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Abstract: This paper studies the robust fault detection problem using the standard H∞ filtering
formulation. With this formulation, the minimization of the disturbance effect on the residual is
formulated as a standard H∞ filtering problem and the design is solved using standard H∞ techniques.
To facilitate the enhancement of the residual sensitivity to the fault, the difference between the residual
and the fault (or filtered fault) is minimized against the disturbance and the fault. The residual generated
in this way is a faithful replicate of the fault and the reliable detection can be achieved. The paper
also incorporates the modeling error into the robust residual design using the standard H∞ filtering
formulation.
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1. INTRODUCTION

There are many ways, such as the unknown input observer,
eigenstructure assignment, optimally robust parity relations,
for eliminating or minimizing disturbance and modeling error
effects on residual and hence for achieving robustness in fault
detection and isolation (FDI) Chen and Patton [1998], Patton
et al. [2000]. H∞ optimization is a robust design method
with the original motivation firmly rooted in the consideration
of various uncertainties, especially the modeling errors. It is
reasonable to seek an application of this technique in the robust
design of FDI systems. This paper studies the H∞ optimization
method for robust residual generation of FDI.

The early work of using H∞ optimization techniques for robust
FDI was based on the use of factorization approach Frank
[1994], Frank and Ding [1993, 1994, 1997], Qiu and Gertler
[1993]. The factorization-based H∞-optimization technique is
useful in solving FDI problems. However, the more elegant and
advanced H∞-optimization methods are based on the use of the
Algebraic Riccati Equation (ARE) Doyle et al. [1989], Shaked
and Theodor [1992], Zhou et al. [1996]. Mangoubi et al. [1992]
first solved the robust FDI estimation problem using the ARE
approach via the use of H∞ and µ robust estimator synthesis
methods developed by Appleby et al. [1991]. A direct formula-
tion of the FDI problem as a robust H∞ filter design problem
with the solution of an ARE was given in Edelmayer, Bokor,
and Keviczky (1994, 1996, 1997a). Mangoubi et al. [1995]
combined H∞ robust FDI design with statistical methods for
FDI. To deal with modeling errors as well as disturbances in
robust FDI design, Niemann and Stoustrup [1996] introduced
modeling error blocks into the standard H∞ observer design.
The weighting factors are then introduced in the problem for-
mulation for finding an optimal FDI solution. This is further ex-
tended to non-linear systems where the nonlinearity is treated in
the same way as a modeling error block Stoustrup and Niemann
[1998].

The majority of studies discussed so far involve the use of a
slightly modified H∞ filter for the residual generation, i.e. the

design objective is to minimize the effect of disturbances and
modeling errors on the estimation error and subsequently on
the residual. However, robust residual generation is different
from the robust estimation because it does not only require the
disturbance attenuation. The residual has to be remain sensitive
to faults whilst the effect of disturbance is minimized. Sauter
et al. [1997] studied this problem where the fault sensitivity
is enhanced by applying an optimal post-filter to the “primary
residual”. The problem of enhancing fault sensitivity while
increasing robustness against disturbances and modeling er-
rors was studied extensively by Sadrnia et al. [1997a, 1997b,
1997c]. The essential idea is to reach an acceptable compro-
mise between disturbance robustness and fault sensitivity. In the
beginning, an observer with very small disturbance sensitivity
bound is designed via an ARE. Then, the fault sensitivity is
checked. If the fault sensitivity is too small, the disturbance
robustness requirement should be relaxed, i.e. to design an-
other optimal observer with an increased disturbance sensitivity
bound. This procedure is likely to be repeated several times.
The final goal is to find a design which provides the maximum
ratio between fault sensitivity and disturbance sensitivity.

This paper starts with the formulation of the robust residual
generation problem within the standard H∞ filtering frame-
work, i.e. to generate the residual whose sensitivity to distur-
bances is minimized. To facilitate reliable FDI, the residual
sensitivity to faults has to be maintained (or maximized) in
addition to the minimization of the disturbance sensitivity. This
paper solves this problem via the minimization of the difference
between the residual and the fault against the disturbance and
the fault, i.e. the objective is to replicate the fault using the
residual. In this way, the residual sensitivity to the fault is
indirectly maximized. The residual sensitivity to the modeling
error can be minimized if the modeling error is approximately
represented by the disturbance vector with the estimated dis-
tribution matrix Patton and Chen [1992, 1993]. However, the
modeling error can be handled directly using standard H∞.
This paper shows the way of including the modeling error in
the robust residual design within the standard H∞ framework.
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2. RESIDUAL GENERATION

A system with faults and disturbances can be described by the
state space model as:

[
ẋ(t)
y(t)

]

=

[
A B R1 E1

C D R2 E2

]






x(t)
u(t)
f(t)
d(t)




 (1)

where x ∈ R
n: state vector, y ∈ R

m: output vector, u ∈ R
r:

known input vector, d ∈ R
q: unknown input (disturbance)

vector, f ∈ R
g represents the fault vector which is considered

as an unknown time function. A, B, C, D, E1, E2, R1 and R2

are known matrices. It is possible to use the above model to
describe sensor faults, control actuator faults as well as com-
ponent faults. The details of transforming all faulty situations
into the above model can be find in Chen and Patton [1998].
Modeling errors can be treated as approximate disturbances
Patton and Chen [1992, 1993]. The residual can be generated
by using a full-order observer with K being the gain matrix
and W being the residual weighting matrix:

[
˙̂x
r

]

=

[
A − KC K B − KD
−WC W −WD

] [
x̂
y
u

]

(2)

When the residual generator (2) is applied to the system (1), the
resulting residual is given by:

[
ė
r

]

=

[
A − KC R1 − KR2 E1

WC WR2 WE2

] [
e
f
d

]

(3)

It can be seen that the input u(t) has no effect on the residual.
Therefore, the input can be ignored in the residual generator
design. To achieve perfect FDI, a residual signal should only be
affected by faults, i.e.

{
r(t) = 0 if f(t) = 0
r(t) �= 0 if f(t) �= 0

(4)

Note that this definition is defined after the transients of the
residual generator have been settled down. When there are no
disturbances and modeling errors, the perfect fault detection
can easily be achieved by any residual generation method satis-
fying the detectability condition. For systems with disturbances
and modeling errors, perfect fault detection cannot be always
achieved. In this situation, the optimal (or approximately per-
fect) fault detection is tackled by robust residual generation
methods.

3. ROBUST RESIDUAL GENERATION WITH
DISTURBANCE ATTENUATION

Let us consider the disturbance attenuation problem, i.e. to
design a residual generator where the effects of disturbances on
the residual is minimized. To tackle this problem, the following
system model is used:

[
ẋ(t)
y(t)

]

=

[
A E1

C E2

]

︸ ︷︷ ︸

Gd(s)

[
x(t)
d(t)

]

(5)

or y(s) = Gd(s)d(s) (6)

To generate a residual, we need to estimate an auxiliary signal
z(t). The residual signal is the difference between the real

and estimated values of this auxiliary signal. Since we need
to compare the estimation with the real value of this auxiliary
signal, the real value of z(t) should be available. Therefore, we
can define the weighted output as an auxiliary signal which is
to be estimated by H∞ filter.

z(t) = My(t) (7)

The residual signal is thus:

r(t) = z(t) − ẑ(t) (8)

The design requirement for robust residual generation is to
minimize the following performance index.

Jd := ‖Grd(s)‖∞ = sup
0<‖d‖2<∞

‖r‖2

‖d‖2
(9)

where Grd(s) is the transfer matrix from disturbance to resid-
ual. The idea of estimating the auxiliary z(t) is illustrated by
Fig. 1. The following evaluation signal is used to measure the
estimation quality:

z̃(t) = z(t) − ẑ(t) (10)

G
d
(s)

d(s)

M

K(s)
y(s)

-

+

z(s)

z(s)^ z(s)~

Fig. 1. Formulation of disturbance attenuation

The system illustrated by Fig. 1 can be reformulated into a
standard H∞ problem as given in Fig. 2.

d

K(s)

P
1
(s)

yẑ

z~

Fig. 2. H∞ disturbance attenuation

The “equivalent” transfer matrix P1(s) for the standard prob-
lem of Fig. 2 is given by:

[
z̃
y

]

=





A E1 0
MC ME2 −I
C E2 0





︸ ︷︷ ︸

P1(s)

[
d
ẑ

]

(11)

The sensitivity transfer matrix for this standard H∞ formula-
tion is given by:

Gz̃d(s) = LFT (P1(s),K(s)) = MGd(s) − K(s)Gd(s) (12)

where LFT denotes the linear fractional transformation. The
standard H∞ filtering problem is to find a filter K(s) ∈ RH∞

such that:

‖Gz̃d(s)‖∞ < γ (13)

where γ (> 0) is a design parameter named as the perfor-
mance bound. The filtering problem can be regarded as a spe-
cial H∞ problem. Compared with the control problems there
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is no internal stability requirement in the filtering problem.
Therefore, standard H∞ control techniques can be used to
solved the problem (13). A simplified version for the solution of
H∞ robust residual generation, developed by Edelmayer et al.
[1994,1996,1997b], is introduced here.

Theorem 1. (Edelmayer et al., 1994, 1996,1997b). : When E2 =
0 (i.e. no disturbance in the output equation), (A,E1) is a
stabilizable pair and (C,A) is a detectable pair, then the optimal
filter K(s) which satisfies (13) is given by:

K(s) =

[

A − Y CT C Y CT

MC 0

]

(14)

where Y is the positive definite solution of the ARE:

AY + Y AT + E1E
T
1

− Y

(

CT C −
1

γ2
(MC)T (MC)

)

Y = 0 (15)

The design parameter γ determines the disturbance attenua-
tion performance. The smaller this design parameter, the better
the performance of disturbance attenuation. However, if this
parameter is too small, the solution of (15) may not exist.
Therefore, the design procedure starts with sufficiently large
γ0. Then, the performance bound is gradually reduced until a
solution for (15) can not be found. The minimum design pa-
rameter γmin is achievable performance bound. This procedure
is known as γ–iteration.

The optimal filter (14) can be implemented using the state space
equations in which the control input can also be included.

[
˙̂x
ẑ

]

=

[
A − K0C K0 B − K0D

MC 0 MD

][
x̂
y
u

]

(16)

r(t) = My(t) − ẑ(t) (17)

where the observer gain matrix is Ko = Y CT . The de-
sign problem discussed here gives a solution of the observer
gain matrix Ko for achieving optimal disturbance de-coupling.
However, it does not give any indication as to how the residual
weighting matrix M can be determined.

The problem of maximizing fault effects with the constraint of
minimizing disturbance effects has been investigated by other
researchers as an H−/H∞ filtering problem. For excample,
Li et al solved this problem firstly using matrix factorization
approach [Jaimoukha, Li, and Papakos, 2006] and later solved
using the linear matrix inequality approach [Li, 2007, Mazars,
Jaimoukha, and Li, 2008].

4. FAULT ESTIMATION WITH DISTURBANCE
ATTENUATION

To detect faults reliably, the residual should be designed to have
maximum sensitivity against faults. Reliable detection can be
ensured if we can solve the optimization problem:

max

{
‖r‖2

‖f‖2

}

s.t. min

{
‖r‖2

‖d‖2

}

(18)

The maximization problem (18) cannot be easily formulated in
an H∞ setting. To solve this problem, a new performance index
should be introduced. If we can make the residual as close to the
fault as possible, then the residual can provide all information

about the fault. That is to say the fault sensitivity has been
maximized indirectly. The optimization problem is thus:

min

{
‖r − f‖2

‖f‖2

}

s.t. min

{
‖r‖2

‖d‖2

}

(19)

The solution of the problem in Eq. (19) actually solved the fault
estimation problem. Sometimes, it is not practical to estimate
the fault itself. We can then consider the estimation of a filtered
version of the fault which can give us some indication about the
fault itself. The problem is thus changed into the estimation of
f̄(t) which is the filtered version of the fault, i.e

f̄(s) = T (s)f(s) (20)

where T (s) is a RH∞ transfer matrix and can be set as
diagonal. The filtered fault estimation can then be defined as
the following optimization problem.

min

{
‖r − f̄‖2

‖f‖2

}

s.t. min

{
‖r‖2

‖d‖2

}

(21)

To formulate the fault estimation problem, let us consider a
system with both fault and disturbance terms:

[
ẋ(t)
y(t)

]

=

[
A R1 E1

C R2 E2

] [
x(t)
f(t)
d(t)

]

(22)

or alternatively by the input-output model:

y(s) = Gf (s)f(s) + Gd(s)d(s) (23)

where

Gf (s) =

[
A R1

C R2

]

; Gd(s) =

[
A E1

C E2

]

(24)

The control input does not affect the residual if there are no
modelling errors in the transfer matrix between control input
and the system output. Therefore, the control input can be
ignored here. Our task here is to find an optimal estimation
of the filtered fault when the system has both the fault and
disturbance. This can be formulated according to the scheme
given in Fig. 3.

G
f
(s)

f(s)
K(s)

y(s)

-

+
z(s)^

T(s)

G
d
(s)

d(s)

+

+ z(s)~

Fig. 3. Formulation of filtered fault estimation with disturbance
attenuation

The objective of the problem is to minimize the following
performance index

Jf := ‖Grd1
(s) − T (s)‖∞ = sup

0<‖d1‖2<∞

‖r − f̄‖2

‖d1‖2
(25)

where d1 is the generalized disturbance vector which is defined
as:

d1 =

[
f
d

]

(26)
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The problem of estimating the fault with the disturbance atten-
uation property can be reformulated in a standard H∞ setting
as illustrated in Fig. 4.

K(s)

P
4
(s)

yẑ

f

d
d

1
=

z~

Fig. 4. Standard H∞ formulation of filtered fault estimation
with disturbance attenuation

The “equivalent” transfer matrix P4(s) for the standard prob-
lem of Fig. 4 is given by:

[
z̃
y

]

=

[
[T (s) 0] −I

[Gf (s) Gd(s)] 0

]

︸ ︷︷ ︸

P4(s)

[
d1

ẑ

]

(27)

If the state space realization of transfer matrix T (s) is

T (s) =

[
AT BT

CT DT

]

(28)

the “equivalent” transfer matrix P4(s) for the standard problem
of Fig. 4 is given by:

P4(s) =






AT 0 BT 0 0
0 A R1 E1 0

CT 0 DT 0 −I
0 C R2 E2 0




 (29)

The sensitivity transfer matrix for this standard H∞ formula-
tion is given by:

Gz̃f (s) = LFT (P4(s),K(s))

= [T (s) 0] − K(s)[Gf (s) Gd(s)] (30)

To estimate the filtered fault with the disturbance attenuation
property within the standard H∞ formulation, an optimal filter
K(s) ∈ RH∞ should be found to satisfy the following condi-
tion:

‖Gz̃f (s)‖∞ < γ (31)

The signal ẑ(t) in Figs.3 & 4 can be used as a residual signal as
well as an estimate of the filtered fault.

5. ROBUSTNESS ISSUES

In Section 4, the estimation of the filtered fault with the dis-
turbance attenuation property is studied. This filtered fault es-
timate can be used as a residual. Since the disturbance af-
fect on this residual is minimized and the residual has been
made close to the filtered fault, the robust FDI in terms of the
disturbance effect minimization and fault effect maximization
is achieved. However, the robustness is only achieved on the
assumption that there are no modeling errors or the modeling
errors have been approximately transformed into disturbances
using techniques developed in Patton and Chen [1992, 1993]. In
reality, the modeling errors always exist and cannot totally be
“transformed” into disturbances. This problem can be tackled
using techniques exist in H∞ control since we have formulated

the FDI problem as a special H∞ problem. To start with the
investigation, let us ignore the control input and the system
model is:

y(s) = (I + ∆d(s))Gd(s)d(s) + (I + ∆f (s))Gf (s)f(s) (32)

To solve the problem of estimating faults for systems with
disturbances and modeling errors, the standard H∞ problem
in Fig. 4 should be reformulated to incorporate the uncertainty
block as shown in Fig. 5.

K(s)

P
4
(s)

yẑ

f

d
d

1
= z~

∆

∆

d

f

Fig. 5. Standard H∞ formulation of robust fault estimation

The control input can only be ignored when there are no
modeling errors in the transfer matrix between control input
and the system output, i.e. Gu(s). However, this is not always
the case. A complete description of a system with all kinds of
uncertainties is:

y(s) = (I + ∆u(s))Gu(s)u(s) + (I + ∆f (s))Gf (s)f(s)

+(I + ∆d(s))Gd(s)d(s) (33)

It is not easy to incorporate the uncertainty ∆u(s) in the stan-
dard problem formulation in Fig. 5. The only way is to trans-
form the modeling error ∆u(s) into an equivalent disturbance.
This solution is feasible but it does not fully utilize the potential
in H∞ design. One way to solve this problem is the integrated
design, i.e. to design controller and residual generator (fault
estimator) simultaneously. The integrated design problem can
be formulated according to Fig. 6 where ye is the signal used to
evaluate the control performance, Ko(s) is the fault estimator
and Kc(s) is the controller.

G(s)

f(s)

K
o
(s)

y(s)

-

+
z(s)^

T(s)

d(s)

z(s)~

K
c
(s)

u(s)

y
e
(s)

Fig. 6. Formulation of integrated design

The integrated design problem Fig. 6 can be transformed into a
standard H∞ problem as given in Fig. 7.

From Fig.7, it can be seen that there are two sub-blocks in
the “controller” block. A similar scheme was investigated by
Stoustrup et al. [1997] and they named it as the two-parameters
integrated control structure. Stoustrup et al. [1997] also pointed
out the four-parameters integrated control structure studied in
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P(s)

y

f

d
d

1
=

ẑ

u
=z

1
^

z~

y
e

=z
1

~

K
c
(s)

K
o
(s)

Fig. 7. Standard H∞ formulation of integrated design

Jacobson and Nett [1991], is just a special case of the two-
parameters structure discussed here. The solutions for this inte-
grated control structure for both nominal and robust cases are
developed by Stoustrup et al Stoustrup et al. [1997], Stoustrup
and Grimble [1997]. With this standard H∞ setting, all model-
ing error blocks can be considered and the idea is depicted in
Fig. 8.

P(s)

y

f

d
d

1
=

ẑ

u
=z

1
^

z~

y
e

=z
1

~

K
c
(s)

K
o
(s)

∆ d
∆ f

∆u

Fig. 8. Standard H∞ formulation of integrated design with
robustness consideration

6. A DESIGN EXAMPLE

Consider the following system with parameter uncertainties

ẋ(t) =

[
0 1 0
0 0 1

−α1 −α2 −α3

]

x(t) +

[
1
0
0

]

u(t) +

[
1 0 0
0 0 0
0 0 1

]

d(t)

y(t) =

[
1 0 0
0 1 0

]

x(t) +

[
1 0
0 1

]

f(t) +

[
0 0.1 0
0 0 0.1

]

d(t)

A sensor fault is modeled by f(t) in the measurement y(t).
The parameters α1, α2 and α3 vary in the range [0.2, 1.8],
[0.4, 3.6] and [0.6, 5.4]. The estimator is designed for a nom-
inal model α1 = 1, α2 = 2 and α3 = 3. The sensor fault
effect on residuals designed via an H∞ robust fault detection
observer can be considered by testing ‖Grf‖∞ / ‖Grd‖∞ and
‖Grf‖− / ‖Grd‖∞. To compare the robust fault detection ob-

server designed with a non-robust design, an observer is de-
signed using pole-placement. For the Riccati equation solution,
M = I , γopt = 2 and the following gain matrix give the
best performance testing ratios. Fig.9 shows a comparison of
the performance testing ratios k1 = ‖Grf‖∞ / ‖Grd‖∞ and
k2 = ‖Grf‖− / ‖Grd‖∞.

Ko =

[
1.8799 0.3331 −0.7908
0.3331 1.3148 −0.0403

]

0

0.5

1

1.5

2

Frequency

M
ag

n
it

u
d

e

10
-3

10
-2

10
-1 1 10

k1

k2

Fig. 9. Comparison of H∞ robust estimator with pole-
placement design (“x” denotes the H∞ design and “o”
denotes pole-placement design)

7. SUMMARY

This paper has shown that a robust fault detection problem
can be formulated into a standard H∞ filtering with the aid of
the linear fraction transformation, then the ARE-based solution
can be found. Both robust fault detection and fault estimation
problems have been formulated in this paper. One advantage
of this approach is the simplicity because its close association
with H∞ filter problems. The most important advantage is
that it provides a framework to deal with modeling errors.
The modeling uncertainties can easily be incorporated into the
standard H∞ formulation and then robust solutions can be
found using the techniques in robust control such as µ synthesis.
This paper has formulated robust fault detection and estimation
problems on H∞ setting. It is expected the standard H∞ control
techniques can be used to solve the problem formulated in this
paper. However, there is still more research work to be done
before the detailed design procedure is delivered. The great
potential of this approach, especially in the integrated design,
is waiting to be further exploited.
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