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Abstract: Supply chain is an organized combination of inbound logistics, production plants and multi-
echelon distribution network. Decentralized distribution networks are common and prone to exogenous 
and endogenous uncertainties. Information uncertainty from the downstream customer and material 
uncertainty from the upstream supplier makes the supply chain behavior more complex. Previous attempts 
made to enhance the supply chain performance by optimizing the replenishment strategy do not pay 
attention to the issue of increasing uncertainty (and consequently operational complexity) in the system. 
Complexity generates unpredictability in supply chain behavior, affects customer satisfaction, and 
increases cost. This work aims to improve supply chain performance by quantifying and minimizing the 
complexity associated with the distribution system through entropy calculations in accordance with the 
business goal and demand pattern faced by the network. 
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1. INTRODUCTION 

The operation of decentralized supply chains is complex 
due to exogenous uncertainties (e.g. customer demand) 
and endogenous uncertainties (e.g. problems with 
suppliers and manufacturers). The market demand is 
uncertain due to various aspects such as competition, 
advertisement, seasonality, economic growth and changes 
in product desirability. Endogenous uncertainties arise 
when the activities of supply-chain participants are not in 
harmony with one another. Uncertainty on the supplier 
side can arise due to unpredictable and uncontrollable 
factors in the supply of materials, frequency of changing 
suppliers, complexity of procurement technology, time 
specificity of materials, delivery frequency, delayed 
delivery and fluctuations in the selling price (Ho et al., 
[2005]). Manufacturing uncertainty is related to variations 
in manufacturing lead-time, product quality, changes in 
production technology and the complexity of 
manufacturing. 
 
In decentralized supply chains (DSC), the diversity in 
management strategies at the distribution nodes makes 
supply chain management inefficient as well as more 
complex compared to a centrally managed supply chain 
(Jemal et al.,[2007]). In a DSC, all entities attempt to 
forecast downstream customer orders and accordingly 
decide the inventory they need to maintain for achieving a 
certain level of customer satisfaction. The available 
forecasting techniques are limited in accuracy - this leads 
to shortage or excess inventory at the distribution nodes 
and render them incapable of fully exploiting market 
opportunities. For a proficient operation, all entities in a 
supply chain should co-ordinate effectively among 
themselves to remain prompt and competent.  

 
Traditional approaches trace the performance measures to 
optimize the supply chain performance. Optimizing 
replenishment rule parameters is a common and easily 
implementable choice. The limitation of this traditional 
approach is the possible adverse effects caused to other 
interacting nodes by transferring the uncertainty through 
information and material flows. For example, optimizing 
the network for customer satisfaction would build the 
inventory through aggressive replenishment transmitting 
uncertain information to the supplier. Optimizing the 
network for supply chain cost would optimize the 
inventory but can result in customer dissatisfaction and/or 
uncertain delivery to the customers.  
 
To achieve good distribution logistics, all distribution 
nodes have to be operated at minimum complexity. The 
overall network must also be operated at minimum 
complexity. Therefore, complexity enumeration and 
targeted management are necessary to reduce the 
unpredictable nature of the system. The present work aims 
to create smarter supply chain with reduced uncertainty to 
achieve better supply chain operation. We consider 
minimizing the uncertainty (complexity) in information 
and material flows by manipulating the replenishment 
strategy and safety stock. 
 

1.1 Literature Survey 

Several researchers have modelled supply chain systems 
with a view to predict, analyze and optimize their 
performance.  The source of cyclic disturbances in supply 
chain was first investigated by Forrester [1958]. Inventory 
control policies and production planning were found to 
cause uncertainty. Lin et al.[2004] modelled the 
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decentralized distribution unit as a discrete system based 
on material and information flows. The derived model 
was utilized to analyze the behaviour of the distribution 
node under various replenishment strategies. These 
studies revealed that the PI and cascade heuristics absorb 
the uncertainty imported to the node and results in a “less 
backorder and excess inventory” situation. In contrast, the 
order-upto-policy results in “low inventory and high 
backorder” thereby generating and exporting uncertainty 
to the interacting nodes.  
 
In addition to the exogenous uncertainties, the 
replenishment strategy, demand forecaster, lead-times, 
batch orders, supply shortages and price variations are 
identified as major endogenous sources of uncertainties 
(Lee et al.[1997]). Information distortion (bullwhip) is not 
the only performance limiting factor. Conflicting 
objectives like resource minimization and output 
maximization must be resolved to achieve an efficient, 
optimal operation. The conflicting nature of these goals 
make the case for multi-objective optimization (Chen et 
al.[2003]). Generally, an intelligent distribution network 
attempts to achieve high customer satisfaction, minimal 
back order and minimal excess inventory. The most 
common approaches to solve multi-objective problems 
are: (i) combining the multiple objectives into a single 
objective function to obtain a single solution as in 
weighted sum method or utility functions, or (2) obtaining 
a set of non-dominated Pareto optimal solutions. For 
multiple-objective problems, it can be problematic to 
combine the objectives into a single objective. A slight 
perturbation in the parameters used to combine the 
objectives could result in very different optimal solutions. 
Therefore, evolutionary optimization methods that search 
the solution space not for one optimal solution but for a 
set of solutions that are Pareto-optimal are particularly 
useful. The decision maker has then the difficult task of 
picking out one solution for implementation.  
 
An entropy based complexity optimization methodology 
overcomes the difficulties faced in the conventional 
methods. In the context of operational complexity, an 
ideal distribution node is one that either absorbs or (at the 
very least) does not add to the uncertainty imported to it. 
Reducing the variability in information and material flows 
is a crucial step to improve network performance. In this 
work, we show that it is possible to improve the 
performance of a supply chain by analyzing its time series 
data and employing an entropy-based complexity 
management methodology proposed here. Starting from a 
possibly well-established decentralized supply chain 
system, we evolve it into a more profitable decentralized 
supply chain system by following a systematic data 
analysis and optimization approach. A multi-echelon 
decentralized supply chain network is used to demonstrate 
the workability of the proposed framework. 
 
 
 
 

2. PROBLEM DESCRIPTION 
 
A simple supply chain system (see Figure 1) similar to that 
considered in Perea-Lopez et al.[2003] will be used to 
illustrate our methodology. However our method can be 
extended to larger and complex networks at the expense of 
more computational effort. The supply chain network 
(SCN) consists of three retailers (i ∈  R1 to R3) connected 
with a distribution centre and services six different 
customers (j ∈  C1 to C6). This network is fully 
decentralized pull-driven system where each distribution 
node belongs to a different company. The internal strategy 
practiced by the distribution nodes are decided by its 
management. The management may choose to set the 
inventory level at a constant (target) value or may make it 
responsive to the uncertain demand. In the proposed case 
study, all distribution entities are assumed to follow the 
responsive strategy (where the inventory target is changed 
in accordance with the uncertain demand pattern; see (7)) 
so as to increase customer satisfaction with less back order 
and minimal excess inventory. Our goal is to improve the 
performance of the retailer echelon of this SCN by 
minimizing the uncertainty present in it by revising the 
tactical decisions such as replenishment parameters and 
the safety stock level. First, we use time series data 
available from the SCN to quantify the 
uncertainty/complexity in it. This is followed by entropy 
based complexity optimization at the retailer echelon 
which essentially leads to a SCN with relatively less 
complexity in accordance with the business goals of the 
SCN. 

 
 

Figure 1: Schematic diagram of Decentralized Supply 
Chain 

 

2.1 Material and Information Balances: The dynamic 
behaviour of the distribution nodes is modelled using 
material and information flows (see Figure 2). The discrete 
model proposed by Lin et al.[2004] is described next. The 
main objective of the distribution node ‘i’ is to organize its 
inventory position, at discrete time t, Ip,i(t) at the desired 
target level.  For node ‘i’, let Ypi denote the material flow 
from its supplier and Yij denote the material flow from 
node ‘i’ to a downstream node ‘j’.  The inventory position 
at time t depends on the inventory position at time t-1, the 
materials received and the materials dispatched from node 
‘i’. The inventory position Ip,i(t) is also the sum of the 
inventory at-hand IH,i(t) and the inventory on-road IR,i(t). 
Inventory on-road IR,i(t) is the sum of orders that have 
been despatched by the supplier, but has not been received 
by the distributor node due to the lead time equivalent to L 
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time samples. The lead time (L) is the time taken by the 
supplier to satisfy the orders placed by the downstream 
nodes. It includes the time taken by the distributor node to 
place the order, the time taken by the supplier to process 
the order and the product transportation time. The order is 
assumed to be communicated instantaneously using 
advanced information technologies. Therefore, the lead 
time mainly corresponds to the time taken by the supplier 
to process the downstream order and the transportation 
time. The lead time depends on the geographical location 
of the supplier and customer, modes of transportation 
available, and the product availability. The lead time 
information can be obtained from the authorities of the 
distribution node or estimated from time-series data 
gathered from the supply chain. 
 
Based on the above description, the following equations 
can be written for distribution node ‘i’: 
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Figure 2: Schematic representation of Distribution Node 

 

p,i p,i pi ijI (t) = I (t -1) + Y (t) - Y (t)                             (1) 

 

p,i H,i R,iI (t) = I (t) + I (t)                                  (2) 
 
Equation (1) can be rewritten using z-transform as: 

-1 -1 -1
p,i pi ij-1 -1

1 1I (z ) = Y (z ) - Y (z )
1- z 1- z     (3) 

The dynamics of the inventory at-hand is similar to that of 
the inventory position with the only change being that the 
material dispatched by the supplier at time t-L is used in 
the RHS of the material balance (4).  
 

H,i H,i pi ijI (t) = I (t -1) + Y (t -L) -Y (t)     (4) 
 
Equation (4) can be expressed using z-transform as 
 

-L
-1 -1 -1

H,i pi ij-1 -1

z 1I (z ) = Y (z ) - Y (z )
1-z 1-z

        (5) 

Equations (1), (2) and (4) may be used to express 
inventory on-road IR,i(t) as: 

-L t
-1 -1

R,i pi R,i pi-1
k = t-L

1- zI (z ) = Y (z ) I (t) = Y (k)
1- z

⇔ ∑   (6) 

Equation (6) notes that the inventory on-road at time t is 
the sum of the orders satisfied by the supplier during the 
past L time periods (but not received at node ‘i’ at time t 
due to the transportation delay). Ypi(k) is the material 
shipped by the supplier at time k against an order placed 
by the node ‘i’ Uip(k). 

In general, the decentralized node prefers to become more 
responsive to the market demand by maintaining a flexible 
inventory position. The flexibility in inventory position is 
achieved by setting desired inventory position target 
SIP,i(t) in response to the forecasted demand for L time 
periods (7). An exponential forecaster with α = 0.111 (8) 
was used in all distribution nodes practising responsive 
strategy to forecast the downstream demand as suggested 
in the literature (Lin et al.[2005]). 
 

-1 -1
jp,i

j
SI (z ) = (L + 2) d (z )∑                         (7) 

( )
-1 -1

j j-1

αd (z ) = d (z )
1- 1-α z

                   (8) 

with dj representing the actual demand at downstream 
node ‘j’. 
 
The rate at which downstream orders are satisfied by node 
‘i’ depends on the inventory level at-hand. Whenever 
inventory at-hand is high, the distribution node can satisfy 
all downstream customer orders (mi = 1); when it has 
limited inventory, the distributor has a policy of satisfying 
equal proportion of all downstream orders (0 ≤ mi ≤ 1). 
This order processing is modelled by (9).   

-1
ij i jY = z m ×d∑        iє [1,3], jє [1,6]                  (9) 

 
2.2 Market Demand: The distribution network is 
subjected to two patterns of market demand in order to 
analyze the workability of the proposed entropy based 
optimization framework. The first type represents a 
stationary demand pattern (stationary stochastic demand) 
and the second type represents non-stationary demand.  
Both stationary and non-stationary demand patterns are 
generated by a white noise sequence (ξj) passing through 
suitable filters (Lin et al.[2005]). See (10) and (11). For 
stationary demand, ξj has mean = 5, variance = 1 and for 
non-stationary demand, ξj has mean = 0, variance = 1. 
Specifically, the two demand patterns are represented in z-
domain as: 

Stationary Demand: -1 -1
j j-1

1d (z )= ξ (z )
1-0.6z

          (10) 

Non-Stationary Demand:
-1 -1

j j-1 -1

1 1d (z )= ξ (z )
1-z 1-0.6z  (11)  

 
2.3 Replenishment Strategy: For large lead time systems, 
managing inventory position at all the distribution nodes is 
regarded as the key to supply chain performance and 
stability. In most situations, order-upto-policy (12) is used 
as the replenishment strategy to manage inventory position 
in the distribution system. The order-upto-policy that 
manages inventory at-hand (instead of inventory position) 
is a subset of above case when the lead time tends to zero.  
 

( )ip i p,i p,i iU (t) = K SI (t) - I (t) + SS           (12) 
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where SIp,i(t) is given by (7), Ki is the replenishment 
parameter which is unity in order-upto-policy, and SSi is 
the safety stock of the retailer node ‘i’. 
 
A phenomenon known as bullwhip effect magnifies the 
uncertainty in information flow as one moves to the 
upstream nodes from the customer nodes. This demand 
amplification manifests as large swings in inventory level 
- huge build-up in inventory (excess inventory) followed 
by accumulation of back order (stock outs). Bullwhip 
(BW) is quantified as the ratio of variance of outgoing 
order (to the supplier) to the variance in incoming order 
(from the downstream nodes). Mestan et al. [2006] 
compute it as the average of distortion obtained at each 
time period. Constraining BW≤1 signifies no information 
distortion, but may lead to poor replenishment if BW<<1. 
So, high and low BW’s can affect supply chain 
performance. Replenishment rules such as order-upto-
policy are known to cause high information distortion. 
Choosing the right replenishment parameters in relation 
to the demand pattern and business goals is a challenging 
task. 
 
Customer satisfaction (CS) is one of the important 
performance metrics in supply chains. High CS is required 
in order to remain competitive in the marketplace. CS can 
be quantified as the percentage of downstream customer 
orders satisfied by the distribution system. The CS metric 
is strongly related with cost metrics such as excess 
inventory (EI) and back order (BO). Allocating more 
inventory than required will increase CS and increase 
inventory holding costs, whereas allocating lesser 
inventory than required will decrease CS and leads to 
accumulation of back orders. An ideal distributor should 
have CS=1, EI & BO equal to zero and information 
distortion, BW=1. 
 
 

3. PROPOSED METHODLOGY 
 

The entropy based performance improvement framework 
(figure 3) starts with modelling the actual representation of 
the network from the knowledge of network topology and 
the business strategy practiced at all the entities. The 
network topology includes the connectivity between 
customers, retailers, distribution centers and the plant 
warehouse. The distribution nodes may differ in the 
internal strategy in the aspects of demand forecasting, 
order processing, inventory allocation and product 
replenishment. The distribution system can be modelled by 
combining the information gathered about the supply chain 
and through the analysis of time series data generated by 
it. The time-series data is a valuable resource to compute 
the complexity and performance of the existing network.  
 
In the proposed methodology, key information and 
material flows are considered for analysis instead of 
performance measures like customer satisfaction, back 
order and excess inventory. Crucial flow variables are 
chosen in accordance with the business goal and the 

requirement of complexity handling strategy. The crucial 
variables are customer order (information inflow), order 
placed to the supplier (information outflow), delivery from 
the supplier (material inflow), delivery to the customer 
(material outflow), supplier reliability (trustfulness rgi, i.e. 
material/information ratio) and node reliability (rij) to the 
customer. Each variable are categorized into two 
states/bins namely desired state and undesired state 
depending on whether the uncertain variables are in the 
affordable range or not. From time-series data, the 
probability of any variable residing in the desired (in-
control) state is evaluated and transformed into a 
complexity measure called Shannon Entropy (SE). For 
example, at each discrete time period, the order placed to 
the supplier is considered to be in the desired state 
whenever it lies between (µorder-2σdemand) and (µorder 
+2σdemand). By categorizing the order data into desired (in-
control) and undesired (not-in-control) states, the 
probability (Pi) is estimated as the fraction of times the 
order remains in the desired state. The observed  
probability (Pi) is converted into a complexity measure 
through (14) – SE is based on the probability of an 
uncertain variable residing in desired state (probability = 
Pi) and the probability that it is in the undesired state 
(probability = 1-Pi) (Sivadasan et al.[2002]). SE is zero if 
the probability of the desired state (Pi) is either zero or 
unity (13 and 14). Here, for the retailer node ‘i’, the 
order and demand are represented by the symbols Uip 
and Uji respectively. The entropy calculation can be 
extended to other relevant variables such as material 
delivery (Yij) to the customer by defining the in-control 
and not-in-control state with respect to the incoming 
material flow (Ypi) from the suppliers.  
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Figure 3: Complexity Management Framework 
 

TE = E(desired) + E(undesired)                           (13) 
 

T i i i iE = PlogP + (1- P )log(1- P )                             (14) 
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i i

P logPE(desired)E = =
E(undesired) (1- P )log(1- P )

             (15) 

 
( ) (r,i r,i

i
GEI = E import - E export∑ )                  (16) 
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Figure 4: Entropy measure for the desired state (Pi) 

 
The total entropy is a maximum when the occurrence of 
any state is equally probable. For example, in figure 4, the 
maximum entropy occurs when P is 0.5. Therefore, to 
minimize the network complexity, the system is driven 
towards the desired state by minimizing the ratio of the 
entropies of the desired and undesired states (i.e. 
minimize Er,i) (15). The use of entropy makes it possible 
to combine the relevant variables into a common platform. 
Gross Entropy index (GEI) is the measure of overall 
complexity resident in the system due to the uncertain 
flows (16).  
 
There are several complexity management strategies (17-
20) available to handle uncertainties with respect to the 
business goals and demand pattern. Strategy-I (S-I) 
attempts to minimize the complexity of the distribution 
system by exporting (to the upstream nodes) the 
information uncertainty received by it. Strategy-II (S-II) 
attempts to equalize the uncertainty in the material flow 
imported from the supplier to the customer. Strategy-III 
(S-III) accounts for both information and material 
complexity in an additive manner to provide better 
information flow to the supplier and the material flow to 
the customers. Strategy-IV (S-IV) reflects the supplier 
trustfulness to its customer. The predictability and the 
performance of the distribution network can be improved 
by reducing the GEI through revising the tactical 
decisions such as replenishment rule parameters and 
safety stock. Pattern search (a direct search optimization 
tool in Matlab) is used to reduce the complexity at the 
retailer echelon through simulation based optimization 
technique.  
 

Strategy I: 
ji ipr,U r,U

i
Min GEI = E - E   ∑             (17) 

Strategy II: 
pir,Y r,Y

i
Min GEI = E - E∑ ij

                (18) 

Strategy III: 
ji ip pi ijr,U r,U r,Y r,Y

i
Min GEI = E -E + E -E∑  (19)  

Strategy IV: 
ip pi ji ijr,U Y r,U Y

i
Min GEI = E - E∑       (20) 

 
It must be noted that it is not a good idea for any node to 
absorb or export all the imported uncertainties. Rather, the 
uncertainty must be absorbed (and the rest be exported) in 
an intelligent way so that desired customer satisfaction and 
optimal inventory allocation is achieved. 
 
 

4. RESULTS AND DISCUSSIONS 
 
We now present the results of applying complexity 
management strategies (S-I to S-IV) to the distribution 
system described by Figure 1. The performance metrics 
are normalized and plotted in the polar plot (Figure 5) for 
various complexity management strategies. Each 
Cartesian co-ordinate of the polar plot symbolizes the 
performance metrics. Corresponding details about 
uncertainty ratio (export to import) are provided in Table 
1 where S-I to S-IV indicate strategies, RP stands for 
order-upto-policy, S stands for Stationary demand pattern, 
NS stands for non-stationary demand pattern and (C) 
denotes inclusion of the customer satisfaction constraint. 
The export-import uncertainty ratio helps to describe the 
distribution system behaviour in terms of the generation 
or attenuation of uncertainty. Ratio values greater than 
one signifies uncertainty generation (i.e. more uncertainty 
is exported than what is imported) while the reverse holds 
for ratio values less than one. For complete uncertainty 
transfer (without any generation or absorption) this ratio is 
unity. From Table 1, it is seen that the complexity 
obtained by practicing any of the four strategies is 
significantly less in comparison with the complexity 
associated with order-upto-policy. 
 

Table 1: Gross Entropy Import - Export Information 
 

Demand Export/Import Uncertainty Ratio 

Strategy RP S-I S-II S-III S-IV 

S 1.225 0.964 0.493 0.987 1.022

NS 1.495 1.00 1.157 1.00 1.416

Strategy  
(with C) RP S-I  S-II  S-III  S-IV 

S 1.225 - 0.965 0.987 - 

NS  1.495 1.298 1.393 1.364 1.41 
 
 
4.1 Stationary Demand 

The proposed framework minimizes the complexity at the 
retailer echelon and performed significantly better than 
the well established order-upto-policy. For stationary 
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demand, the order-upto-policy generates 22.5% 
uncertainty in information flow which causes a large 
swing in inventory level thereby affecting the material 
flow to the customers. Use of S-I strategy resulted in CS > 
97%, no information uncertainty generation but 3.5% 
attenuation in material uncertainty. This would allow the 
upstream nodes to operate (forecast and replenish) 
efficiently to allocate right quantity of inventory to satisfy 
the customer order.  Otherwise the supplier would have 
suffered due to information distortion. Strategy II absorbs 
50.6% information uncertainty, and minimizes the 
inventory cost but only gives CS = 53%. The CS obtained 
with strategies S-III and S-IV are 87.6% and 98.4% 
respectively. Figure 5 shows that by adopting the 
complexity management strategies, we can have less 
information distortion (BW) compared to the order-upto-
policy. In addition, strategies S-II and S-III were also 
extended to minimize the complexity with a constraint of 
attaining the desired output (CS ≥ 95%). This results in 
CS values of 96.99% and 98.43% respectively. 3.5% 
information uncertainty is absorbed in S-II and 1.3% 
material uncertainty is absorbed in S-III.  

 
                     Strategy I                     Strategy II 

 

     
                  Strategy III                     Strategy IV 

__ Order-upto-policy, --- w/o and .....with CS 
Constraint 

Figure 5: Polar representation of the Strategies I-IV 
 

4.2 Non-Stationary Demand 

The entropy based complexity management strategies (I to 
IV) is attempted for the non-stationary demand patterns 
also. Due to space limitation, we do not present the results 
for this case using polar plot. The CS attained by adopting 
strategies I to IV are 81.71%, 86.04%, 79.42% and 
95.17% respectively. Interestingly, S-II provides better CS 
by adding 15.7% uncertainty in the replenishing order. 
Strategies I and III provide reasonable CS without adding 
uncertainty in either information or material flow. 
Strategy IV provided high CS by reflecting the 
operational complexity faced from the supplier to its 

customer. If the CS ≥ 95% constraint is placed, all 
strategies achieve this while trying to minimize 
complexity. Strategies I to IV generates and exports 
29.8%, 39.3%, 36.4% and 41% of uncertainty 
respectively.  
 

5. CONCLUSIONS 

The proposed ent ity minimization 
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