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Abstract: Fractional differentiation models have proven their usefulness in representing
high dimensional systems with only few parameters. Generally, two elementary fractional
functions are used in time-domain identification: Cole-Cole and Davidson-Cole functions. A third
elementary function, called Havriliak-Negami, generalizes both previous ones and is particularly
dedicated to dielectric systems. The use of this function is however not very popular in time-
domain identification because it has no simple analytical impulse response. The only synthesis
method of Havriliak-Negami elementary functions proposed in the literature is based on diffusive
representation which sets restrictive conditions on fractional orders. A new synthesis method,
with no such restrictions, is developed in this paper. For that purpose Havriliak-Negami function
is first split into a Davidson-Cole function and a complementary one. Both functions are then
synthesized in a limited frequency band using poles and zeros recursive distribution developed by
Oustaloup (1995). As an example, this Havriliak-Negami function is used for a thermal system
modeling.

Keywords: System identification; Fractional models; Fractional differentiation; Synthesis;
Havriliak-Negami function.

1. INTRODUCTION

Although fractional (non integer) operators remained for a
long time purely a mathematical concept, the rise of digital
computers offered an easy way for simulating numerically
non integer integro-differentiation of mathematical func-
tions. The last two decades have witnessed considerable de-
velopment in the use of fractional differentiation in various
fields. Fractional differentiation is now an important tool
for the international scientific and industrial communities.
The use of fractional differentiation models in system
identification was initiated in the late nineties and the
beginning of this century (Lin (2001); Cois (2002); Aoun
(2005)). They are now widely used in representing some
diffusive phenomena (thermal diffusion, electrochemical
diffusion) and in modeling viscoelastic materials.

Based on the synthesis of two elementary functions Cole-
Cole (Cole and Cole (1941)) and Davidson-Cole (Davidson
and Cole (1951)), both defined later, the objective of this
paper is to propose a synthesis method for Havriliak-
Negami function (Havriliak and Negami (1966, 1967)). Al-
though this function is particularly dedicated to diffusive
systems and generalizes both previous ones, it is, up to
now, seldom used because its synthesis is problematic.

The paper is organized as follows. First, a mathematical
background on fractional differentiation is presented. Then
in section III, principles of the bandlimited frequency frac-
tional operator synthesis is explained and the synthesis of
the Davidson-Cole function is extended to complex zeros.

Next in section IV, Havriliak-Negami function is split up
into two functions each of which is then synthesized. Fi-
nally, the Havriliak-Negami function is used for a thermal
system modeling.

2. MATHEMATICAL BACKGROUND

The concept of differentiation to an arbitrary order (non-
integer),

Dν ∆
=

(

d

dt

)ν

(1)

was defined in the 19th century by Riemann and Liouville.
The ν fractional derivative of f (t) is defined as being an
integer derivative of order ⌊ν⌋ + 1 (⌊.⌋ stands for the floor
operator) of a non-integer integral of order ν−⌊ν⌋ (Samko
et al. (1993)):

Dνf (t) = D⌊ν⌋+1
(

I⌊ν⌋+1−νf (t)
)

∆
=

1

Γ (⌊ν⌋ + 1 − ν)

(

d

dt

)⌊ν⌋+1 t
∫

0

f (τ) dτ

(t − τ )
ν−⌊ν⌋

(2)

where t > 0, ∀ν ∈ R
∗
+, and the Euler’s Γ function is defined

as:

Γ (x) =

∞
∫

0

e−ttx−1dt, ∀x ∈ R
∗\{N

−}. (3)
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A more concise algebraic tool can be used to represent
fractional systems: the Laplace transform. The Laplace
transform of a ν order derivative (ν ∈ R

∗
+) of a signal

x(t) relaxed at t = 0 is obtained by taking the Laplace
transform of (2) Oldham and Spanier (1974):

L {Dνx (t)} = sνX (s) if x(t) = 0 ∀t < 0. (4)

Two elementary fractional-differentiation functions are
generally used for representing fractional transfer func-
tions: the Davidson-Cole function (Davidson and Cole
(1951))

Fdc (s) =
A

(s + ωu)ν , (5)

and the Cole-Cole function (Cole and Cole (1941))

Fcc (s) =
A

sν + ωu

, (6)

where ωu ∈ R+ and A ∈ R.

Fcc (s) has one sν-pole at −ωu and, as shown by Oustaloup
(1983, 1995), Fcc (s) might have s-poles at:

Pk = (ωu)
1
ν ejπ

2k+1
ν , (7)

provided there exists k ∈ Z such that:

−
(1 + ν)

2
< k <

(1 + ν)

2
. (8)

Hence, the number of s-poles equals:

• 0 when ν < 1,
• 1 when ν = 1,
• 2 when 1 < ν < 3,
• 3 when ν = 3,
• 4 when 3 < ν < 5.

The s-pole locus is plotted in Fig. 1 versus differentiation
order ν varying from 1 to 3. For 0 ≤ ν < 1, Fcc is stable
since it has no s-pole. When 1 < ν < 2, Fcc has two stable
complex conjugate poles. Beyond ν = 2, it has at least two
unstable poles.
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Fig. 1. Pole locus of Fcc versus differentiator order for
1 < ν ≤ 3. Fcc has two complex conjugate poles,
unstable beyond ν = 2

A third elementary function (Havriliak-Negami) was pro-
posed by Havriliak and Negami (1966, 1967):

Fhn (s) =
A

(sν1 + ωu)
ν2

. (9)

Although, it generalizes the two previous ones, it is rarely
used in time domain-simulations because of the difficulty
of its synthesis.

A rational realization of the Havriliak-Negami elementary
function is proposed in Laudebat (2003) for (ν1, ν2) ∈

(]0, 1[)
2

and is based on diffusive representation. Never-
theless, this representation does not allow to have a band
limited fractional behavior, which is generally present in
physical systems, i.e. physical systems do not have an
infinite band fractional behavior.

The objective of this paper is to define a rational re-
alization of Havriliak-Negami elementary function on a
bandlimited frequency for ν1 ∈ R+ and ν2 ∈ R.

This new realization is based on the splitting of Havriliak-
Negami elementary function into a Davidson-Cole and a
complementary function. Then, the rational realization of
both functions is obtained by using the principle of recur-
sive poles and zeros synthesis of a bandlimited fractional
integrator as described by Oustaloup (1983, 1995).

3. SYNTHESIS OF FRACTIONAL OPERATORS IN A
BANDLIMITED FREQUENCY

Considering the bandlimited fractional behavior of real
physical systems and the practical limitations of input
and output signals (Shannon’s cut-off frequency and the
spectrum of the input signal), fractional operators are
usually approximated by high order rational models within
a limited frequency band. This physical limitation is all the
more interesting as until now, there is no mathematical
tool leading to an approximation for every frequencies. As
a result, a fractional model and its rational approxima-
tion have the same dynamics within a limited frequency
band. The most commonly used approximation of the
fractional integro-differentiator sν in the bandlimited fre-
quency [ωA, ωB] is the recursive distribution of zeros and
poles proposed by Oustaloup (1983) and explained below.

Rational realization of fractional operators in the bandlim-
ited frequency [ωA, ωB] induces deterioration around the
edge frequencies ωA and ωB as shown in Fig. 2 and 3.
This deterioration is known as edge effect and is generally
reduced by extending the frequency band on which the
realization is carried out from [ωA, ωB] to [ωb, ωh], where

ωb =
ωA

σ
ωh = ωB · σ

. (10)

A dedicated study (Oustaloup (1995)) has shown that the
edge effect is considerably reduced by choosing a spreading
factor of σ = 10 or 100. As a result, sν is approximated
on the frequency band [ωA, ωB] by:

sν → sν
[ωA,ωB ] = C0

(

1 + s
ωh

1 + s
ωb

)ν

≈ C0

N
∏

k=1

1 + s
ω′

k

1 + s
ωk

(11)

where
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Fig. 2. Fractional integrator s−0.5 and its approximation
s−0.5
[0.1,10] based on recursive poles and zeros realization

Oustaloup (1995), for σ = 10 in (10)
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sν
[10−2,102] for ν = −0.2,−0.5,−0.8 and − 1.1, for

σ = 10

ω′
0 = α

1
2 ωb, ω0 = α

1
2 η ωb, (12)

ωk+1

ω′
k

= α,
ω′

k+1

ωk

= η, (13)

C0 =

(

ωh

ωb

)ν (
1 + ω2

b

1 + ω2
h

)
ν
2

. (14)

The real parameters α and η define by their own the
differentiation order ν:

ν =
log (α)

log (α · η)
. (15)

N is the number of poles and zeros used to approximate
sν
[ωA,ωB ], which tends theoretically to ∞. But, an approxi-

mation with 2 poles and zeros per decade leads already to
an acceptable error.

4. SYNTHESIS OF HAVRILIAK-NEGAMI FUNCTION

In this paper, Havriliak-Negami function:

Fhn (s) = (sν1 + ωu)ν2 (16)

is synthesized for ν2 ∈ R, and (ν1, ωu) ∈ R
2
+.

Consider M as the number of s-roots P1, P2, . . . , PM of
Fhn (s). M depends on ν1 as explained in part I. Hence,
Fhn (s) can be written as:

Fhn (s) =

[

M
∏

m=1

(s − Pm)F (s)

]ν2

κ (s) (17)

with

F (s) =
(

s + ωu

1
(ν1−M)

)(ν1−M)

. (18)

The part between squared brackets has the same asymp-
totic behavior than Fhn (s). κ (s) is then defined as the
ratio of Fhn (s) and its asymptotic behavior (the function
between the squared brackets). Fhn (s) is then

Fhn (s) =

[

M
∏

m=1

(s − Pm)ν2

(

s + ωu

1
(ν1−M)

)ν2(ν1−M)
]

κ (s) .

(19)

Since the s-roots (obtained when ν1 > 1), introduce
nothing else but additional Davidson-Cole functions which
synthesis are known (Oustaloup (1995)), only the case
ν1 ∈ ]0, 1[ is considered in this paper.

Thus, Fhn (s) can be split into the product of two func-
tions:

Fhn (s) = F1 (s) · κ (s) (20)

where F1 corresponds to a Davidson-Cole elementary
function:

F1 (s) =

(

s + ω
1

ν1
u

)ν1·ν2

. (21)

The asymptotic behaviors of Fhn (jω) and F1 (jω) when
ω → 0 and ω → +∞ are the same, since

lim
ω→0

Fhn (jω) = lim
ω→0

F1 (jω) = ων2
u . (22)

lim
ω→∞

Fhn (jω) = lim
ω→∞

F1 (jω) = j∞. (23)

Moreover, in the vicinity of ω → ∞, both functions
converge to the same rate:

Fhn (jω) ∼ (jω)
ν1ν2 , as ω → ∞ (24)

F1 (jω) ∼ (jω)
ν1ν2 , as ω → ∞. (25)

As seen previously, F1 (s) is approximated by a recursive
distribution of poles and zeros. The additional function

κ (s) =
Fhn (s)

F1 (s)
, (26)

plotted in Fig. 4, plays a significant role in median frequen-

cies (around ω
1

ν1
u ). Its synthesis is developed in section 4.1.

Remarks

(1) When ν1 tends to 1, the Havriliak-Negami function
(16) tends to the Davidson-Cole function (21), κ (s)
tends to 1, and hence, Fhn (s) tends to F1 (s).

(2) When ν1 tends to 0, the Havriliak-Negami function
(16) is far from the Davidson-Cole function, κ (s)
tends to Fhn (s) (20), and hence, F1 (s) tends to 1.
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4.1 Basic synthesis of κ (s)

The gain diagram of κ (s), is log-symmetric with respect

to ω
1

ν1
u (Fig. 4). The principle of poles and zeros recursive

distribution underlined in section 3 is now used to synthe-
size κ (s) in the frequency band

[

ωu

∆ , ωu ∆
]

. ∆ leads to the
necessary log-symmetry of this frequency band,

∆ = max (∆1, ∆2) , (27)

with ∆1 and ∆2 such that:

∆1 = max

(

ωu

σ · ωh

,
σ · ωh

ωu

)

, (28)

∆2 = max

(

σ · ωu

ωb

,
ωb

σ · ωu

)

. (29)

as presented by figure 4, and σ = 100.

This frequency band
[

ωu

∆ , ωu ∆
]

is subdivided into 2N

bands, namely
[

ωek
, ωek+1

]

for k = 1, 2..., 2N , such as

ωe1 =
ωu

∆
, (30)

and
ωek+1

ωek

= ∆
1
N . (31)

Then, a recursive distribution of Mk poles and zeros is
applied on every

[

ωek
, ωek+1

]

frequency band. Hence, for

each mth frequency band:

ω′
k,0 = α

1
2

k ωek
, ωk,0 = α

1
2

k ηk ωek
, (32)

ωk,m+1

ω′
k,m

= αk,
ω′

k,m+1

ωk,m

= ηk. (33)

The real parameters αk and ηk define a local differentiation
order νk:

νk =
log (αk)

log (αk · ηk)
. (34)

Thus, the approximation κ1 (s) of κ (s) in the frequency
band

[

ωu

∆ , ωu ∆
]

is given by:

κ (s) ≈ κ1 (s) =

2N
∏

k=1

Mk
∏

m=1

s + ω′
k,m

s + ωk,m

. (35)

If Mk is defined by ν1, N is fixed such that 2 poles and
zeros per decade for the frequency band, which is typically
enough to synthesis κ and F1 functions.

Finally, by ordering all the poles and all the zeros as a
global non recursive distribution, κ1 (s) can be written as
the following product:

κ1 (s) =

2N ·Mk
∏

i=1

s + ω′
i

s + ωi

. (36)

4.2 Improved synthesis of κ (s)

While synthesizing κ1 (s), the modulus of the error

(κ (jω) − κ1 (jω)), ω ∈
[

ωu

∆ , ωu ∆
]

, is maximum at ω
1

ν1
u .

For ν1 → 0, the gain of the Davidson-Cole function is much

less than the gain of κ1 (s) at ω
1

ν1
u .
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Fig. 4. Principles of the non recursive distribution of poles
(×) and zeros (◦) for the synthesis of κ (s) on the
frequency band [ωb, ωh], for (a) ωu ≤ ωb ≤ ωh, (b)
ωb ≤ ωu ≤ ωh and (c) ωb ≤ ωh ≤ ωu

In the opposite case, for ν1 → 1, the gain of κ1 (s) is much

less than the gain of the Davidson-Cole function at ω
1

ν1
u .

Based on remarks about influences of ν1 on κ (see part
Remarks), an improved synthesis of κ (s) is obtained by
using κ2 (s), which is a weighted κ1 (s) approximation:

κ2 (s) = (1 − ν1) · κ1 (s) . (37)

The use of κ2 (s) allows to reduce considerably the syn-

thesis error around ω
1

ν1
u by attenuating edge effects as ν1

tends to 1 (κ tends to 0 in this case). Fig. 5 and 6 show
the improvements introduced by the approximation κ2 (s)
of κ (s) as compared the approximation κ1 (s).

4.3 Synthesis of Havriliak-Negami elementary function
using κ2 approximation

Syntheses for Fhn (s) = (sν1 + 1)ν2 with ν2 = −0.5 and ν1

respectively equal to 0.1, 0.25, 0.5, 0.75 and 0.9 are pre-
sented on Fig. 7. The frequency band used for synthesis is
symbolized by squares and corresponds to [0.1, 10] rad/s.

5. IDENTIFICATION OF A THERMAL SYSTEM

To illustrate the use of fractional models in system iden-
tification, a semi-infinite dimensional thermal system is
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considered (Sabatier et al. (2005)). It is constituted of
a long aluminium rod heated by a resistor. To ensure
unidirectional heat transfer, the entire surface of the rod
is insulated. The temperature of the rod is measured at a
distance x = 5mm from the heated end (Fig. 8).

The thermal system is considered as a semi-infinite plane
homogenous medium initially at ambient temperature.
Losses on the surface where the thermal flux is applied
are neglected.
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Fig. 8. Insulated long aluminium rod heated by a resistor

A pseudorandom binary sequence is used as input signal.
The sampling period is fixed to Te=0.5s. [ωb, ωh] are then

as
[

1
100

2π
Npoints Te

, 100 ∗ 2pi
Te

]

with Npoints = 4400. For ∆

equal to 4 decades, the number of poles and zeros (N)
for the approximation of the Havriliak-Negami is then 16.
The fractional integrator approximation leads to the same
number of poles and zeros on this frequency band.

Prior knowledge shows the presence of a fractional inte-
grator in the model which is therefore set to:

F (s) =
k

sν (sν1 + ωu)
ν2

. (38)

One can notice that a Havriliak-Negami elementary func-
tion is chosen in the model (38). Its synthesis is carried out
as described in this paper with the following parameters.
The spreading factor is set to σ = 100 to reduced edge
effect and the number of poles and zeros, used to synthesize
κ2 (s) and F1 functions, is set to 2 per decade.

The system is identified by applying output error model.
Parameter vector [k, ν, ν1, ν2, ωu] is optimized by using
the non-linear Simplex optimisation algorithm (Subrah-
manyam (1989); Woods (1985)). The obtained model is:

F (s) =
5 × 10−3

s0.32 (s0.50 + 0.51)
3.49 . (39)

and has only five parameters.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14287



0 500 1000 1500 2000
0

5

10

0 500 1000 1500 2000

0

5

10

 

 

0 500 1000 1500 2000

−0.05

0

0.05

In
p
u
t

Time (s)

O
u
tp

u
t

Time (s)

E
rr

o
r

Time (s)

system
model

Fig. 9. System identification using a Havriliak-Negami
function and modeling error
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Fig. 10. System identification using a Havriliak-Negami
function and modeling error on validation data

As shown on validation data of Fig. 10, the identified
model (Fig. 9) gives satisfactory results. The error variance
is σ2 = 5.1 10−4 with this model, while by using Cole-Cole
functions, a variance σ2 = 9.4 10−4 for 6 parameters (Malti
et al. (2006)).

6. CONCLUSION

Fractional (non integer) operators has proven their useful-
ness in representing high dimensional systems with only
few parameters.

Among different fractional elementary functions, the
Havriliak-Negami function is not very popular because
of the difficulty of its synthesis. Hence, a new synthe-
sis method is developed in this paper. Havriliak-Negami
function is first split into a Davidson-Cole and a comple-
mentary functions, both of which are then synthesized in

a limited frequency band using poles and zeros recursive
distribution developed by Oustaloup (1995).

Finally, to illustrate the usefulness of Havriliak-Negami
function a real thermal diffusive system is identified on
the basis of this function.

The next step of our study would provide a method to
control the synthesis approximation error.
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