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Abstract: This paper presents two novel hybrid schemes for component fault diagnosis in a general

nonlinear system. Unlike most fault diagnosis techniques, the proposed solution detects, isolates, and

identifies the severity of faults in the system within a single integrated framework. The proposed technique

is based on a bank of adaptive neural parameter estimators (NPE) and a set of parameterized fault models.

At each instant of time, the NPEs provide estimates of the unknown fault parameters (FP) that are used for

fault diagnosis. Two structures of NPE, namely series-parallel and parallel, are proposed with their

respective fault isolation policies. While the series-parallel structure possesses fast convergence, the

parallel scheme is extremely robust to measurement noise. Although, it has a more complex isolation

policy, the parallel structure exhibits a more robust fault isolation capability. The parameter estimation for

both architectures is based on an on-line minimization of instantaneous output estimation error. Simple

network architecture and straightforward weight adaptation laws make our proposed technique appropriate

for real-time implementation. Simulation results presented in this paper for detection, isolation, and

identification of faults in nonlinear reaction wheel actuators of a 3-axis stabilized satellite in the presence

of disturbances and noise demonstrate the effectiveness of our proposed fault diagnosis schemes.

1. INTRODUCTION

There is an increasing demand for man-made dynamical

systems to operate autonomously in presence of faults and

failures in sensors, actuators or components. Fault detection

and identification is an essential component of an

autonomous system. Hence, a high demand exists for

development of intelligent systems that are able to 

autonomously detect the presence and isolate the location of

faults occurring in different components of complex

dynamical systems. On the other hand, accurate identification 

of fault severities is an invaluable asset for system

maintenance operations (i.e. condition-based maintenance) as 

well as development of reliable autonomous recovery

procedures. Furthermore, accurate estimation of severities in

case of incipient faults allows system operators and

controllers to intelligently plan and execute a priori pre-

emptive actions to avoid catastrophic failures.

During the last two decades, a number of approaches have

been developed for autonomous fault detection and isolation

(FDI) of nonlinear systems. Most proposed techniques utilize

either analytical model-based (Chen et al. 1999; Isermann

1994(a)) or expert system based methodologies (Patton et al.

1999; Rengaswamy et al. 2001; Sorsa et al. 1991; Korbicz et

al. 1999). Only  few works have been reported in the

literature which simultaneously take advantage of 

mathematical model of a system, and adaptive nature of

intelligent techniques especially neural networks, in a hybrid

framework (Alessandri 2003; Xiaodong et al. 2002; Sobhani-

Tehrani et al. 2005). However, many of these works either 

have not addressed the important problem of fault severity

estimation (for example, Alessandri 2003) or have not

provided a unified framework to simultaneously achieve FDI

and fault severity estimation objectives.

The approach proposed in this paper essentially falls into a 

hybrid fault diagnosis framework. More specifically,

mathematical model of the system is used as a basis for fault

modeling. A variety of perspectives and concepts on fault

modeling have been developed by different researchers in the

field. For example, Polycarpou et al. (1995) have modeled

faults as an unknown nonlinear function of system states and

inputs. Patton et al. (1999) and Korbicz et al. (1999) have

used dynamic neural networks to identify full system

dynamics including nominal and faulty dynamics, under

different fault scenarios. Furthermore, the notion of fault

parameters (FP) was introduced in Alessandri (2003) to

parameterize the mathematical model of a system with 

known structure but unknown parameters. The work

proposed in this paper follows this perspective.
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We design a bank of neural parameter estimators (NPE) to

isolate faults. The idea of using a bank of

estimators/observers/models has been previously proposed in

the literature (Alessandri 2003; Rago et al. 1998; Medvedev

1998). However, they have neither addressed the problem of

fault severity identification nor the issue of robustness to

measurement noise, which considerably affects the 

performance of FDI algorithms in  real-world applications. In

this paper, a new integrated solution to the problem of

nonlinear FDI and fault severity estimation is proposed. The

proposed fault diagnosis methodology benefits from both a

priori mathematical model information of the system and the

adaptation capability of neural networks in a hybrid

framework. Furthermore, two NPE structures, namely series-

parallel and parallel, are proposed with their respective fault 

isolation policies, where each structure shows an exclusive

set of desirable properties. For example, the proposed

parallel scheme is extremely robust to measurement noise, 

hence making it suitable for low SNR applications. On the

other hand, the series-parallel scheme displays very fast

convergence rates that are desirable for systems requiring 

short delay in fault diagnosis.  Thus, the choice of the

appropriate FDI structure really depends on the

characteristics and requirements of the specific problem at

hand. Moreover, the neural networks architecture and the

adaptation laws employed in both schemes are remarkably

simpler than those employed by Alessandri (2003) and

Sobhani-Tehrani et al. (2005), which makes the proposed

methodology more suitable for real-time implementation.

2. PROBLEM FORMULATION AND FAULT MODELING

In this section, the problem of detecting and isolating faults

in components of a general nonlinear system is formulated.

Towards this end, consider a general nonlinear system

described by the following nonlinear discrete-time state space 

representation:

kkk

kkkk

nxhy

duxfx ,1 (1)

where is the system state vector, ,

 are smooth vector functions on their

respective domains, is the control input vector,  is the

system output vector, and  and  represent system

disturbances and measurement noise, respectively. It is

assumed that all system states are available for measurement.

It is also assumed that disturbances and measurement noise 

are bounded signals, that is

n

kx
nnf :

mnh :

ku ky

kd kn

NkNnDd kk maxmax , (2)

Under full-state measurement assumption, the output

equation in (1) can be redefined as , where  is 

an  identity matrix.

kk Cxy C

nn

Our objective is to design and develop a fault diagnosis

scheme that is able to autonomously detect the presence, 

isolate the location, and identify the severity of faults in the

system within a unified framework. We make the following

assumptions regarding the occurrence of faults in the system,

which comprise the basis for fault diagnosis design,

development, and verification:

Assumption (i). The control input signals and the state vector 

remain bounded prior to and after the occurrence of a fault.

Assumption (ii). The faults take place at steady state 

operation of the system, which is a valid assumption for

many practical systems.

Assumption (iii). The faults do not occur concurrently, i.e., at 

each instant of time only one fault might be present in the

system.

Generally speaking, different models of a faulty system may

be constructed. In this paper, following the work of Isermann

(1994(b)), we have assumed that the system component faults

are reflected in the physical system parameters. Thus, the

presence of faults can be represented by changes in the

parameters of the mathematical model of the system.

Consequently, the faulty system can be described by the

following parameterized nonlinear fault model, called multi-

parameter fault model:

kkk

kkkkk

nxhy

duxfx ,,1 (3)

where  is the fault parameters (FP) vector

containing  elements.  Furthermore,

L

k

L Hk
 implies the

absence of faults in the system, i.e., healthy mode of

operation. The value of H depends on the way that the FP 

vector affects the system model parameters in equation (3);

being either additive or multiplicative. The representation

adopted in this paper is the additive form, hence making

10 LH
.

The fault model (3) enables us to state the problem of

nonlinear fault diagnosis in the form of an on-line nonlinear

parameter estimation problem, where the unknown fault

parameters are being estimated using system inputs and

measurements.

3. FDI AND FAULT SEVERITY ESTIMATION

Within the proposed fault diagnosis framework, fault

detection can be accomplished by simply comparing the

estimated FP vector against H . However, for fault isolation

and fault severity estimation purposes, we propose a bank of

parameter estimators where each estimator is designed based

on a fault model with single parameter.

Consider the multi-parameter fault model (3) with L
fault parameters. One can extract L single-parameter

models, Lii ,...,1, , from model (3) as follows:

Li
nxhy

duxfx

kkk

k

i

kkkk

i ,...,1;
,,

: 1 (4)
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A bank of L  parameter estimators may then be designed

based on each separate fault model in (4), where the ith

parameter estimator will essentially estimate the  ith fault

parameter.

Recursive Least Squares (RLS) is commonly used for

parameter estimation of linear systems (Houacine 1992).

Furthermore, Kalman filter (Haykin 2001) is the optimal

parameter estimator under the hypotheses of Gaussian

measurement and process noises and the linearity of state and

measurement equations. For nonlinear systems, the Extended

Kalman Filter (EKF) (Haykin 2001) is being extensively used

as a standard technique for recursive estimation. However, it

suffers from suboptimal performance and sometimes

divergence due to errors introduced by the first-order

approximation of the true nonlinear dynamics.

To overcome the above limitations and/or shortcomings, we

choose multi-layer feed-forward (static) neural networks due

to their excellent universal approximating properties and the 

availability of effective on-line adaptation algorithms.  In this

paper, we propose two neural parameter estimation  schemes,

namely “series-parallel” and “parallel” that differ mainly in 

their structure. This terminology is borrowed from system

identification literature (Narendra et al. 1990; Abdollahi et al. 

2006). It should be noted, however, that the idea of

developing a bank of NPEs is entirely independent from the

NPE architecture. Nonetheless, the fault isolation policy

depends on the NPE structure being used, as will be shown in

the following sections.

3.1 Series-Parallel Scheme

Fig. 1 depicts the structure of a bank of series-parallel NPEs

designed and developed to simultaneously achieve the three

objectives of fault detection, isolation, and fault severity

estimation with minimum residual signal processing.

Fig. 1. Bank of series-parallel NPEs 

NPE Calculations: The series-parallel structure is composed

of two major subsystems including the nonlinear fault models

given in (4) employed for state estimation, and feed-forward

(static) neural networks utilized to adaptively approximate

nonlinear FP estimation functions. Therefore, at each time-

step , two calculations are performed for each NPE of the

bank as follows:

k

1) Calculation of FP estimates:

LiVWyg i

k

i

kk

i

kk ,...,1;,,ˆ
,1

(5)

where  is the estimate of the  ii

kk ,1
ˆ th fault parameter at time

1k  calculated at time k , are the output and hidden

layer weight matrices of the  i

i

k

i

k VW ,
th NPE, respectively,

11 kkk uyy is the input vector of all NPEs, and g is

the nonlinear mapping implemented by the neural network

and is defined as:

k

i

k

i

k

i

k

i

kk yVWVWyg ,,  (6)

where (.)  is the activation function of the hidden neurons

that is usually considered as a sigmoidal function:

1
)2exp(1

2

k

i

j
k

k

i

kj
yV

yV (7)

where  is the j
i

j
kV th row of and

i

kV
k

i

kj yV  is the jth

element  of 
k

i

k yV .

2) State estimation (and subsequently output

estimation) based on FP estimates:

Li
xy

uxfx

i

k

i

k

i

kkkk

i

k
,...,1;

ˆˆ

ˆ,,ˆ
,111 (8)

where
11 kk yx are the measured states of the system.

Weight Update Laws: The weights of NPEs are updated with

the objective of minimizing the weighted norm of the

instantaneous output estimation error vector defined as:
2L

Liyyy i

k

i

k

i

k ,...,1;ˆ~ (9)

Thus, the objective function, at time-step k , of the  ith NPE

will be:

i

k

i

k
Q

i

k

i

k yQyyJ ~~

2

1~

2

1 2
(10)

where  is the estimation error weight matrix.nnQ

The weights of NPEs are updated using the gradient descent

(GD) algorithm as follows:

Li

V

J
VV

W

J
WW

i

k

i

ki

v

i

k

i

k

i

k

i

ki

w

i

k

i

k

,...,1;

1

1

(11)
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where  are the learning rates. In order

to derive the weight update laws, let us define:

Lii

v

i

w ,...,1;0,

k

i

k

i

k
v yVnet (12)

k

i

k

i

k

i

k
w yVWnet (13)

Thus, the partial derivatives i

k

i

k WJ , i

k

i

k VJ  can be

computed according to the following equations:

i

k

i

k
w

i

k
w

i

k

i

k

i

k

W

net

net

J

W

J (14)

i

k

i

k
v

i

k
v

i

k

i

k

i

k

V

net

net

J

V

J
(15)

where

i

k
w

i

kk

i

kk

i

ki

ki

k
w

i

kk

i

kk

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k
w

i

k

net

x
Qy

net

x

x

y

y

y

y

J

net

J ,1

,1

,1

,1

ˆ

ˆ

ˆ~ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

~

~
(16)

i

k
v

i

kk

i

kk

i

ki

ki

k
v

i

kk

i

kk

i

k

i

k

i

k

i

k

i

k

i

k

i

k

i

k
v

i

k

net

x
Qy

net

x

x

y

y

y

y

J

net

J ,1

,1

,1

,1

ˆ

ˆ

ˆ~ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

~

~
(17)

ki

k

i

k
v

k

i

ki

k

i

k
w

y
V

net
yV

W

net
, (18)

The partial derivative i

kk

i

kx ,1
ˆˆ is calculated using the

state estimation equation given in (8). Moreover, the

standard back-propagation algorithm is used to calculate the

partial derivatives

thi

i

k
w

i

kk net,1
ˆ , i

k
v

i

kk net,1
ˆ .

Isolation and Severity Policy: Given Assumption (iii), the 

fault isolation policy for the series-parallel scheme is quite

straight-forward and can be stated as follows:

ii

H

i

kf kiTC ˆ,, (19)

where  are the thresholds associated to each

NPE in the bank, C  specifies the index of the faulty

component and  represents the detection time of the

occurred fault. Once the fault source is isolated, the severity

of the fault is essentially the value of the corresponding FP 

estimate. Fault isolation in series-parallel scheme is not

perfect. Therefore, to augment its reliability, the thresholds in

this scheme shall be selected in a way that a fault with a 

severity level below its respective threshold does not

significantly deteriorate the closed-loop system performance.

Lii ,...,1;

fT

3.2 Parallel Scheme

The series-parallel scheme developed in the previous section

possesses several advantages including fast convergence and

simple isolation policy. However, it can wrongly isolate

faults specially when there is a strong coupling between two

fault sources. Furthermore, it suffers from lack of robustness

to measurement noise. This is due to the fact that

measurement noise directly propagates through the network

affecting the FP estimates, as can be observed in Fig. 1. The

parallel scheme developed in this section will resolve both

issues by feeding back the estimated rather than the measured

outputs to the NPE input. Thus, the measurement noises are

filtered out in the parallel scheme by the NPE adaptation

process. Furthermore, using a special formulation of the fault

isolation policy, the parallel scheme allows reliable and

robust fault isolation. The schematic of the parallel structure

is shown in Fig. 2.

Although the weight adaptation laws and NPE calculations

for the parallel structure remain essentially very similar to the

series-parallel approach, its isolation policy is substantially

different. These changes are reflected in the following.

NPE Calculations and Update Laws: Since output

estimations are used as feedback signals, in (8) should

be replaced by  for the  NPE for

1ky
i

ky 1
ˆ thi Li ,...,1 .

Similarly, should be used in place of  in the input

vector

i

ky 1
ˆ

1ky

ky  of the NPEs, used in equations (5) and (18).

Fig. 2. Bank of parallel NPEs

Isolation and Severity Policy: To formulate the isolation

policy, the residual vectors shall be introduced as: 

Liyyr i

kk

i

k ,...,1;ˆ (20)

Therefore, the isolation strategy can be stated as follows: 

njilLlrandrkiTC jljl

k

jiji

kf ,...,1,,,...,1,,, ,,,, (21)

where is the  element of the residual vector  and 

is its corresponding threshold. The values of thresholds

are determined using a worst-case disturbance analysis. Once

the fault source is isolated, the severity of the fault is 

essentially the value of the corresponding FP estimate.

ji

kr
,

thj i

kr
ji ,
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4. A CASE STUDY: APPLICATION TO FAULT

DIAGNOSIS IN REACTION WHEEL ACTUATOR OF

SATELLITE ACS 

Fault diagnosis in Reaction Wheel actuators of Attitude

Control Subsystem (ACS) of a 3-axis stabilized satellite is 

considered as a case study to evaluate the performance of the

proposed fault diagnosis algorithms. Stringent requirements

on satellites to operate autonomously in presence of faults in

sensors, actuators and components together with inherent

nonlinearity of reaction wheels and satellite attitude

dynamics, make accurate and efficient fault diagnosis of ACS 

a challenging problem. Moreover, the number of reported

publications (Al-Zyoud et al. 2006; Li et al. 2006; Talebi et
al. 2006; Tudoroiu et al. 2005) on this topic over the recent

years provides further evidence of the importance of the

application.

To assess the performance of our proposed FDI techniques in

a near-realistic environment, a highly accurate simulation

model of a 3-axis stabilized satellite has been developed

using MATLAB-Simulink. The simulation model consists of

the well-known nonlinear satellite attitude dynamics

(Chobotov 1991) where nonlinear Euler transformations are

added to transform the satellite angular velocities to Euler

angle rates, a high-fidelity nonlinear model of the reaction

wheel (Bialke 1998) and a PID controller that stabilizes the

closed-loop system so that Assumption (i) can be assured.

The model of a reaction wheel (RW) is given in the block

diagram form in Fig. 3. The model incorporates all the 

nonlinearities as well as internal disturbances that are present

in a real RW actuator. The closed-form nonlinear state-space

representation of a reaction wheel model may be expressed as 

follows:

m

dd

vcmt

mdbusdd
m

I
y

G

tCtBIK
J

IIG
I

V
0)],()()),(1([

1

)](),([

Com

221

31

(22)

where the current, , and the angular velocity,
mI , are the

measured states of RW, is the input voltage signal of

RW generated by the PID controller in the closed-loop

attitude control system,

ComV

321 ,,  are nonlinear functions

modeling EMF torque limiting, coulomb friction, and speed

limiter subsystems, respectively, is a highly nonlinear

function of states and bus voltage, , and are

representing torque ripple and cogging, respectively.

Reaction wheel serves as the “plant” corresponding in Fig. 1

and Fig. 2 from the fault diagnosis design perspective. More

precisely, the objective is to detect, isolate and estimate the

severity of possible faults in the RW components using only

the available wheel signals. Thus, measurements of RW

current and angular velocity together with the wheel 

command voltage comprise the input vector of our proposed

NPEs.

busI

busV 21 ,

5.  SIMULATION RESULTS

In this section, simulation results are presented to 

demonstrate the performance of our proposed FDI scheme.

Simulations have been performed using nonlinear models of

the reaction wheel and the attitude dynamics of a 3-axis

stabilized satellite. Three decentralized PID controllers with

gains 1,100 IP KK  and  were used to

stabilize the closed-loop system. The nonlinear model (22) 

was discretized using Euler backward difference method with

sampling time of

1000DK

sTs 05.0 . The parameters of the reaction

wheel were adopted from (Bialke 1998). Two three layer

feed-forward neural networks with 4 neurons in the hidden

layer and 1 neuron in the output layer are used as neural

parameter estimators. Neural network parameters used for

simulations are selected as ,  and 

 for the first and the second NPE

bank of the series-parallel scheme, respectively, and

 and  for the first and the

second NPE bank of the parallel scheme.

22Q ]101[][ 411 b

v

b

w

]1010[][ 7422 b

v

b

w

7.011 b

v

b

w

722 105.0b

v

b

w

tw

dd
deG tk

J

1

sHsk

v

c )(sign

SinC
2

Nt

),,( BUSmBUS VIIbHINR

bH0.1

abs

fH

1

J

tSinJ aaa

2

s

BUSV

ek

nm

SinB Nt3fk

00)(

01)(

forllH

forllH

b

b

s

s

forH

forH

||0

||1

00)(

01)(

forVVH

forVVH

f

f

mI

z

zHComV

Fig. 3. Detailed reaction wheel (RW) block diagram (Bialke

1998)

A 20 degrees step reference was commanded to the satellite 

in the yaw channel. Random torque disturbance with the

maximum magnitude of N-m was acting on the satellite 

body. Since we are using reaction wheel state measurements,

namely, wheel current and angular velocity, as inputs to our

proposed fault diagnosis schemes, we have to design three

copies of the same fault diagnosis subsystem for each

reaction wheel on a 3-axis stabilized satellite. Thus, in order

to avoid repetition, we have only shown the simulation

results for one of the fault diagnosis subsystems.  It should be

noted that the results presented show the transient as well as 

the steady state operation of the system.

410
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First, a series of intermittent faults with different severities

were injected in the bus voltage, , over different time

intervals as follows:

busV

60005100,

51004390,8.7

43903100,3.5

31002240,4.9

22401000,6

10000,

tV

tV

tV

tV

tV

tV

tV

nom

bus

nom

bus

nom

bus

nom

bus

nom

bus

nom

bus

bus

where  is the value of the actual bus voltage and

is the value of bus voltage under healthy operational mode

with the nominal value of 24V (Bialke 1998). The response

of the series-parallel scheme is shown in Fig. 4. The actual

angular velocity and the current of the reaction wheel and

their estimates obtained from the first NPE bank are depicted

in Figs. 4(a) and 4(b), respectively. These figures clearly

show a very close match between the actual states and the

corresponding estimates. Note also the effects of the fault on 

states of the reaction wheel. The fault parameter estimates

obtained with low measurement noise are shown in Figs. 4(c)

and 4(e) and those obtained by increasing the measurement

noise by 10 times are shown in Figs. 4(d) and 4(f),

respectively. It can be observed that under low measurement

noise and  approach to their true values very quickly,

however, in presence of a large sensor noise the performance

of the series-parallel scheme gets significantly deteriorated.

More specifically, does not approach to its true value in

the time period  and  does wrongly

exceed its threshold. Note that for the series-parallel scheme

the thresholds required for fault isolation and severity policy

are directly defined based on the fault parameters

busV nom

busV

1ˆ 2ˆ

1ˆ

]60005100[t 2ˆ

21,

as , respectively.
321 103,1
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0
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2

t(S)

(f)

Fig. 4. The responses of the series-parallel scheme with a 

fault in Vbus

Next, the same command was given to the satellite and the

following time varying fault was injected into the motor gain

 at timetk 1000t :

1000,
26000

10002
sin105.0

1000,

t
t

k

tk

tk nom

t

nom

t

t

where  is the nominal value of the motor gain under

healthy operational mode that is equal to 0.029. The response 

of the series-parallel fault diagnosis scheme is shown in Fig.

5. The estimated angular velocity and the current obtained by

the second NPE bank are depicted respectively in Fig. 5(a) 

and 5(b) together with their actual values. These figures

reveal again that although the series-parallel scheme performs

very well under low sensor noise conditions (i.e. the fault

parameters converge very quickly to their actual values), it is

not robust to measurement noise as evident by comparing

Figs. 5(d) and 5(f) with Figs. 5(c) and 5(e), respectively. It

can be easily observed in Fig. 5(d) that a 10 times increase in

the measurements noise has caused the estimate of the bus

voltage fault parameter, , to wrongly exceed it threshold at

time

nom

tk

1ˆ

)(5500 st . Furthermore, the accuracy of fault 

severity estimation for the motor gain fault has decreased

considerably, as can be seen in Fig. 5(f).
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Fig. 5. The responses of the series-parallel scheme with a 

fault in the motor gain

Finally, the performance of the parallel structure is evaluated

by using the same command and fault scenarios as in the case 

of the series-parallel scheme. The responses of the fault

estimation scheme for faults in  and are shown in

Figs. 6-9, respectively. Fig. 6(a), 6(c) and Figs. 8(a), 8(c) are

obtained by using a low level sensor noise with faults in

and , respectively, whereas Figs. 6(b), 6(d) and Figs. 8(b)

and 8(d) correspond to a high measurement noise conditions.

busV tk

busV

tk

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7256



Comparing Fig. 6(a) with 6(b), and more specifically 8(c)

with 8(d) show that the fault severity estimates in presence of

large measurement noises have practically remained the same 

as the ones obtained under low sensor noise conditions. This

reveals an excellent robustness property of the parallel

scheme as compared to the series-parallel structure (see Figs.

5(c) and 5(d)).

Figs. 7 and 9 show the residuals generated for fault isolation

policy as discussed in Section 3.2. In the parallel scheme the

thresholds are defined for the residuals as opposed to the

series-parallel scheme. The threshold values were selected

based on the worst-case disturbance analysis as

 and  for

the current and the angular velocity residuals, respectively.

)(1.01,21,1 A )/(152,22,1 srad
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Fig. 6. The estimated fault parameters using the parallel

scheme with a fault in Vbus
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Fig. 7. The residual signals generated by the parallel scheme

with a fault in Vbus

It can be observed that except for a short transient time, only

the residuals generated by the first bank are within their 

specified thresholds in the presence of a fault in  (see

Figs. 7(a) and 7(b)) while at least one of the residuals

associated to the second bank has exceeded its corresponding

threshold. Therefore, the fault in has been isolated and

the fault parameter estimates from the first bank will be taken

as its severity estimate.  Similarly, the fault in  results in 

the angular velocity residual of the first bank to exceed its 

corresponding threshold (see Fig. 9(b)) whereas the residuals

of the second bank are both within their associated thresholds

except for the transient period of the satellite’s attitude

maneuver (see Fig. 9(c) and 9(d)). Finally, comparing Fig.

5(e) to Fig. 8(c) reveals that the insensitivity/robustness of

the parallel scheme with respect to measurement noise comes 

at the cost of slower convergence rate (i.e. longer transient

phase) and a very small deterioration in the fault severity

estimation accuracy when compared to the series-parallel

scheme.

busV

busV

tk

6. CONCLUSIONS

An integrated hybrid solution to the problem of fault

detection, isolation, and fault severity identification in a 

general nonlinear system with full-state measurement was 

presented. The proposed approach is based on a bank of

neural parameter estimators where each parameter is 

representative of a specific kind of system component fault.

Two NPE schemes were proposed. While the series-parallel

scheme enables straightforward FDI, relaxing the

requirement of residual post-processing for fault isolation as

commonly applied in standard approaches in the literature,

the parallel approach is much more robust to measurement

noise making it an appropriate choice for applications with 

small SNR measurements. Simulation results for fault

diagnosis in reaction wheel actuators of the satellite’s ACS

confirm the advantages of each scheme.

The extension of our method to systems with partial state

measurement has recently been achieved by the authors. The

main remaining challenge that needs to be further

investigated is the derivation of formal and analytical results 

on the performance of the fault diagnosis scheme and the

NPEs, which is compounded due to nonlinearity of the

problem, black-box nature of neural networks and the

inherent coupling between estimation and adaptation of 

neural filters. 
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Fig. 8. The estimated fault parameters using the parallel

scheme with a fault in motor gain
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Fig. 9. The residual signals generated by the parallel scheme

with a fault in motor gain
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