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Abstract: This paper considers the implications of a structural identifiability analysis on
a series of fundamental three-compartment epidemic model structures, derived around the
general SIR (Susceptible-Infective-Recovered) framework. The models represent various forms
of incomplete immunity acquired through natural infection, or from administration of a birth
targeted vaccination programme. It is shown that the addition of a vaccination campaign has
a negative effect on the structural identifiability of all considered models. In particular, the
actual proportion of vaccination coverage achieved, an essential parameter, cannot be uniquely
estimated from even ideal prevalence data.
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1. INTRODUCTION

The application of mathematical modelling techniques
within the context of communicable disease epidemiology
has been motivated by the need for more accurate predic-
tions of the outcome of community infection, to achieve
better understanding of the underlying biological mecha-
nisms at work and to aid in the development of optimal
strategies for control by public health intervention.

Postulated models of epidemic systems are often fitted
to time series prevalence or incidence data of infection,
usually from observations of clinical disease. However an
important, and often overlooked prerequisite to inter-
preting results from parameter estimation and inferring
characteristics of the real system is the consideration of
structural identifiability. That is the theoretical problem
of determining whether alternative, indistinguishable pa-
rameterisations of a given model exist, that give rise to
identical input/output behaviour. Should the model struc-
ture prove to be unidentifiable, whereby a number of model
parameters are not uniquely determined by the measurable
behaviour of the system, parameter values estimated from
fitting to real data should be treated with caution.

The most common approach to deterministic modelling
of population level infection dynamics is through a com-
partmental representation of the various stages of the
natural history of infection, written as a system of ordinary
differential equations. This method was first developed
by Kermack and McKendrick [1927], and was intended
to approximate epidemic evolution within large constant
size populations (for general examples see Jacquez [1996],
Capasso [1993], and for specific examples see Weber et al.
[2001], White et al. [2006] for human respiratory syncytial
virus and Keeling and Grenfell [2002] for measles). Models
of this type tend to be uncontrolled (free or autonomous)
? JDC was funded by an Engineering and Physical Sciences Research
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and nonlinear, where the problem of identifiability is typ-
ically approached using a Taylor series expansion of the
output (for examples in pharmacokinetics see Godfrey and
Fitch [1984]). However even with the relatively simple
epidemic models discussed in this work, the technique can
quickly become overly computationally intensive.

The paper by Evans et al. [2005] shows how a new general
theory for nonlinear structural identifiability, proposed by
Evans et al. [2002], can be successfully applied to a general
SIR epidemic model. It is the objective of this work to
extend the theory’s application in this context to models
with incomplete immunity and birth targeted vaccination.
A systematic analysis of the dynamics and equilibrium
properties of the suboptimal immune models considered
in this paper can be found in Gomes et al. [2004].

2. SIR FRAMEWORK MODELS

The general SIR model framework can be used to char-
acterise epidemic systems where the natural history of
infection can be approximated into three distinct stages.
The total population is therefore divided into three non-
overlapping classes (susceptible, infective and recovered)
representing subpopulations of individuals with a specific
state of disease. The susceptible class includes all indi-
viduals who are able to contract the disease and become
infectious; the infective class represents only individuals
who are currently infected and infectious to susceptibles;
and the recovered class contains all individuals who have
recovered from infection and consequently acquired some
form of immunity. Individuals are born into the suscep-
tible class at a net birth rate µN , where N is the total
population size. It is assumed that the average duration
of infection, 1/v is small with respect to the average life
expectancy, 1/µ, so the net mortality rate µ(S(t) + I(t) +
R(t)) can be assumed to equal µN , hence maintaining a
constant population size.
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The mean rate (per host) of contacts that result in disease
transmission, β, is a product of the average contact rate
between individuals within the population, c, and the
probability of transmission upon contact, p. The average
rate at which infectives make contacts that transmit dis-
ease is βI(t), however only the fraction S(t)/N are with
susceptible individuals. Therefore the rate at which sus-
ceptibles become infected can be modelled as βS(t)I(t)/N ,
(where λ = βI(t)/N represents the force of infection), see
Jacquez [1996]. A system of ordinary differential equations
can then be defined:

Ṡ(t) = µN − β

N
S(t)I(t)− µS(t) + αR(t), (1)

İ(t) =
β

N
(S(t) + σR(t))I(t)− (µ+ v)I(t), (2)

Ṙ(t) = vI(t)− (µ+ α)R(t)− σ β
N
R(t)I(t), (3)

and if necessary reduced to a two state system given that
R(t) = N −S(t)− I(t). In the case of the general SIR
model (Fig. 1), recovered individuals are no longer able to
transmit or re-contract the disease (i.e parameters α and
σ associated with incomplete immunity are 0), making the
structure most appropriate for modelling MMR (Measles,
Mumps and Rubella) type infections where lifelong immu-
nity to the entire pathogen population is induced following
recovery from infection.

Fig. 1. General SIR Compartmental Model

The basic reproduction number, denoted R0, is often con-
sidered to be the most important quantity in mathematical
epidemiology of infectious diseases. It is primarily defined
as the average number of secondary cases of infection
produced by an average primary case in a completely sus-
ceptible (naive or virgin) population, and can be expressed
as a product of the transmission parameter β, and the
average duration of time an individual remains infectious:

R0 =
β

µ+ v
. (4)

This definition gives rise to an invasion threshold at R0 = 1
that can be used to determine whether or not an infection
will be able to successfully invade and sustain within a
given susceptible host population. Any infective case that
leads to more than one secondary case, i.e. R0 > 1 has
the ability to invade the host population and cause an
epidemic, whereas a situation where less than 1 secondary
case is produced will lead to the infection fading out
and failing to survive. Given that transmission is heav-
ily dependent on social (behavioural) and environmental
variables, which differ between demographically and ge-
ographically distinct populations, R0 is unique both for
different diseases and different populations within which
it is being considered.

2.1 Models With Incomplete Immunity

In reality most pathogens are able to evade natural im-
munity and re-infect their hosts through either static anti-

genic variability or antigenic evolution over a given period.
The consequence of significant antigenic variability within
a pathogen population is that natural immunity acquired
through experience of infection serves only to protect an
individual against a proportion of the circulating infectious
agents, leading to only partial immunity within the host
population. Similarly, if the pathogen population experi-
ences a rapid rate of antigenic evolution then any acquired
immunity following infection will appear only temporarily
effective. It should be noted that the extreme case of
incomplete immunity is the SIS (Susceptible, Infected,
Susceptible) model structure, in which all individual hosts
recover directly back into the fully susceptible state and
are immediately able to re-contract the disease. SIS type
structures are most appropriate for infections such as
gonorrhoea, which does not produce immunity against
reinfection.

In order to model an epidemic system where immune hosts
experience waning of acquired immunity with time since
previous infection, the general SIR model is extended to
include an additional transfer from compartment R to S,
with rate coefficient α, that describes the rate at which
recovered (immune) hosts return to being fully susceptible
(note that the average duration of infection is then 1/α)
where they are able to re-contract the infection upon
contact with an infective individual. It is assumed that
before waning off, acquired immunity is solid and provides
protection against all current variants of the infectious
agent. The model structure is shown in Fig. 2, and the
system equations can be derived from (1)-(3) by setting
only σ = 0. A partial immunity model describes the

Fig. 2. SIRS Temporary Immunity Model

situation when immunity serves only to protect the in-
dividual against a proportion of the pathogen population,
and an element of susceptibility to some antigenic variants
is always retained. The model can be considered as a

Fig. 3. SIRp Partial Immunity Model

combination of an SIR submodel (primary infection) and
an SIS submodel (re-infections), hence the recovered class
now acts as a second susceptible class where hosts have a
reduced susceptibility to the force of infection. The system
equations can be derived from (1)-(3) by setting only α =
0, and the structure is shown diagrammatically in Fig. 3.
The partial immunity or reduced susceptibility parameter
σ ∈ [0, 1], and it is assumed that any acquired immune
protection does not wane with time and is not altered
by subsequent re-infections. The dynamic behaviour and
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endemicity of the system can be considered as an equilibria
between the contributing characteristics of the SIR and
SIS components of the system. This equilibria is governed
by the re-infection threshold, which describes a limit for R0

with respect to the partial immunity parameter σ, beyond
which a significant increase in transmission can occur, see
Gomes et al. [2004].

3. VACCINATION MODELS

Vaccination strategies are employed to protect susceptible
hosts, both at individual and population level, against
parasite infection, and subsequently reduce the prevalence
or burden of disease. Vaccines work by presenting a foreign
antigen to the immune system in order to evoke a specific
immune response with less clinical disease than natural
infection, the intention is that subsequent immune stimula-
tion to natural infection is achieved more rapidly, prevent-
ing the onset of severe disease. At population level immuni-
sation can be considered as a process of fast-tracking a pro-
portion of susceptible hosts to the recovered state, without
experiencing natural infection, severe disease and hence a
period of time during which they are infectious to others.
The work documented in this paper focuses on the study
of models where vaccines produce identical properties of
immunity to that of natural infection, i.e mechanisms such
as variability and evolution which may allow the infectious
agent to evade natural immune protection are also viable
for vaccine induced immunity, hence vaccinated hosts are
included in the recovered population class R(t).

The most simple form of immunisation program is an
untargeted blanket vaccination of a proportion of the total
population. In this instance the vaccination is applied
to a random selection of individuals in the population
regardless of which state (experience of infection) they
reside in. This is a particularly inefficient strategy given
that some individuals who have already attained a degree
of immune protection through natural infection, or who
are currently infected, will receive the vaccine to no effect.
This approach can often be the only applicable strategy
given the frequent difficulties that arise with identifying
an individual vaccinee’s prior experience of infection (for
example in cases of wild animal vaccination). The most

Fig. 4. SIR Model With Birth Targeted Vaccination

common example of a targeted vaccination model is a
strategy applied to a proportion of all newborn children.
Although in reality vaccination is very rarely adminis-
tered to babies due to complications with the presence
of maternal antibodies, it provides a useful approximation
to situations where immunisation is targeted below the
average age of infection. This type of program, perhaps
applied to a particular age group of young children, is also
much more straight forward to implement and monitor
within a typical health care infrastructure. A basic vacci-
nation model of this strategy can be implemented on the
SIR framework structure (1)-(3) by replacing the inflow

of births µN into the susceptible compartment (1), by an
inflow of susceptibles µN(1−Pv) and an inflow of vaccinees
to the recovered compartment (3) µNPv, see Fig. 4, where
the parameter Pv is the actual proportion of newborns
that successfully take the vaccine and develop immunity
to infection.

Considering the case of disease free equilibrium, where
there is no infection prevalent (i.e S = N), the completely
susceptible proportion, X = S/N , can be reduced through
vaccination to 1 − Pv (provided immunity is solid and
lifelong i.e in the case of the general SIR). Given that the
effective reproduction number, R = XR0, is required to
be greater than unity for an epidemic to occur, a potential
pathogen invasion can be prevented by reducing X to
below a critical value X∗ = 1/R0 = 1−Pv. The proportion
of the population that are required to be immunised in
order to prevent an epidemic is then:

Pv ≥ 1− 1
R0

, (5)

which is also a threshold for the eradication of an infection
in an endemic situation. This concept is often referred
to as herd immunity, and it shows how population level
protection against an infection can be achieved without
necessarily vaccinating all individual hosts within it. Equa-
tion (5) also shows that diseases with a relatively low R0

such as smallpox, can be eradicated much more easily than
those with a high R0 such as measles.

3.1 Vaccination and Eradication Thresholds

The invasion threshold, which determines the basic repro-
duction number R0, and the minimum vaccination thresh-
old can both be derived from an eigenvalue analysis of
the stability of the disease free equilibrium. Given that
Pv ∈ [0, 1] is a proportion, it can be seen from the expres-
sion for herd immunity (5) that eradication of an SIR type
infection is always possible provided 100% vaccination
coverage can be achieved. For the general SIR with birth
targeted vaccination (Fig. 4), the disease free steady state
of the (reduced two state) system can be derived:[

S
I

]
=
[
N(1− Pv)

0

]
.

The influence of vaccination on the stability of the disease
free equilibrium can be determined from the corresponding
eigenvalues of the system Jacobian matrix:

Jacobian =
[
−(µN + βI)/N −βS/N

βI/N βS/N − (µ+ v)

]
where the corresponding eigenvalues for the disease free
equilibrium are: λ1 = −µ and λ2 = β(1 − Pv) − (µ + v).
It can then be seen that λ1 and λ2 are always real, and
from rearranging λ2, that the disease free steady state can
be forced stable (i.e negative real parts) if Pv ≥ 1− 1/R0

hence reiterating the condition for herd immunity (5).

SIRS Temporary/Waning Immunity For the SIRS model
(Fig. 2), where acquired immunity serves only to protect
individuals for a limited period of time, the system Jaco-
bian matrix, when evaluated at the corresponding disease
free equilibrium gives rise to the following eigenvalues:
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λ1 = −α− µ and λ2 = β(µ(1−Pv)+α)
α+µ − (µ+ v).

It can be seen that λ1 is always negative and real, however
the stability of λ2 is also dependent on the waning immu-
nity parameter α. Given that Pv = 1 indicates ideal 100%
vaccination coverage, a new threshold term can be derived
that determines the maximum rate of loss of immunity
α before eradication of the infection through vaccination
becomes impossible. For eradication to be possible:

α <
µ

R0 − 1
. (6)

Provided the temporary immunity parameter does not
exceed this threshold, the critical vaccination coverage
required to force the disease free steady state to be stable
and hence successfully eradicate the infection is found to
be:

Pv =
(R0 − 1)(α+ µ)

R0µ
. (7)

SIRp Partial Immunity For the partial immunity model
(Fig. 3), when Pv = 1 the model structure can be reduced
to that of an SIS given that only secondary infections can
occur. This implies that for eradication to be possible, the
corresponding reproduction number for the SIS submodel,
σR0, must be less than unity, hence:

σ <
1
R0

. (8)

Provided σ does not exceed this threshold, the critical
vaccination coverage required to eradicate the infection
can be shown to be:

Pv =
(1−R0)
R0(σ − 1)

. (9)

4. STRUCTURAL IDENTIFIABILITY

The rate at which susceptible hosts become infected
βS(t)I(t)/N is an inherently non-linear term given that
it has an explicit dependency on both the susceptible and
infective state variables. Therefore in the following sections
on structural identifiability all SIR framework models are
considered in the following standard form for uncontrolled
nonlinear systems:

ẋ(t, p) = f(x(t, p), p), (10)

y(t, p) = h(x(t, p), p), (11)

x(0, p) = x0(p), (12)

where x(t, p) ∈ Rn and y(t, p) ∈ Rm denote the state
variables and the output respectively; p ∈ Ω (an open
subset of Rq) corresponds to a constant parameter vector,
and for all p ∈ Ω, f(·, p) and h(·, p) are analytic.

Definition 1. Two particular parameter vectors p, p̃ ∈ Ω
are said to be indistinguishable (p̃ ∼ p) if they give rise to
identical output data, y(t, p) = y(t, p̃) for all t ≥ 0. Hence
it is impossible to distinguish between p and p̃ from an
ideal noise free observation via the output.

Definition 2. A model conforming to (10)-(12) can be said
to be globally identifiable at p ∈ Ω if p̃ ∼ p and p̃ ∈ Ω imply
that p̃ = p, and locally identifiable at p ∈ Ω if there exists

some open neighbourhood N of p in Ω such that p̃ ∼ p for
p̃ ∈ N implies that p̃ = p.

Definition 3. The model is said to be structurally globally
(locally) identifiable if it can be shown to be globally
(locally) identifiable at p, for almost all p ∈ Ω, (except
for a subset of Ω of measure zero). If the model is shown
not to be structurally locally identifiable then it is said to
be unidentifiable.

The following technique used in this paper (see Evans et al.
[2002]), utilises the existence of a smooth mapping, λ(x),
that connects the state trajectories of indistinguishable
parameter vectors such that:

λ(x(t, p̃)) = x(t, p).

The Lie derivative of h ∈ C∞(M(p)) along the vector field
f is the smooth function given by

Lfh(x) =
∂h

∂x
(x)f(x).

Let fp = f(·, p) and, for some 1 ≤ l ≤ m, hpl (·) = hl(·, p).
For any n smooth functions u1(x, p), . . . , un(x, p) of the
form hj(x, p), for some j, or Lrfph

p
l (x), for some l and r, a

function H can be defined by

H(x, p) = (u1(x, p), . . . , un(x, p))T

where for a particular p ∈ Ω, Hp denotes the vector field
H(·, p). The system (10)-(12) can be shown to satisfy
the Observability Rank Criterion (ORC) at the initial
condition x0(p) if a function H exists such that the
Jacobian matrix of Hp, evaluated at x0(p), is nonsingular
(Hermann and Krener [1977]).
Theorem 4. Given the system satisfies the ORC at the
initial condition for a particular parameter vector p ∈ Ω,
then p̃ ∈ Ω is indistinguishable, p̃ ∼ p, provided a τ(p) > 0,
an open neighbourhood Vp̃ of x0(p̃) and a smooth mapping
λ : Vp̃ → λ(Vp̃) exist, such that

Hp(λ(x)) = Hp̃(x) (13)
for all x ∈ Vp̃, and

λ(x0(p̃)) = x0(p), (14)

fp(λ(x(t, p̃)), p) =
∂λ

∂x
(x(t, p̃))f p̃(x(t, p̃), p̃), (15)

hp(λ(x(t, p̃)), p) = hp̃(x(t, p̃)p̃) (16)

for all t ∈ [0, τ(p)) with x(t, p̃) ∈ Vp̃, where x(t, p̃) is the
solution of the system for parameter vector p̃.

For full proof of Theorem 4 see Evans et al. [2002].

5. IDENTIFIABILITY ANALYSIS

It has been shown by Evans et al. [2005] that a general
SIR model is unidentifiable given that the parameters k,
N , S0 and I0 (hence β/N) are not uniquely determined
by an output structure corresponding to a prevalence
observation of infection. However it was also shown that
the parameters µ, v and β are uniquely determined by the
output and hence globally identifiable.

Although this analysis shows that it is inappropriate to
use this model and output structure to estimate the
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proportion of contacts between infective and susceptible
individuals that result in infection β/N , it can be used
to uniquely determine the basic reproduction number R0

(4), and hence from (5) also the proportion of vaccination
coverage required to eradicate the infection and provide
herd immunity against future epidemics.

5.1 SIR With Birth Targeted Vaccination

The model shown in Fig. 4 is reduced to a two state
problem using R(t) = N −S(t)− I(t), and expressed in
the form given by (10)-(12):

f(x(t, p), p) =
(
µN(1−Pv)−βS(t, p)I(t, p)/N−µS(t, p)

βS(t, p)I(t, p)/N−(µ+v)I(t, p)

)
h(x(t, p), p) = kI(t, p)

x0(p) = (S0 I0)T ,

where x(t, p) = (S(t, p), I(t, p))T , the output structure,
kI(t, p), corresponds to an observation (with unknown
gain k) of the prevalence of infection; S0 and I0 are
the respective initial conditions for the susceptible and
infective states; and p = (µ,N, Pv, β, v, k)T is a vector of
the model parameters (assumed to be indistinguishable
from p̃ = (µ̃, Ñ , P̃v, β̃, ṽ, k̃)T ).

It was found that the first stages of the analysis regarding
the ORC and the generation of the smooth mapping λ
were the same as the unvaccinated SIR, as in Evans et al.
[2005]. The smooth mapping λ = (λ1 λ2)T given by:

λ(x) =

(
N(Ñ(µ+ v − (µ̃+ ṽ)) + β̃S)

Ñβ
,
k̃I

k

)T
(17)

where x = (S, I)T , can be seen to automatically satisfy
Theorem 4 (13) and (16), thus in order to satisfy (15) it is
necessary that(
µN(1−Pv)−βλ1λ2/N−µλ1

λ2(βλ1−(µ+v))

)
=(

(Nβ̃/Ñβ)(µ̃Ñ(1−P̃v)−β̃SI/Ñ−µ̃S)
(k̃/k)I(β̃S−Ñ(µ̃+ṽ))

)
It can subsequently be seen that the second row of (15)
is automatically equal and the resulting expression from
the first component can be rearranged into the following
multivariate polynomial form:

q1 + q2S(t, p̃) + q3I(t, p̃) + q4S(t, p̃)I(t, p̃) = 0. (18)

It can be shown, by solving a series of simultaneous equa-
tions derived by setting all t = 0 in (18) and successively
differentiating with respect to t, that the only solution to
(18) is q1 = q2 = q3 = q4 = 0. Each of the four coefficients
qi=0 for i={1, 2, 3, 4} can then be solved along with (14)
to give all possible conditions for p̃ ∼ p:

{µ̃ = µ, ṽ = v, β̃(P̃v − 1) = β(Pv − 1),

k̃S̃0 = kS0, k̃Ĩ0 = kI0,
k̃Ñ

β̃
=
kN

β
}

It can be seen that the parameters µ and v are still globally
identifiable, however the effective coverage of the applied
vaccination Pv can not be uniquely determined from the

output. Further to this, the basic reproduction number
R0 is no longer uniquely identifiable following vaccination,
given that with Pv > 0 the transmission parameter β is
not uniquely determined by the output.

5.2 SIRS Temporary/Waning Immunity

The SIRS model (Fig. 2) is reduced and expressed in
the form given by (10)-(12), in a similar manner to the
previous example, where the output structure y(t, p) =
kI(t, p), initial conditions S0 and I0, and parameter vector
p = (µ,N, α, β, v, k)T (assumed indistinguishable from p̃ =
(µ̃, Ñ , α̃, β̃, ṽ, k̃)T ). It was again found that the first stages
of the analysis regarding the ORC and the generation
of the smooth mapping λ were consistent with the SIR
models, where the smooth mapping λ, as in (17), is known
to automatically satisfy Theorem 4. (13) and (16). In order
to satisfy (15) it is necessary that:(
µN−βλ1λ2/N−µλ1+α(N−λ1−λ2)

λ2(βλ1−(µ+v))

)
=(

(Nβ̃/Ñβ)(µ̃Ñ−β̃SI/Ñ−µ̃S+α̃(Ñ−S−I))
(k̃/k)I(β̃S − Ñ(µ̃+ ṽ))

)
which along with (14) gives all possible conditions for p̃ ∼ p

{ṽ = v, µ̃− β̃ = µ− β, α̃+ β̃ = α+ β,

k̃S̃0 + α̃ = kS0 + α, k̃Ĩ0 = kI0,
k̃Ñ

β̃
=
kN

β
}

The result shows that only the recovery rate coefficient
v is globally identifiable (except also the combinations
µ−β, α+β and α+µ). The consequence of this outcome
is that neither parameters associated with R0 or the
duration of immunity can be uniquely determined from
the model output. This implies that it is impossible to
determine what level of vaccine coverage would be required
to eradicate an infection of this type (7), or even if such
an outcome were possible (6).

Following the addition of vaccination:

{ṽ = v, µ̃+α̃ = µ+α,
k̃Ñ

β̃
=
kN

β
,
β̃S̃0

Ñ
+α̃ =

βS0

N
+α,

k̃Ĩ0 = kI0, µ̃β̃P̃v+(µ̃−β̃)(µ̃+α̃) = µβPv+(µ−β)(µ+α)}

It can be seen that even with prior knowledge of the pa-
rameter combination (µ− β), from pre-vaccination model
fitting, the vaccine efficacy parameter Pv cannot be glob-
ally identified from prevalence data.

5.3 SIRp Partial Immunity

The first step of the analysis is to show that the ORC is
satisfied at x0(p). Let Hp(x) = (u1(x, p), u2(x, p))T where

u1(x, p) = hp(x) = kI
u2(x, p) = Lfpup1(x) = kI((S+σ(N−S−I))β/N−(µ+v))

It can be seen that the ORC is satisfied given that the
Jacobian matrix of Hp(x):(

0 k
kβI(1−σ)/N k((β(S(1−σ)−2σI)−N(µ+v−βσ)))/N

)
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has full rank for any p ∈ Ω and for all x ∈W = {x ∈ Rn :
x 6= 0}. Given that x(t, p) ∈W for all t ≥ 0 it can be seen
from Theorem 4. that if the parameter vectors p, p̃ ∈ Ω
are indistinguishable p̃ ∼ p, the open neighbourhood Vp̃ of
x0(p̃) exists and the smooth mapping λ is a diffeomorphism
on Vp̃ onto its range [Evans et al., 2005].

Solving for Theorem 4. (13) yields the following smooth
map, which also satisfies (16):(
kN(Ñ(ṽ−v+µ̃−µ+βσ−β̃σ̃)+β̃(σ̃−1)S)+(kNβ̃σ̃−k̃Ñβσ)I

kÑβ(σ−1)
,
k̃I

k

)T

Further satisfying equations (15) and (14) yields the
outcome of a structural identifiability analysis of an SIRp:

{β̃ = β, µ̃ = µ, ṽ = v, σ̃ = σ,

k̃S̃0 = kS0, k̃Ĩ0 = kI0, k̃Ñ = kN}

Similar to the general SIR result, the partial immunity
model parameters associated with the basic reproduction
number (i.e β, µ, and v) are globally identifiable, as well as
the reduced susceptibility parameter σ. This result means
that from (8) the possibility of eradication with 100%
vaccination coverage can be uniquely determined from
the model output, and from (9) the effective proportion
of the population required to be immunised can also be
determined uniquely. However, following the application
of the vaccination programme:

{µ̃ = µ, σ̃ = σ, ṽ − β̃σ̃ = v − βσ, k̃S̃0 = kS0,

k̃Ĩ0 = kI0, β̃(P̃v − 1) = β(Pv − 1),
k̃Ñ

β̃
=
kN

β
}

It can be seen that Pv is not uniquely determined by the
output and R0 becomes unidentifiable once vaccination
has been applied. However it should be noted that if either
v, β or kN are known, i.e from fitting to pre-vaccination
data, then R0 and Pv can be uniquely identified.

6. CONCLUSIONS

The key results of this paper are that the actual vacci-
nation coverage, Pv, achieved after employing a birth tar-
geted immunisation campaign on any of the discussed SIR
framework models, cannot be uniquely determined from
ideal prevalence data, and that the addition of vaccination
serves to force important parameters associated with the
natural basic reproduction number and the re-infection
threshold to be unidentifiable. This outcome may prove
important given that the proportion of vaccinees that
successfully take an administered vaccine and acquire suf-
ficient protection is often very difficult to measure directly,
and this work suggests that the discussed vaccination
models are not appropriate for estimating this effective
coverage. It is also shown, in the case of the SIRS model,
that it is not possible to uniquely determine the poten-
tial success of even an ideal birth targeted vaccination
programme with respect to eradication of the infectious
agent.

It should be noted that in both the SIR and SIRp
cases, if R0 (specifically β) or the combination kN is
known, perhaps from fitting the unvaccinated model to

pre-vaccination prevalence data, then Pv can be uniquely
identified. However, estimates from pre-intervention data
are only appropriate if the parameters β, k and N can
be confidently considered to have remained constant over
the period of time corresponding to pre and post vaccina-
tion. Confidence in the consistency of these parameters
is limited given the variable nature of population sizes
and the observation gain, and the dependency of infection
transmission on unpredictable social and environmental
variables. The consequence of this is that assuming the
selected model structure remains appropriate for the sys-
tem, it cannot be uniquely determined whether an applied
vaccination programme has failed due to an increase in R0

or from an inadequate Pv.

Although the models considered in this work are very
basic, and would not be the primary basis for a national
public health intervention, extended models with greater
depth of realism and additional complexity are unlikely to
reduce the identifiability problem given increasing degrees
of freedom and continued limitations on the observation
of the system.
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