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Abstract: This paper deals with dynamic reliability of embedded systems. It is addressed by 
generating critical scenarios. This paper proposes a definition of the concepts of minimality and 
completeness, related to the notion of scenario. These two concepts guarantee the pertinence of 
scenarios. In Petri net model, a scenario is defined as a partial order between events leading from 
one partial state to another one. We use linear logic as a new representation of Petri net model. The 
definition of minimality and completeness is based on this new representation.  Copyright © 2008 
IFAC 
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1. INTRODUCTION 

Reliability analysis of dynamic systems is based on dynamic 
models (Dufour and Dutuit, 2002) such as Markov graphs, 
Petri nets, or various simulation models which can be built 
from very general modelling languages. These models are 
interesting for quantitative analysis with Monte Carlo 
simulation. However, in some cases, the reliability data are 
not completely available. It is necessary to start with a 
qualitative study: proof of properties or listing of feared 
(critical) scenarios.  

In our approach for reliability analysis of dynamic systems 
(Sadou and al, 2005), feared scenarios (which lead from 
normal states to feared ones) are derived from Petri net 
model. These scenarios help system designers to identify 
critical situations and to define corrective actions to avoid 
them as early as possible in the design stage. Based on linear 
logic (Girard, 1987) as new representation (using the 
causality relations) of Petri net model, a qualitative analysis 
allows to determine a partial order of transition firings and 
thus to extract feared scenarios (Sadou and al, 2005). The 
analysis is focalised on the parts of the model that are 
interesting for the reliability analysis (Sadou and al, 2005) 
avoiding exploration of the global system and the problem of 
the state space explosion. This formal framework is based on 
equivalence between accessibility in the Petri net and the 
provability of linear logic sequent (Sadou and al, 2005). The 
method extracts and identifies clearly the feared scenarios 
starting from a partial knowledge of the feared state. 

The final objective is to determine all minimal scenarios (to 
guarantee minimality and completeness). Indeed, one 
scenario can lead to a feared state and contains events (that 
are the consequence of another events of the scenario), which 
are not strictly necessary to reach this feared state. Such 
scenario is not minimal. The completeness is also important. 
Indeed, the designer needs to have all feared scenarios to 
define appropriate architecture for safe systems. In this paper 
an overview of the notions related to linear logic is given. 

The approach for deriving feared scenarios is briefly 
presented. The formal definition of the minimality and 
completeness is then proposed. Finally, an industrial example 
based on the landing system of an airplane is presented. 

 2. PRINCIPLES OF LINEAR LOGIC 

Linear logic proposed by J.Y.Girard (Girard, 1987) is a 
restriction of the classical propositional logic in order to 
introduce the notion of resource (Girard, 1987). The sequent 
calculus associated to this logic is based on a new set of 
connectors and rules: the main difference with classical logic 
is the absence of usual contraction and weakening rules. 
These rules are precisely the ones forbidding the correct 
handling of multiple copies because of the equivalence (in 
classical logic) between proposition “p AND p” and 
proposition “p”. Discarding these rules leads to split each one 
of the classical AND and OR connectors into two different 
ones getting four different connectors. In this paper we will 
only use two linear logic connectors, the times connector ⊗  
to represent resource accumulation (formula a⊗ b⊗ b 
expresses that one copy of resource a and two copies of 
resource b are available) and the linear logic implication 
(represented by the symbol ο). This implication permits to 
handle resource production and consuming. For example, 
formula a ο b states that resource a is consumed when 
resource b is produced. The translation of a Petri net to linear 
logic has been presented in (Pradin and al, 1999).  

For a given Petri net, the translation is done as follows: 

� An atomic proposition P is associated with each place P 
of the Petri net 

� A monomial using the multiplicative conjunction ⊗  
(TIMES), is associated with each marking, pre-condition 
Pre( ) and post-condition Post( ) of transition 

� To each transition t of the net an implicative formula is 
defined as follows : 
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Each sequent of the form ',.....,, 1 MttM p −−  expresses the 
reachability between the markings M and M', by indicating 
which are the fired transitions (t1,…,tp). The proof is derived 
in a canonical way. Using the rule for introducing the  
connector on the left hand side (L) allows changing the initial 
marking with a set of atomic formulas (tokens, not 
necessarily used at the same date). By applying the οL rule, 
it is possible to extract the causal relations of the atomic 
formulas from marking M to M'. 

Building the proof generates a proof tree which begins by a 
sequent and finishes by the identity axiom. Moreover, it is 
possible to extract information about the firing order of 
transitions and temporal evaluation of scenarios in temporal 
Petri nets from the proof tree of the sequent (Sadou and 
Demmou, 2006).  

3. METHOD FOR DERIVING FEARED SCENARIOS 

3.1 General view of the scenario extraction method 

The method is based on a qualitative analysis initiated from 
the Petri net model. The objective is to extract and clearly 
identify the feared scenarios starting from a model that 
contains the necessary knowledge to make the analysis. The 
initial partial knowledge of the feared state is progressively 
enriched by analyzing the components necessary to its 
occurrence. This method is made up of two steps: a backward 
and a forward reasoning. The backward reasoning starts from 
the partial feared state in order to determine the events that 
are necessary to reach it, and gives the last nominal states 
preceding the abnormal behavior. The forward reasoning 
starts from these nominal states, and determines the 
components that are implicated in the feared scenario. To 
determine the complete context in which the feared scenario 
occurs, the concept of context enrichment is introduced. Each 
time it is necessary the context is enriched by adding tokens 
to some places that can have an impact on the feared 
scenario. Linear logic transpose the problem of reachability 
into a problem of sequent proving which is more simple and 
efficient, and gives a formal and logical framework that 
ensures the coherence of the causality links and the partial 
orders. The problem of the partial context (partial marking of 
Petri net) can easily be addressed with Petri net associated to 
the linear logic. Indeed in a linear logic any proof remains 
true if we enrich linearly the context (monotony in traditional 
logic). 

3.1 Principles of the scenario deriving algorithm 

The backward and the forward reasoning are similar and it is 
why the procedures (algorithm) are the same for both of them 
(Demmou and al, 2002). The backward reasoning is done on 
the reversed Petri net with the target feared  states as initial 
marking. Forward reasoning evolves in the initial Petri net 
with the conditioning (nominal) places as initial marking. In 
Petri net model, a transition is fireable if it is enabled (its 

input places are marked). In temporal Petri net, the transition 
must be enabled and the temporal constraints must be 
satisfied. 

The backward reasoning evolves without taking into account 
the temporal constraints. If a transition is potentially enabled 
(some places are marked and other ones are empty) the empty 
places are enriched by adding tokens to make it fireable. The 
determination of the conditioning states is done by 
reachability analysis between the feared states and the normal 
sates; transitions are fired until a nominal marking (normal 
working of the system) is reached. In the forward reasoning 
both discrete and temporal evolution guide the scenarios 
deriving. It is done in the temporal Petri net. The conditions 
related to temporal constraints may be satisfied for transition 
firing. 

4. SCENARIO AND MINIMALITY 

4.1 Scenario 

Definition 1 (Event and set of events):  Let a Petri net (P, T, 
Pre, Post) and M0 its initial marking. An event is a distinct 
firing of a transition. The set of events is noted E. Any subset 
of E  is a set of events. 

Definition 2 (temporal Petri net):  a temporal Petri net is a 
pair  Ntl=<N, D> where N is a Petri net <P, T, Pre, Post > 
and  D is a function that associates to each ti a static temporal 
interval d(ti) = [dimin(ti), dimax(ti)] that describes the 
enabling duration. 

Let a Petri net (P, T, Pre, Post) with an initial marking  M0 
and a final marking Mf. Let I a set of events that represent the 
creations of the tokens associated to the initial marking  (one 
event by token) and  F a set of events that represent the 
consumption of tokens associated to the final Mf (one event 
by token). 

Definition 3 (Scenario) A scenario ),( sclSC p= , associated 
to the temporal Petri net Ntl, the markings M0, Mf  and a set of 
events )( FIEl ∪∪⊂  is a strict partial order defined on the 
set of events l. 

The partial order scp is composed by the order relation 
deduced from the causalities present in the Petri net model 

noted PNscp and the order relation generated from the 

temporal constraints, noted tscp .  

In our representation of scenarios, partial order is defined by 
a directed graph (E, A) where the nodes E are a set of 
transition firings and the arcs A are pairs (ti, tj) such that ti 
precedes tj (ti and tj are transition firings). To each arc A, we 
associate an atom that represents the token produced by the 
firing of the transition ti and consumed by the firing of the 
transition tj. The temporal constraints are represented by the 
discontinuous arrows. 

In the Petri net of the figure 1 the precedence graph 
represents the scenario ,321 PPP ⊗⊗ 32 ,tt ├

75 PP ⊗  that leads 
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from the marking  ,321 PPP ⊗⊗ to the marking 75 PP ⊗ . The 
precedence relation between the firing of the transition t2 and 
the transition t3 imposed by the temporal constraints 
implicates that the transition t2 is fired if and only if the 
transition t3 is fired.  

 P1 P2 P3 

t3 t2 ( 2τ ) t1 ( 1τ ) 

1τ < 2τ  

P4 P5 P6 

P7 

t4 

a. Temporel Petri net  

 
P4 t2 I2 

P1 
P5 

    t3 I1 
P3 F1 

I3 
P2 

P7 t4 F1 

b. Precedence graph  

Fig. 1. Example of Petri net & precedence graph. 

Definition 4 (sufficient Scenario):  Let  l be a set of events, 
)( FIEl ∪∪⊂ and Ell ∩='  be the restriction of l on E. 

The scenario ),( sclsc p= is  sufficient to reach Mf from M0 if  

the sequent   lM ,0 ├ fM   is provable and if there exist a 

partial order jp  resulting from a proof tree such that 

PNscj pp = and another partial order tsck pp =  

4.2 Minimality (minimal scenario) 

In a previous work (Sadou and Demmou, 2006) we defined 
the notion of minimal scenario. In this paper we give a short 
overview. To define a minimal scenario we need to define 
minimal marking. Indeed, in our deriving feared scenarios 
approach, the context (marking of Petri net) is only partially 
known. In (Sadou and Demmou, 2006) we proved that the 
characterization of the scenario depends on the final marking 
that represents the feared state. If this final state contains 
useless partial states (tokens in Petri net model), the scenarios 
will also contain useless events. It is thus necessary to define 
a minimal feared state (final state) and minimal initial state. 
Minimal marking corresponds to the minimal cutsets (Sadou 
and Demmou, 2006) associated to a Boolean expression that 
represents the marking associated to the feared state.  Thus a 
minimal scenario is defined for a final and initial markings 
associated to each minimal cutset. 

Example (figure 2):  The marking that represents the feared 
state can be represented by a Boolean function. We note B(P) 
the Boolean associated to the place P. If B(P) is true the place 
P is marked and if B(P) is false the  place is empty. In the 
example (Figure 2), the function R associated to the feared 
state is:  ))2()1(()( KOBKOBKOsBR ∧∨= . Two 
minimal cutsets associated to the function R : 

C1 = )(KOsB and  C2 = )2()1( KOBKOB ∧  

We characterize the final marking associated to a cutset Ci by 
ii ContC ⊗ where Conti represents an unspecified context.  

The context Conti is defined progressively with the 
construction of the scenario. It corresponds to edge effects 
(marking of some places of the Petri net) consequence of the 
marking of the places corresponding to the minimal cutset. 
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Fig.2. Minimal initial and final markings 

Definition 5 (minimal scenario for a cutset): Let us consider 
a Petri net and a final marking 

iifi ContCM ⊗=  associated 

to a minimal cutset  
iC   for a given feared state. M0S is the 

initial marking of the Petri net. Let us consider a set of events 
)( FIEli ∪∪⊂  with Ell ii ∩=' the restriction of li  to E and 

iM 0  )( 00 si MM ⊂  a given initial marking. The scenario 

),( sciii lsc p= with G as precedence graph is minimal for 
cutset   Ci to reach Mfi from M0i  if it is   sufficient between  
M0i and Mfi,  and if and  only it don’t exist a scenario  

),( scjjj lsc p= with  precedence  graph  G’ such that:  

i)  The scenario ),(
jscjj lsc p=  is sufficient to reach Mfi  

from M0j with )( 00 sj MM ⊂ and  
jifj ContCM ⊗=  (same 

minimal cutset)  

ii) ij ll ⊂  

iii) the precedence graph G’(see[1] for more information and 
some examples) is identical to G _rest restriction of G to the 
elements of the set lj completed by the precedence relations 
induced by   the elements of (li-lj) in G with transitivity. 

When the condition (iii) is verified, it implies the presence of 
some events (events of the set (li-lj)) that are not necessary. 
Indeed the suppression of these events does not modify the 
precedence relations between the other events (events of the 
set lj) which are sufficient to reach the final marking 
associated to the corresponding minimal cutset. 

5. COMPLETENESS  

The definition of the completeness is related to minimality of 
scenarios. As for the minimality (Sadou and Demmou, 2006) 
we have two cases: the case when the markings are 
completely known and the case when the marking are 
partially known. In the first case, the definition is trivial, but 
in the second case (which is the case in our scenarios deriving 
approach), the definition is done for minimal initial and final 
marking. 
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5.1 Completeness (Fixed initial and final markings) 

Definition 6 (complete set of scenario): Let a Petri net P = 
(P, T, Pre, Post), initial marking M0 and final marking  Mf . 

Let SC, SC= {sc1, sc2,…, scn}  be a set of scenarios  
sufficient to reach Mf from M0. The set SC is complete 
between the markings M0 and Mf if there is no scenario sci 
minimal to reach Mf from M0 such that sci ∉ SC. (each 
minimal scenario belongs to SC). 

In the example of the figure 3 between the markings M0=P1 
and Mf =P4, the set of scenarios SC={sc1, sc2, sc3, sc4} is 
complete between these two markings: 

caPsc ,,1:1 ├ 4P , dbPsc ,,1:2 ├ 4P  

eaPsc ,,1:3 ├ 4P , cafaPsc ,,,,1:4 ├ 4P  

The definition 6 implicates that all minimal scenarios may 
belong to the set   SC. 

 

P2 

a 

P1 

P3 

b 

c 
d e 

P4 

f 

 
Fig.3. Petri net example 

Definition 7 (complete and minimal set of scenario):  Let a 
Petri net P = (P, T, Pre, Post), initial marking M0 and final 
marking Mf. Let SC, SC= {sc1, sc2,…, scn}  a set of scenarios  
sufficient to reach Mf from M0. The set SC is complete and 
minimal between the markings M0 and Mf if: 

- Each scenario of SC is minimal to reach Mf from M0. 

- There is no scenario sci that is minimal between M0 and Mf 
such that  sci∉ SC. 

The set of scenarios is complete and minimal if it contains all 
the minimal scenarios but only the minimal ones. 

 In the example (figure 3) between the markings M0=P1 and 
Mf =P4, the set SC = {sc1, sc2, sc3} is complete and 
minimal, while the set SC’ ={sc1, sc2, sc3, sc4} is complete 
but not minimal. 

5.2 Completeness (Minimal initial state and minimal feared 

state) 

In this case the initial and final markings are partially known, 
the completeness may be defined for minimal final marking 
(associated to minimal cutsets) and set of minimal initial 
partial markings (determine by the backward reasoning). The 
determination of the minimal initial state is necessary. If we 
don’t define these initial states, the completeness doesn’t 
have sense. Indeed, the number of initial markings can be 

infinite. For each minimal cutset associated to the feared 
state, following the backward reasoning, we obtain some 
initial partial marking MPj. The MPj are the minimal initial 
markings that will be considered in the step of forward 
reasoning (conditioning states). The definition of the 
completeness is done between these initial markings and the 
final marking associated to the minimal cutset. 

Backward reasoning: From each final marking associated to 
a minimal cutset  ( ibackCont_  is the unspecified context 
defined progressively with the backward reasoning). With the 
backward reasoning we obtain jj MPM =0 with j= 1 to n and 

MP an initial partial marking.  

We obtain some scenarios expressed as follows:  

backii lBackContC ,_⊗ ├ jMP      j=1 to n (In the inverse 

Petri net). 

Forward reasoning: From each initial marking jMP  

determined in backward reasoning following the forward 
reasoning, we obtain some scenarios of the form: 

avkj lForwContMP ,_⊗ ├ lii ForwContBackContC __ ⊗⊗  

k =1 to m (In the initial Petri net). 

Where kForwCont_  and lForwCont_  are the contexts that 
are necessary to reach the minimal cutest from the initial 
markings jMP . 

The complete set of scenarios may be defined for each 
minimal cutset considering all partial initial markings. 

5.3 Complete set of scenarios associated to minimal cutsets 

Definition 8 (complete set associated to minimal cutset):  Let 
P = (P, T, Pre, Post) be a Petri net. Let  Ci be a minimal 
cutset associated to a final marking. Let SC be the set of 
scenarios. The set SC is complete for the minimal cutest Ci if 
and only if each scenario sci  minimal between the initial 
markings kj ForwContMP _⊗  and the final marking  

lii ForwContBackContC __ ⊗⊗ ,belongs to SC 

.Definition 9 (complete and minimal set of scenarios 

associated to minimal cutset):  

Let P = (P, T, Pre, Post be a Petri net). Let Ci be a minimal 
cutset associated to a final marking  

Let SC be a set of scenarios.  

The set of scenarios SC is complete and minimal for the 
minimal cutset Ci if and only if SC contains only all minimal 
scenarios between the initial marking kj ForwContMP _⊗  

and the final marking lii ForwContBackContC __ ⊗⊗ .  
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6. APPLICATION EXAMPLE 

This case study concerns the landing system of a military 
airplane made by Dassault Aviation (Villani and al, 2003). 
The purpose is to characterize the feared scenarios that can 
affect the safe proprieties of its control software. Three 
landing sets containing each one a door and a landing gear 
compose the landing system. For landing, the following 
sequence must be performed: open the doors, retract the 
landing gears and close the doors. The scenario analysis will 
be focused on the feared events associated to the landing 
operation (extend of the landing gears). We have three feared 
events for each landing gear: 

- Door stuck closed 
- The landing gear doesn’t extend 
- Door stuck open after gear extension.  

6.1 System description 

The system to be analyzed is composed of three computers 
controlling three landing gears and doors. The landing gears 
and doors movement is performed by a set of actuating 
cylinders. The cylinder position corresponds to the door or 
landing gear position (when a door is opened, the 
corresponding cylinder is extended). The cylinders (and the 
respective door and landing-gear) are considered as the 
controlled objects. The Rafale landing system has the 
following actuating cylinders: 

- For each door, a cylinder opens and closes the door. 
- For each right and left landing gear, a cylinder extends and 
retracts the landing gear and another cylinder blocks the 
landing gear in the extended position. 
For the front landing gear, a cylinder retracts, extends and 
blocks the landing gear in the extended position. In order to 
improve the safety of the system four relief electro-valves are 
introduced, one for the opening, one for the closing, one for 
the extension and one for the retraction. Only one of the 
front, right or left landing gear system can use a relief 
electro-valve at a time. The computer sends the command E 
to extend the gears or R to retract the gears. An up/down 
handle is provided to the pilot. When the handle is set UP the 
extending landing-gear sequence is accomplished, when the 
handle is set DOWN the retracting landing-gear sequence is 
accomplished. 

6.2 System modeling and application 

When the place Ps0 of figure 4 is marked the door is close, if 
a command is send to open the door, the transition tn0 is fired 
but only if the elctro-valve ev1 is available: if it is not. a 
relief electro-valve is used and the transition tr0 is fired. In 

the case the relief electro-valve (that is shared with other 
components of the system) is used (firing of the transition t1), 
the transition red1 is fired and the system reaches the feared 
state (marking of the place E_red1).  In the place P0 the 
opening starts. If the electro-valve is switched to off (firing of 
def1) while the door is opening then the transition td1 is fired. 
So the system is in sticking situation.  If the relief electro-
valve can be used (place ev_relief_ok marked) the transition 
tr1 is fired allowing the opening process until the door is 
completely open. If the relief electro-valve can’t be used, the 
transition red2 is fired and the feared state is reached. 

In the Petri net of figure 4, the target place is E_red1. The 
minimal cutest associated to the feared state 
is )_( 1redEBC = . It will be the initial minimal marking 
considered for the first backward reasoning (inversed Petri 
net).  For the minimal cutset 111 _ redER =  two initial partial 
markings are possible 01 PsMP =  and 122 PsMP =  (obtained 
from backward reasoning), which correspond respectively to 
the following scenarios (inverse Petri net) 

Sc1: 11,_ redredE ├ 0Ps     

Sc2: 11211 ,,,__ deftdredboevredE ⊗ ├ okevP _10 ⊗  

These two partial markings ( 01 PsMP =  

and okevPMP _102 ⊗= ) represent the initial markings that 
will be considered for the forward reasoning.   

The complete set of scenario leading to the marking that 
represents the feared state (minimal cutest E_red1) contains 
four scenarios which are: 

Scenario 1: 
1110 ,,,__ reddefdefokevokevPs ⊗⊗ ├

hsevboevredE ___ 11 ⊗⊗  
Where: 

okevokevForwCont k ___ 1 ⊗=     and 

hsevboevForwCont l ___ 1 ⊗=  

  Scenario 2: 

11110 ,,,1__ redtdefPokevokevPs ⊗⊗⊗ ├

211 __ PboevredE ⊗⊗  

Scenario 3: 

11110 ,,,1__ redtdefPokevokevPs ⊗⊗⊗ ├

211 __ PboevredE ⊗⊗ . 

Scenario 4: 

211110 ,,,,1__ redtdeftdPokevokevP ⊗⊗⊗ ├

211 __ PboevredE ⊗⊗  
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Fig. 4. Opening Petri net model of the three doors 

 

7. CONCLUSION 

In this paper the definition of minimality and completeness of 
critical scenarios (scenarios that lead to feared state) 
generated from temporal Petri nets model are defined. The 
new representation of a Petri net with formulas of linear logic 
allows us to define them formally.  A minimal scenario 
represents a class of scenarios, and it contains only the events 
that are necessary. In minimal scenario the order relations 
between events must be effective relation of causality in the 
system and the list of event of the scenario must be minimal 
(without loop events of the system). The minimal scenario is 
defined between minimal final marking corresponding to the 
feared state and minimal initial marking. From the definition 
of minimal scenario, the completeness is defined in two 
cases. The first case is trivial and concerns the case where the 
initial and final markings are completely known. In the 
second case from the minimal final marking (characterized 
by minimal cutest) a minimal initial state is defined. If we 
don’t define these initial states, the completeness doesn’t 
have sense. Indeed, the number of initial markings can be 
infinite. Between these two markings, the complete set of 
scenarios is defined. It guaranties that all scenarios are 
derived.  

The algorithm has been implemented in Java and the notions 
of minimality and completeness was integrated. The 
presented results of the application example have been 
obtained with this implementation. 
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