and close R5, R6 such
that the time-delay is switched into 3τ0. Furthermore,
in Fig. 5, in order to examine the present method’s
robustness to external disturbance, we increase the flow
passing through the cold water jacket from 60l/h to 80l/h
in the 1150th sampling period. The statistical results show
that the steady-state control performance is improved
remarkably by Algorithm b with almost no loss of transient
performances such as settling time and overshootings.
These merits are due to the novel nonlinear observer based
on Laguerre-Volterra model.

5. CONCLUSION

By using the Laguerre-Volterra model, we extend the
routine linear observer to a more generalized nonlinear ob-
server. In this way, the estimated Laguerre state combined
with a state feedback gain is applied directly to yield a
linear control law for the nonlinear stabilization problem.
In addition, with the assistance of a pre-optimized offset,
this control law can deal with the tracking problem. Fi-
nally, the experimental control performance on a chemical
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reactor temperature control system shows the feasibility
and superiority of this novel NMPC method.
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Appendix A. PROOF OF THEOREM 2

(i) The Jacobian matrix of (12) is Ac which is a Schur
matrix because A + BK and A − ΓC are. The Lyapunov
liberalization method implies (12) is asymptotically stable.

(ii) For any α > 0, there exists an ǫ such that

|δ(xc)| ≤ α‖xc‖, ∀xc ∈ Bǫ

since δ(xc) is a sum of quadratic to N -th order polynomi-
als. Then,

2xT

cAT

cPΓcδ(xc) + ΓT

cPΓcδ
2(xc)

≤
(

2‖AT

cPΓc‖α + ‖ΓT

cPΓc‖α
2
)

‖xc‖
2.

On the other hand

xT

cQxc ≥ λmin(Q)‖xc‖
2

where λmin represents the minimal eigenvalue. So, it suf-
fices to pick a sufficiently small α such that

2‖AT

cPΓc‖α + ‖ΓT

cPΓc‖α
2 ≤ (1 − ε)λmin(Q).

(iii) Let

V (t) := xT

c (t)Pxc(t).

We will first show that any trajectory starting from inside
Bǫ remains in Bǫ. Otherwise, let the time t + 1 be the first
time the trajectory going outside of Bǫ, i.e.,

xc(t) ∈ Bǫ, xc(t + 1) /∈ Bǫ.

As a result, we have

V (t + 1) − V (t)

= [Acxc(t) + Γcδ(xc(t))]
TP [Acxc(t) + Γcδ(xc(t))]

−xT

c (t)Pxc(t)

= 2xT

c (t)AT

cPΓcδ(xc(t)) + ΓT

cPΓcδ
2(xc(t))

−xT

c (t)Qxc(t)

≤−εxT

c (t)Qxc(t). (A.1)

In the above derivation, we use (13) due to xc(t) ∈ Bǫ. But,
V (t + 1) ≤ V (t) implies a contradiction of xc(t + 1) ∈ Bǫ.

Now, we have shown that xc(t) ∈ Bǫ holds for all t, so
does the inequality (A.1). The proof is complete by using
Lyapunov’s Theorem. �
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