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Abstract: Optimal operation strategies for greenhouse crop cultivation can be computed with open loop 

dynamic optimization. These solutions are obtained off-line, and are valid under nominal weather 

conditions only.  On-line, feed-back control is needed to cope with deviations from the nominal weather. 

One of the issues in practical control is how to link the off-line nominal solution to on-line control. One 

option is to use a receding horizon controller with the same goal function as used off-line, but enhanced 

with a term based on the co-state of the slow crop states to encapsulate the long term goals. Loss 

measures are introduced to evaluate this solution against various other approximate solutions proposed in 

the literature. To our knowledge this is the first time that various sub-optimal solutions are clearly listed 

and analysed.  A simplified, but transparent, example is used to illustrate the various losses. One of the 

results is that receding horizon optimal control with an adapted goal function is superior to other more 

common control solutions. Copyright © 2008 IFAC    
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1. INTRODUCTION 

Control of greenhouse crop cultivation by balancing costs of 

resources against ultimate selling value of the crop has been 

the subject of several investigations. In the literature, not 

always a clear distinction is made between off-line dynamic 

optimization, which is valid for nominal (assumed) weather 

conditions, and on-line realisation in a control environment. 

Moreover, several approximate solutions have been 

proposed, for instance to treat the greenhouse as pseudo-

static or ideally controlled on the time scale of the crop 

(Seginer, 1989; Ioslovich and Seginer, 1998) or to perform a 

two-time scale decomposition to cope with the system’s 

stiffness (Van Henten, 1994). On the control level, 

hierarchical solutions are often used in practice, by trying to 

find optimized set-points. Focus on controller design has 

also been the subject of many papers, for instance Young et 

al. (1994), Pasgianos et al. (2003), Piñón et al. (2005), 

Blasco et al. (2007). 

 

While off-line optimal control patterns can be found, using 

nominal weather, it is not straight-forward to see how these 

should be used in an on-line situation, where feed-back is 

needed to cope with weather variations and modelling 

errors, and the horizon is shorter due to the inability to 

obtain reliable weather forecast on a seasonal scale. Also, it 

is not clear what the loss is of certain simplifications, that 

have been chosen for believed easiness of implementation.  

These issues form the motivation for the work reported here.  

 

Because of the complicated greenhouse physics and the 

complex dynamics of the crop, it is very difficult to fully 

comprehend the behaviour of optimal control solutions. In 

order to study this without the burden of model 

complications, we introduce an extremely simple but still 

illustrative system model, to clearly elucidate the issues 

raised above. 

 

In order to fully appreciate the development below, it is 

important to note that the greenhouse-crop system is 

characterised by two major time-scales: the greenhouse 

responds to changes in environment on the scale of half an 

hour or so, whereas the crop biomass has a typical time 

constant in the order of weeks, or more. 

 

2. OBJECTIVES 

Our aims are: 

1. To calculate the off-line optimal control trajectory for 

nominal weather, and compare this with an approximate 

solution based on time scale decomposition; such 

solutions are numerically attractive, and, more 

importantly, form the bridge between off-line 

calculations with nominal weather, and on-line control, 

as explained later. 

2. To show the differences between the open loop optimal 

solution obtained for nominal weather and the ‘dream’ 

pattern obtained afterwards for real weather. The dream 

pattern serves as the reference to which other on-line 

solutions listed under 3-6 below should be judged. It 
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should be said right away that the result for real weather 

can be better or worse, because it may be more or less 

favourable compared to the nominal weather.  

3. To evaluate the losses when the off-line computed fast 

state trajectories (available for the nominal weather only) 

are used as set-point for an on-line (classical) controller. 

4. To point out that there may exist set-points for a classical 

controller that do better than under 3 above. However, 

the pre-requisite for finding such set-points is that the 

optimal solution is already available.  

5. To show how two-time scale decomposition can be used 

to link long term seasonal goals to short term on-line 

control, thus realising a receding horizon controller 

which preserves the goal function attributes, and hence is 

expected to achieve the best possible on-line result. 

6. To evaluate the losses of using current standard control 

with fixed day-night set-point pattern.  

 

The organization of this paper is as follows. First, the simple 

example is presented. Next, the points above are addressed 

in sequence. Finally, the results will be summarized by 

comparing the various goal function values and losses. We 

conclude with a discussion, conclusions and 

recommendations for further research. 

 

3. THE ILLUSTRATIVE EXAMPLE 

The model has two state variables, the biomass 1x , and the 

air temperature 2x . The rate of change is given by 

 

2111 xdpx =& , (1) 

( ) 132222 upxdpx +−=&  (2) 

 

where 21 , dd are the external inputs solar radiation and 

outdoor temperature, respectively, 1u  is the heat input acting 

as the single control variable, and ],,[ 321 pppp =  is a 

vector of fixed parameters. The purpose is to balance the 

costs of heating against the final value of produced biomass. 

The goal function is defined by 
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f

o

t

t
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where ))(( ftxΦ  are the terminal costs, and L  are the 

running costs, and, hence, in the current example the costs 

(negative benefits) are given by 
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f
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t

t

f dtuptxpJ 1415 )(  (4) 

where the additional parameters 4p and 5p are the energy 

price and price of the sold crop at final time ft , 

respectively. Note that J depends on weather d.  

 

The nominal weather nom
d  is given by 

 

( ))24/)8.7(2sin(800,0max1 −= td
nom π , (5) 

).24/)8.7(2sin(10152 −+= td
nom π  (6) 

 

Realisations of the ‘real’ weather are given in the 

applications below.  

 

In the model above it makes sense to increase the indoor 

greenhouse temperature during periods when there is light. 

In the current implementation cooling of the greenhouse is 

passive via the exchange term with outdoor conditions. 

Values for the model parameters are given in the Appendix. 

An eigenvalues analysis of the model reveals that the 

eigenvector that is dominated by the crop state has a long 

time constant – in fact, it is infinite because the biomass is 

just an integrator. The time constant of the greenhouse is 

2/1 p , being 1 h with the current parameterization. 

 

As the goal function as well as the model are linear in the 

heating (control u), it is known from optimal control theory 

that the solution is bang-bang (Bryson 1999). 

  

4. METHODS 

Because the solution is bang-bang, the optimal control 

patterns in this case were obtained by directly optimising for 

the switching moments, using the NLP solver constr in 

Matlab 6.5. Due to the periodic nature of the nominal 

disturbances, and the integrative biomass equation, the 

solution repeats itself for consecutive days. Therefore, a 

period of two days suffices in this case as an emulation of a 

full season.  

 

The receding horizon controller for on line control uses the 

same algorithm with a control interval of 0.2 h, and a 

prediction horizon of 1 h, allowing two switching instances. 

The PI controller has anti-windup, to limit integral wind-up 

during periods when the greenhouse cools down by natural 

exchange. The controller parameters are found by using the 

tuning tools in SIMULINK 2.0. 

 

 

5. RESULTS 

5.1 Open loop optimal control for nominal weather 

First, a dynamic optimization is performed, assuming fully 

known, nominal weather. This is typically the situation 

encountered when calculating a seasonal solution in an off-

line fashion. Figure 1 shows the results.  

 

The heating is switched on a little after sunrise, as it 

apparently does not pay off to heat when the light is still 

low, and switched off quite some time before sunset, to 

profit from the inertia of the greenhouse. The optimal 

control pattern on the second day and beyond is slightly 

different from the first day, as the effect of the initial 

conditions gradually vanishes. The virtual costs (negative 

benefit) at final time tf = 48h is -3.30 units, which is mainly 

due to the value of the crop. 
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Fig. 1. Open loop optimal control with nominal weather. 

Top: optimal greenhouse temperature x2 (solid) and 

outdoor temperature d2 (dashed), middle: optimal 

heating pattern u (solid) and solar radiation d1 

(dashed), bottom: crop benefit p5x2 (upper line) and 

running heating costs (lower line). 

 

 

5.2 Open loop optimal control for ‘real’ weather 

In a real situation, the weather is, of course, not known over 

the full control horizon. This is one major reason why some 

form of feed-back is needed (the other reason is modelling 

errors). Nevertheless, when the weather has been realised, it 

is possible to calculate, afterwards, the optimal solution that 

could have been obtained when all information would have 

been available right from the start (cf. e.g. Van Henten et al., 

1997). Although this “dream pattern” cannot be reached in 

practice, it is a good benchmark to which other solutions can 

be rated. All other solutions will be sub-optimal, and it is 

interesting to compare the sub-optimality losses of various 

propositions. 

 

In order to keep matters simple, here a very basic change in 

the weather relative to the nominal weather is used, by 

introducing a 80% solar radiation drop for two hours on the 

second day. The pattern and optimal solution are presented 

in Figure 2.  

 

It is seen that the optimal value drops from 3.30 to 2.97, 

which must be attributed to the availability of less light. This 

is also seen from the lower biomass production (compare 

final values in bottom panels of Figures 1 and 2). There is 

also a clear effect on the optimal control pattern itself, as the 

heating stays off at the second day around sun-rise, as the 

optimisation ‘knows’ that there will be a light drop later on. 
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Fig. 2. Open loop optimal control with “real” weather. 

Meaning of all lines as in Figure 1. 

 

5.3 Closed loop control using optimal state trajectories as 

set-point 

Next, we turn our attention to closed loop control. One idea 

that comes into mind is just to use the nominal control 

pattern to control the greenhouse. It is easy to see that this 

form of open loop control is not a good idea, as this does not 

provide the necessary feed-back.  

 

On the other hand, it is frequently felt that using the 

temperature patterns obtained for smooth nominal weather 

are good candidates as set-points for a local controller. 

Offering the  nominal optimal temperature trajectories as 

set-points to a local PI controller under actual weather 

conditions, i.e. with the light dip on the second day results in 

J = -2.73. The controller performance is shown in Figure 3. 

Despite excellent tracking, it is clear that there is a loss 

compared to the best achievable control (-2.97). One reason 

for the loss is that there is heating on the second day when it 

is not required, as can be seen by comparison with Figure 2. 

Although this is partly an artefact of the current example, as 

the light drop affects the crop only, it is illustrative of what 

happens when a set-point derived for nominal conditions – 

which is the only possibility in practice - is chased under 

changed conditions. The other reason may be the dynamics 

introduced by the feed-back controller.  

 

To more clearly see the effect of the introduced controller 

dynamics the PI controller is used with the nominal weather. 
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The pattern is very similar to Figure 3. We find that J = -

3.09, which is a loss of  6% with respect to the optimal value 

of -3.30. This loss is solely due to the extra dynamics 

introduced by the feed-back loop, as all other information is 

exactly known.  
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Fig. 3. PI control using optimal (nominal) temperature 

(Tsp, solid line) as set-point, with “real” weather. The 

state x2 (dashed) is indicated by T , the control u by H. 

 

5.4  Sensitivity to near-optimal set-points 

When the optimal set-point trajectory derived from Figure 2 

is approximated by a piece-wise linear approximate pattern 

as shown in Figure 4 – as an example of how 

implementation may look like in practice – we obtain J = - 

2.90 for nominal weather and J = -2.56 for actual weather. In 

both cases this is a loss of 6% compared to the correct 

pattern. This suggests that seemingly small differences in 

set-point can already lead to appreciable losses. 
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Fig. 4. PI control using an approximation of the optimal 

(nominal) temperature (Tsp, solid line) as set-point, 

with “real” weather. The state x2 (dashed) is indicated 

by T , the control u by H. 

 

5.5 Receding Horizon Control with co-state information 

In optimal control problems the so-called co-state equation 

plays an important role. There are as many co-states or ad-

joint variables (λ) as states. They can be interpreted as the  

sensitivity of the goal function to the states (Stengel, 1994), 

and can therefore be seen as shadow prices for a marginal 

increase in state value. The general co-state equation reads 
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Working this out for the slow state (biomass) in the simple 

example gives 

511 )(,0 pt f ==− λλ& . (8) 

 

This shows that in this simple example the marginal value of 

a unit of biomass is constant. This is because, in the simple 

example, the biomass increases linearly when light and 

temperature are constant. It should be noted that this is in 

agreement with the linear phase associated to full foliage 

coverage in classical expo-linear growth. 

 

Two-time scale decomposition now suggests (Van Henten, 

1994, van Straten et al., 2002; van Henten and Bontsema, 

2007) that an appropriate goal function to be used on the 

short time scale is given by the adjusted goal function 

( )∫
+

+=
Htt

t

Hrhoc dtxupttJ 1114),( &λ , (9) 

The integration is taken over the moving window from the 

current time t to t+tH, with tH the prediction horizon. 

This approach is based on the observation that the co-state 

associated to the slow variable does not depend much on the 

actual realization of the weather. It can therefore be 

evaluated from an ensemble of possible weather patterns. 

 

The first real application of this principle was for tomato 

(Tap, 2000). Note that the goal function (9) preserves the 

direct economic costs of the resources, and adheres to it a 

value that should be given to the state increment of the slow 

state, despite the fact that these revenues will only be 

obtained at the final time. 

 

Based on this goal function, it is now possible to build a 

receding horizon optimal controller (RHOC). At any 

sampling instant the control trajectory is computed over a 

finite horizon tH needed to locally optimize the goal function 

(9), based on an estimate of the current state, the current 

weather, and an expectation of the weather over the 

prediction horizon. An example is given in Figure 5. Only 

the first calculated control action is applied during the 

remainder of the sampling interval. Hence, in the situation of 

Figure 5 the heating will be turned on. When the next 

sampling instant is reached (in this case after 0.2 h) the 

optimisation is repeated, using a new estimate of the state 

derived from actual observations, and a new observation and 

expectation of the weather. In this way, both feed-forward as 

well as feed-back is provided. Note that the RHOC is not a 

standard Model Predictive Controller (MPC) as the goal 

function is different and has an economic basis, rather than a 

control performance basis. A forecast of the weather is 

needed, but as the horizon is short, this is much less a 

problem than when computing seasonal optimisations. In the 
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calculations reported below, a so called lazy man prediction 

is used, meaning that d over the prediction horizon will be 

the same as the most recent measured value. 
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Fig. 5. Example of predicted optimal temperature 

trajectory and control pattern over the prediction 

horizon of 1 h, at t = 12.8 h 

 

Figure 6 shows the ensemble of all predicted temperature 

trajectories over two days and also presents the optimal 

control actions trajectories as overlapping blocks. It is 

interesting to note that although the RHOC predicts 

switching off the heating somewhere half way the one hour 

horizon (Figure 5), the actual on-time is longer because at 

later times the original prediction is overruled by the newly 

calculated control at the next control interval.  

Using the actually realized control, the realized cost function 

can be computed. The result is -2.82, which in this case is 

5% less than the achievable value. 
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Fig. 6 RHOC temperature predictions and optimal control 

trajectories, with a control interval of 0.2 h and horizon 

of 1 h, real weather 

 

5.6 PI control with day-night pattern 

The classical greenhouse settings are a standard day-night 

pattern. Unlike Dai et al. (2006), who try to find these set-

points by optimisation, using the greenhouse and a crop 

model,  here, day-night settings 28 oC from 9:00 to 19:00, 

and of 5 oC during the night, with a one hour gradual 

change, were used. These values were inspired by the 

optimal result and were already forced in a direction to 

obtain more or less bang-bang heating. The result of -2.63 is 

slightly better than with the set-points obtained from optimal 

control, but still 7% below the RHOC controller, and 11% 

below the theoretical ideal.  

 

6. SUMMARY OF THE RESULTS 

 

Table 1. Summary of the results 

 

Nominal Weather -J  

 profit % loss 

1 OL; Optimal control (5.1) 3.30 0 

2 CL; PI, set-points from nominal 

dynamic optimisation (5.3) 

3.09 6 

3 CL; PI, set-points from 

approximated (stylised) nominal 

dynamic optimisation (5.4) 

2.90 12 

   

Real Weather -J  

 profit % loss 

4 OL; “Dream” pattern optimal 2.97 0 

5 CL; PI, set-points from nominal 

dynamic optimisation (5.3) 

2.73 8 

6  CL; PI, set-points from 

approximated (stylised) nominal 

dynamic optimisation (5.4) 

2.56 14 

7 RHOC (5.5) 2.82 5 

8 PI, fixed day-night (5.6) 2.63 11 

 

For convenience, profit is reported here, which is –J. 

 

7. DISCUSSION AND CONCLUSIONS 

 

The use of any kind of on-line feed-back control always 

leads to losses with respect to the a posteriori optimal 

“dream” pattern. On the basis of a simple example we have 

shown how to evaluate the sub-optimality losses of various 

controller options. 

 

Clearly, the example is a gross oversimplification of any real 

greenhouse-crop system, but it was deliberately chosen as 

such to clearly mark the features we wished to elucidate. We 

are quite confident that the trends observed are similar to 

those in the real world, and it is very challenging to repeat 

the loss evaluation for realistic crop-greenhouse models. 

 

The results so far suggest that chasing fixed day-night set-

points may lead to larger losses than if the set-points are 

obtained from optimisation under nominal disturbances, but 

even then the losses can be quite large. This can be 

attributed to the fact that the crop does not really need the 

target temperature when the light regime is different than 

expected. Sloppy approximation of the optimal controller 

set-points will also lead to losses. With deviating weather, 

performance of the PI controllers deteriorates further.  

 

It should be noted that in all these cases the deviation from 

the nominal weather was much less than what can be 

expected in a real case, where much larger fluctuations can 

occur.    
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Receding horizon control on the basis of an adjusted goal 

function that uses the same economic parameters, derived 

from the optimal solution via two-time scale decomposition 

outperforms all other feed-back controllers, and is expected 

to yield the best economic result achievable in an on-line 

situation. 
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APPENDIX 

Model parameters for the illustrative example: 

 

model:  

p1 = 7.5e-8 kg(dw) m-2 (Wm-2)-1 oC-1 h-1 ; p2 = 1 h-1 ; p3 = 

0.10 oC (Wm-2)-1 h-1.  

goal function: 

p4 = 4.55e-4 € (Wh)-1; p5 = 136.4 € kg(dw)-1. 

initial conditions:  

x1(0)=0 kg(dw)m-2; x2(0)=10 oC. 

PI controller:  

Kp = 40; KI = 30. 
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