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Abstract: In micromanipulation, piezoelectric cantilevers are commonly used in grippers
performing pick-and-place of micro-objects. Indeed, these materials offer high accuracy and
high speed. On the one hand, when working with large electric field, the behavior of the
piezocantilevers provides hysteresis nonlinearity reducing their performances. On the other hand,
the temperature variation of the workspace influences the accuracy. In this paper, a feedforward
control is used to linearize the hysteresis and a robust feedback controller is implemented to
reject the thermal disturbance. The former is based on the inverse Prandtl model while the
second on the H∞ robust control.
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1. INTRODUCTION

Piezoelectric materials are very used in micromanipulation
due to their high resolution and rapidity. One of their
applications is the piezoelectric microgripper which is
made up of two piezoelectric cantilevers (piezocantilevers)
[1]. They are used to pick, transport and place micro-
object very accurately (Fig. 1).

micro-object force

displacement

piezoelectric

cantilevers

Fig. 1. A piezoelectric microgripper which manipulates a
micro-object.

When large electric fields are applied to the piezocan-
tilevers, the hysteresis nonlinearity becomes non-negligible.
This indeniably reduces the accuracy of the micromanipu-
lation task. To reject the effect of the hysteresis, open loop
and closed-loop techniques have been proposed.

In the open loop technique (feedforward), the hysteresis
is first modeled. Then, the calculated model is inverted
and put in cascade with the piezocantilever in order to
have a linear system. Such technique necessitates a precise
? This work is partially supported by the French Innovation Agency
(www.oseo.fr) and the european project EUPASS (www.eupass.org).

model. The Preisach model is the most accurate [2][3]
but due to its complexity, this model and its inverse
need high computing memory and power. Another used
model is the Prandtl model [4]. Not only it gives an
enough accuracy but the implementation is also easy.
However, when subjected to a disturbance, the feedforward
technique is not suitable and closed-loop methods should
be used.

In the closed-loop techniques [5][6][7], feedforward-feedback
and feedback methods are applied. The feedforward-
feedback method is based on a feedforward technique for
cancelling the hysteresis and a feedback linear controller.
In the feedback method, a linear approximate model is
used to model the nonlinearity and to design a linear
controller.

Besides the hysteresis, the accuracy of a micromanipula-
tion task is also strongly influenced by the environment
conditions, notably by the temperature. In our previous
works [8], it has been demonstrated that a temperature
variation of 10◦ could generate a displacement error more
than 10µm in a micromanipulation system. A linear robust
controller has been proposed to reject the thermal effect.
However, when the applied electric field (and then the de-
flection) becomes large, the hysteresis of the actuator must
be taken into account as well as the thermal disturbance.

In this paper, a feedforward-feedback controller is pro-
posed in order to cancel the hysteresis and to reject the
thermal disturbance. While a Prandtl inverse model is
used for the feedforward compensator, a H∞ control is
implemented for the feedback controller. The paper is or-
ganized as follow. The influence of the temperature on the
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piezocantilever is presented in the second section. Then,
the third section presents the modelling of the hysteresis
and the implementation of the feedforward compensator.
Finally, the H∞ robust controller is detailed in the last
section.

2. OPEN-LOOP ANALYSIS

In this section, the influence of the temperature variation
in a piezocantilever is analyzed. The experiments (Fig. 2)
were performed with a bimorph piezocantilever made up
of a piezolayer and a Cupper layer. The sizes are: total
thickness of 0.3mm (where 0.2mm is for the piezolayer),
width of 2mm and length of 15mm. A DSpace board
and a computer material were used to supply the signal
while a keyence sensor laser (10nm resolution and 0.5µm
accuracy) for the measurement. Finally, while a spotlight
is used to vary the working temperature, a thermocouple
measures it.

spotlight

piezocantilever

laser sensortemperature

sensor

Fig. 2. The experimental setup.

First, the thermal effect on the transient part is analyzed.
For that, a step voltage with 40V of amplitude is applied to
the piezocantilever. It appears that for two environmental
temperatures (T = 22◦ and T = 32◦), the transient part
of the cantilever is unchanged (Fig. 3).

The second experiment consists in regarding the effect
of the temperature when we apply the step voltage and
observe the deflection more than 3min. It appears that the
creep phenomenon is highly amplified (Fig. 4). While with
T = 22◦ the creep is negligible, its amplitude is important
with T = 32◦. Such drift largely decreases the accuracy
of a micromanipulation system and should be rejected.
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Fig. 3. The temperature does not affect the transient part.

The fact that the creep is amplified when the temperature
increases is well known in mechanical engineering.
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Fig. 4. The amplitude of the creep is amplified by the
temperature.

Finally, the influence of temperature on the hysteresis
is observed. To perform that, a sine voltage of 1Hz
of frequency and 40V of amplitude is applied to the
piezocantilever. After measuring the delfection, the static
graph relating the deflection and the voltage is plotted.
According to the results (Fig. 5), the hysteresis is weakly
affected by the temperature variation.

From the precedent observations, it can be assumed that
the temperature T behaves like a fictive force applied to
the piezocantilever and can be considered as an external
disturbance. If the nonlinear relation between the applied
voltage U , the external force F and the resulting deflection
δ is:

δ = Γ (U) + sp · F (1)

Introducing the thermal disturbance, we have:

δ = Γ (U) + sp · F ·D(s) + g (T ) (2)

where Γ (U) represents an operator including the hysteresis
and the creep, sp is the elastic constant, D(s) (such as
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Fig. 5. The temperature weakly affects the hysteresis.

D(0) = 1) is a dynamic part and g (T ) an operator relating
the temperature and the deflecion. We have g (22◦) = 0

However, in previous works, the following remarks have
been raised:

• the creep can be considered as a fictive force and then
an external disturbance [9],

• the hysteresis inside a piezoecantilever is static (rate-
independent) [10],

• the dynamic parts of the electromechanical transfer
and the elastic transfer are similar and noted D(s)
[10].

From these remarks and the (Equa. 2), we have:

δ = Hs (U) ·D(s) + b (3)

where Hs is the static hysteresis and b an external distur-
bance defined:

b = sp · F ·D(s) + g(T ) + Creep(U, T ) (4)

with Creep(U, T ) the operator relating the temperature,
the voltage and the creep.

The Fig. 6 gives the corresponding scheme.

( ). ( )
s

H U D s
U

b

δ
+

Fig. 6. The scheme of the open-loop system.

The dynamic part D(s) has been identified from the Fig. 3:

D(s) =
1

5.7× 10−8 · s2 + 8.1× 10−6 · s + 1
(5)

3. FEEDFORWARD CONTROL

In this section, the hysteresis is cancelled in order to obtain
a linear system. For that, a feedforward compensator
is used: after modeling the static hysteresis, the inverse

model is computed and implemented in cascade with the
piezocantilever (Fig. 7). The new obtained system is then
a linear one with a static gain g = 1. In the figure, H−1

s (δ)
represents the inverse hysteresis operator and δref is the
reference input.
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Fig. 7. The scheme of the feedforward control.

Because of the accuracy and the non-complexity of the
Prandtl-Ishlinskii (PI) model, we choose this model for
the static hysteresis of the piezocantilever. The PI model
is based on the superposition of many elementary back-
lash operators characterized by the threshold r and with
weighting coefficient w (Fig. 8) [11].
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Fig. 8. The PI static hysteresis model.

Let Hri [U, δOi] (t) be the i-th backlash operator charac-
terized by its threshold ri and the initial state δOi. The
complex hysteresis is given by the following equation:

δ = Hs (U) = [w]T · [Hr [U, δO] (t)] (6)

where:

• [Hr [U, δO] (t)] = [ Hr0 [U, δO0] (t) ... Hrn [U, δOn] (t) ]T

is the vector of backlash operators,
• [w] = [ w0 ... wn ]T is the weight vector,
• and n + 1 is the number of backlash operators.

To compute the inverse PI model, another static hysteresis
is considered. In this, while the deflection δ is the input,
the voltage U is the output. The same principle than the
direct PI model can be applied. The new thresholds r′i and
weighting elements w′

i are given as follow [12]:
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r′i =
i∑

j=0

wj · (ri − rj) ; i = 0...n (7)

and

w′
0 =

1
w0

w′
i =

wi(
w0 +

i∑
j=1

wj

)(
w0 +

i−1∑
j=1

wj

) ; i = 1...n (8)

The inverse model has been implemented in the computer-
DSpace board. As reference, we use a sine signal with
20µm of amplitude and 1Hz of frequency. According to the
results (Fig. 9), when the relative temperature is null, the
controller ensures the accuracy. However, when the relative
temperature varies, the slope (static gain) of the linear sys-
tem changes and the error between the reference and the
output increases. We remark that the weak dependency
of the hysteresis on the temperature (Fig. 5) becomes
important when the hysteresis is linearized. That may be
due to the fact that the compensator is independent on
the temperature so that the final results (compensator and
hysteresis) will have a larger temperature dependency.
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Fig. 9. Experimental results of the feedforward control.

Despite the linearity of the new system, it is necessary to
use a closed-loop control in order to reject the thermal
disturbance (Fig. 10) and to ameliorate the transient part
of the piezocantilever, notably to reduce the vibration and
to improve the rapidity.
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Fig. 10. Scheme of the closed-loop control.

4. ROBUST FEEDBACK-FEEDFORWARD CONTROL

In this section, a H∞ controller K is designed. The
objective is to reach the specified performances and to

reject the effect of the temperature. For that, we introduce
two weghting functions W1 and W2 (Fig. 11).
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Fig. 11. Scheme of the closed-loop control with the weight-
ing functions.

4.1 The standard H∞ problem

Let P (s) be the augmented system including the nominal
system G(s) = D(s) (because g = H−1

s (δ) · Hs(U) =
1) and the weighting functions. The Fig. 12 shows the
corresponding standard form.

εU

ref

e
i

δ 
=  
 

K(s)

P(s)
o

Fig. 12. The standard form.

The standard H∞ problem consists in finding an optimal
value γ > 0 and a controller K(s) stabilizing the closed-
loop scheme of the Fig. 12 and guaranteeing the following
inequality [13]:

‖Flow (P (s),K(s))‖∞ < γ (9)

where Flow(., .) is the lower Linear Fractionar Transforma-
tion and is defined here by Flow (P (s),K(s)) = o(s)

e(s) .

From the Fig. 11, we have:

o = W1 · S · δref −W1 · S ·W2 · i (10)

where S = (1 + K ·G)−1 is the sensitivity function.

Using the condition (Inequa. 9) and the (Equa. 10), we
infer:

‖W1 · S‖∞ < γ
‖W1 · S ·W2‖∞ < γ

⇔
|S| < γ

|W1|
|S| < γ

|W1 ·W2|
(11)

To solve the problem (Inequa. 11), we use the Glover-Doyle
algorithm which is based on the Riccati equations [14][15].
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4.2 Weighting functions

The transfer functions 1
W1

and 1
W1·W2

are chosen from the
specifications respectively on the tracking performances
and on the disturbance rejection. The weighting functions
W1 and W2 are automatically deduced. According to the
performances needed in our micromanipulation, we use the
following specifications:

• maximal response time: 10ms
• overshoot: null
• maximal static error: 0.05%
• and disturbance rejection: 0.5µm

10◦C . Where 10◦C is the
difference between the normal temperature (22◦C)
and the considered maximal temperature (32◦C).

From the above specifications, we choose:

1
W1

=
s + 1.5
s + 300

1
W1 ·W2

=
s + 1.5
s + 300

(12)

4.3 Calculation of the controller

The computed controller K has an order of 5. However,
the minimal form of K has an order of 3. We use the later
for implementation.


K =

230 ·
(
s2 + 142 · s + 1.8× 107

)
(s + 1.5) · (s2 + 2132 · s + 1.9× 107)

γopt = 4

(13)

4.4 Experimental results

First, a temporal analysis is done. For that, a step reference
of 20µm is applied. The Fig. 13 shows the corresponding
results. It appears that the response time is about lower
than 15ms whatever the temperature is. The reason why
it is slightly different from the specification is that the
optimal value of γ is not equal to unity. Despite that, the
obtained performances are sufficient for our requirements
in micromanipulation.

After that, a frequential analysis is done. The results
(Fig. 14) show that whatever the temperature is, the
frequential performances are similar. The cut-off frequency
is about 200rad/s.

5. CONCLUSION

Piezoelectric materials are very common in microma-
nipulation because of their good performances. On the
one hand, when used in large deflection, piezocantilevers
presents hysteresis. Such nonlinearity reduces the accu-
racy. On the other hand, the working temperature indeni-
ably decreases the performances during the micromanipu-
lation . This paper presents the control of a piezocantilever
with hysteresis and working in a workspace with a tem-
perature variation. An inverse hysteresis Prandtl-Ishlinskii
model is used to cancel the hysteresis (feedforward control)
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Fig. 13. Step response.
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Fig. 14. Frequential response.

and a H∞ robust controller is used to reject the thermal
disturbance (feedback control). The implementation of the
two controllers has made possible the rejection of the
disturbance and the achievement of performances required
in micromanipulation.
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