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Abstract: Further improvements of emission control will require reliable estimation of emissions in real 
time. While many progresses are being done in terms of physical sensors, there is a wide agreement that 
virtual sensors and more in general real time emission models will play a central role in the next steps. 
While there is a deep understanding of the physics of the regulated pollutants, most general emission 
models tend to be too complex and poorly parametrized to be used on-line, while most data based models 
tend to be either insufficiently precise or of limited scope. To avoid this problem, this paper proposes a 
combined approach in which static maps are identified numerically, but the effect of dominant factors, like 
cylinder-head temperature and air path dynamics, is included on the basis of physical assumptions. 
Differently from most models developed for sensors, this approach is based on pure engine control unit 
(ECU) data, i.e. can be used for the computation of optimal control laws. As the paper shows, this strategy 
is able to provide not only real time estimation of NOx as a function of the ECU outputs, but also of 
particulate matter (PM).  

 
 

1. INTRODUCTION 

The high mobility requirements have well known negative 
side effects, in particular in terms of environmental damage 
and air pollution by exhaust gas, as carbon dioxide (CO2), 
carbon monoxide (CO), residual hydrocarbons (HC), 
particulate matter (PM) and nitrogen oxides (NOx, essentially 
a mixture of NO and NO2). Accordingly, vehicles with 
combustion engines may be put on the market only after 
passing standardized emission tests and require special after-
treatment systems. In the case of Diesel engines, CO and HC 
limits can be achieved rather easily with oxidation catalysts, 
while NOx as well as PM limits are much more demanding. 
Although these limits can be met by Diesel particulate filters 
(DPF) and selective catalytic reduction (SCR), a 
minimization of the engine row emissions is important to 
optimize or even avoid these exhaust aftertreatment devices. 

The increasing number of possible control actions in the 
combustion process of modern Diesel engines allows a much 
better optimization of the combustion, but complicates the 
locating process for the optimal set points. The challenge 
here is finding models that represent this highly nonlinear 
process in a way suitable for optimization. Models of 
combustion processes have been developed for a long time. 
As shown in (Patterson et al. 1994; Li et al. 1995; Wang et 
al. 1999; Jung et al. 2001), these models usually define 
different interacting zones in terms of chemical compositions 
and operation conditions in the combustion chamber. These 
models are often included in finite-element programs and can 
be very useful in finding optimal chamber geometrics by 
numerical analysis of the combustion process. Though 

theoretical models are very helpful in this case, their ability to 
simulate exhaust emissions accurately is limited.  

Therefore, for on-line use, usually identified models are used 
instead. The variety of these models is huge, as the numbers 
of publications in the last years show. In principle they can be 
divided in two different groups: on the one hand models 
(Ouenou-Gamo et al. 1998; Schilling et al. 2006) whose 
structure is defined by basic chemical and physical equations 
(see: Heywood 1988; Warnatz et al. 1999) and only 
parameters are adapted and identified respectively to 
represent the emissions of a specific engine. In general, these 
models can represent global behaviors well, but are often 
overstrained to simulate local, engine dependent, behaviors. 
Another issue for restriction at real engine applications can be 
the use of characteristic values like the heat release rate, often 
not available, as input variables available in the ECU.  

On the other hand, so called black-box models assume no 
specific model structure. Due the highly nonlinear behavior 
of an engine and the huge interaction of the different inputs, 
standard linear identification algorithms like FIR, ARX or 
OE are even locally overstrained. For the identification of 
nonlinear systems many different possibilities exist (Ljung 
1999, Nelles 2001), each of them having advantages and 
disadvantages. Very common algorithms to describe engine 
emissions are artificial neural networks (ANN) (Hafner et al. 
2000; Desantes et al. 2002; Ayeb et al. 2005; Galindo et al. 
2005). Models applying genetic algorithms (del Re et al. 
2005; Alberer et al. 2005) are also used and brought good 
results for the standard operating mode (under closed loop 
action of the ECU). 
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This restriction – to closed loop operation under the action of 
the ECU – is critical, as it strongly reduces the dimension of 
the model space. Indeed, an ECU tends to produce fixed 
relationships between control variables (for instance, for a 
single speed, temperature and demanded torque, there is one 
single combination of several control variables, like rail 
pressure, pre-injection time and amount, main injection time 
and amount, etc. which have been optimized for the specific 
operation). While this generally increases the precision of the 
model derived under closed loop operation for the closed 
loop condition, it makes it mostly worthless for the general 
operation and therefore for optimization, for which a 
sufficiently general model is needed. 

This work is concerned in deriving such an open loop model 
for a Diesel engine. As the engine cannot be operated without 
an ECU, and some combinations of control inputs could even 
lead to an immediate damage of the engine, a real open loop 
model identification is not possible, but the problem can be 
reduced using tools both at the measurement and at the 
interpretation level: the model is designed using a 
combination of a comprehensive steady state model (obtained 
modifying the set points of the controller so to cover the 
whole range of combinations of control inputs) and statistical 
tools are used to reduce the correlation present in data and 
thus improve the problem condition. 

Additionally the model uses first-principle dynamic 
extensions to account for the effects of the temperature and of 
transport phenomena in the air path. The resulting model is 
able to represent with a sufficient precision both the NOx and 
PM values over the whole engine operating range using only 
values available in the ECU.  

2. MODEL DESIGN 

2.1 General issues 

The design of a control oriented emission model involves 
addressing several aspects, in particular the strong 
nonlinearity of the engine map, the strong correlation 
between many measurements and the essentially open 
problem of the right formula structure of an NOx and 
especially of a PM estimator. These problems are solved in 
our case in the following way: 

(a) a data set “as rich as possible” under open loop 
conditions is determined experimentally  

(b) variable selection methods are used to determine the 
input channels with the largest independent impact on 
emissions (resulting in table 1) 

(c) the whole engine map is subdivided in local regions (as 
shown in fig. 1) and the outputs of the global model 
yglobal (emission values for NOx and PM) are computed 
switching between outputs of local models yr, using a 
linear combination in overlapping regions (1). 

 

Table 1. Input Variables 

Input varible Unit Description 
qMI mg/Inj fuel mass of main injection 

phiMI Deg crank angle position of main 
injection before top dead centre 

qPI mg/Inj fuel mass of pilot injection 
tPI µs time of pilot injection before main 

injection 
pRail bar fuel pressure in common rail 

N rpm engine speed 
MAP mbar manifold air pressure 
MAF kg/h manifold fresh air mass flow 
Toil °C engine oil temperature 
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Fig. 1. Switching between local models defines the output of 
the global model  
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(d) Compared to the uncertain and slow dynamics (delay 
time and low pass filter) of the emission measurement 
devices, the fast injection dynamics can be neglected. 
Dynamics of the air path - which are much slower than 
those of the injection system - could be excluded as the 
output values of this system manifold air flow (MAF) 
and boost pressure (MAP), both measured by the 
standard ECU, were taken as inputs for the emission 
model. As the air mass flow sensor is not mounted 
directly on the manifold but in the upstream of the turbo 
charger, a second order filter was included here to 
approximate the time lag (based on the results of 
(Vierlinger 2005)). The resulting transfer function from 
the measured value MAF to the real manifold air mass 
flow MAF* can be written in the frequency domain as 
follows:  

 
2 2

1
*

2 1
MAF MAF

T s T sξ
=

+ +
 (2) 

Here T defines the time constant of the system  ξ the 
damping and s the complex Laplace parameter. 
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2.2 Local models 

The local models describing the global model are defined by 
in parameters linear regression functions. Eq. (3) shows the 
basic structure of these functions: the logarithmic engine 
output (NOx and opacity respectively) is defined by a mean 
value and a deviation depending on the standard deviation 

uuσ  multiplied by a sum of input functions ( )if u∆  

weighted by regressors θi. The logarithm is used to achieve 
constant relative prediction errors over a larger output range 
(error homoscedasticity) and therefore accurate results for 
lower emissions levels too. Both the output and the input 
variables have been standardized by subtraction of the mean 
values ( y , u ) and division by the square root of their 
variance (

yyσ ,
uuσ ). 

 ( )
1

ˆln( )

p

i i
i

uu

yyy y y

y f u

u u
u

θ

σ

σ

=

= + ∆

∆ = ⋅ ∆

−
∆ =

⋅
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u∆ represents the vector of standardized input variables and p 
the number of regressors. Several approaches for the 
generation of possible new input variables have been tested. 
In conclusion, a polynomial attempt of second order is 
sufficient and therefore (3) can be rewritten in matrix 
notation as follows: 

 

[ ]1 1 1 1 2

T

T

p p p

y u

u u u u u u u u u

θ∆ = ⋅ ∆

∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

(4) 

A criterion J to assess the quality of a given estimated model 
is given by the sum of the square residuals: 

 2

1

ˆ( )
n

k
k kJ y y

=

= −∑  (5) 

2.3 Variable selections models 

The estimation problem with the cost function defined by  
eq. (5) can be solved by a standard least square method, i.e. 

 ( ) 1ˆ T TYθ φ φ φ
−

=  (6) 

where Y  represents the data vector of the target variable and 
φ  the data matrix of the input vectors (3), albeit without the 
convergence properties of the standard ARX due to the 
correlation of the inputs. This problem can be reduced either 
by well known regularization methods, or even better by 
choosing the most representative and therefore least 
correlated description basis. The procedure follows the basic 
ideas of orthogonal forward selection (Henning 2004), and 
essentially consists in looking for the sensitivity of the 
estimation result to each candidate regressor. Therefore, the 

normalized standard error of each regressor ˆ( )iSE θ was 
calculated according to (7). For robustness, these values had 
to be smaller then a defined level which was decreased 
iteratively until validation error on a not in the identification 
data included test data set raised significantly. Otherwise, the 
input channel was rejected and a new identification was done. 
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2.4 First principle extensions 

High combustion chamber wall temperatures have an 
increasing influence on NOx by the Zeldovich-formation 
(Warnatz et al. 1999) and a decreasing one on soot. These 
temperatures, which are normally not known, can be 
approximated by the engine oil temperature Toil, also a 
variable of a standard ECU. Actually, this value is a dynamic 
output of the engine system and therefore not settable but 
describable only by quite complex definitions of the engine 
which are depending on much more parameters than those 
used here for the emission model. The very low excitation of 
Toil at the local identification areas causes huge standard 
errors SE in the regressors of the channels containing this 
value. Due to the selection criterion described before these 
channels were rejected and temperature dependence would 
disappear. There could be many approaches to tackle this 
problem, but a simple and efficient possibility to include 
effects of temperature proven to be multiplying the output of 
the nonlinear model by a scaling factor representing 
temperature differences between the main temperature of the 
identification data and current oil temperature. The weighting 
function for this temperature dependence was – on the basis 
of physical considerations (Warnatz et al. 1999) - an 
exponential function. The growth factor which is positive for 
NOx and negative for PM, is defined by separate warm-up 
tests under constant speed and load tests (Fig. 3). 

 

Fig. 2. Structure of the local models  
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Fig. 3. Measured influence of oil temperature on emissions 
under constant speed and load. 

4. EXPERIMENTAL FACILITIES AND 
IDENTIFICATION 

The engine used to conduct the experiments was a production 
2 litre 4 cylinder BMW Diesel engine on an AVL dynamical 
test bench. The engine parameters qMI, phiMI, qPI, tPI, 
pRail, positions of the exhaust gas recirculation valve (EGR), 
and that of the variable geometry turbocharger (VGT), 
defining MAF and MAP, have been specified directly and 
independently. Therefore the ECU was used to reach the 
operating point, but was partly out of authority during 
measurements. Also engine speed N, controlled by the torque 
of the test bench dynamometer, was changed separately and 
uncorrelated to the other inputs. Emission analyses were done 
by the HORIBA-MEXA 7000 for NOx and the opacimeter 
AVL439 as an indicator for PM respectively. 

For each of the local models, measurements were done. Here, 
emissions response on uncorrelated steps of the input 
variables mentioned above were measured. As already 
mentioned delay time varies heavily for different operating 
points on the global working range (Fig. 1). In this case the 
description with local models again shows an advantage, 
namely adaptation of the delay time. After correction of this, 
the static polynomial model (4) and the parameters of the 
transfer function (2) have been identified iteratively to 
minimize the cost function J. Furthermore, elimination of 
single input channels of u∆ was done iteratively by 
decreasing the limit of maximal allowed normalized standard 
error until residuals on a defined data interval, only used for 
validation, began to increase significantly. Fig. 4 and 5 show 
identification and validation for NOx and opacity at local 
levels. 
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Fig. 4. Local model for NOx for the working point 950 rpm 
and 15 mg/cycle of main injection 
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Fig. 5. Local model for opacity (representing PM) for the 
working point 2200 rpm and 15 mg/cycle of main injection. 

 

6. RESULTS 

Validation of the global model was done by using the 
identified global model as a virtual sensor during the NEDC 
standard driving cycle. Though no data of this cycle has been 
included in the identification process at all, results of good 
quality could be reached as Figures 6 and 7 show. Here is to 
mention that delay times of the measured signals have been 
compensated in order to enable a fair comparison. 
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Fig. 6. Comparison between measurements and simulation 
result for NOx (selection of the NEDC) 
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Fig. 7. Comparison between measurements and simulation 
result for opacity representing PM (selection of the NEDC) 

In table 2 two characteristic values for identification 
evaluation the FIT-value and the mean square error (MSE) 
(8), are listed for global validation and local validation (mean 
values). 

Table 2. Model Errors 
 

Output 
mean 

local FIT 
mean  

local MSE 
global 
FIT 

global 
MSE 

NOx 88% 34 ppm 84% 35ppm 
Opac 75% 3.2 % opc 52% 5.7 % opc
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Though especially the model for NOx shows good results, 
difficulties can be seen in the high peaks where the virtual 
sensor displays even higher values. These and also other 
inaccuracies can be explained easily by the fact that here the 
local models have to be extrapolated. Fast and high fuel 
reduction rates from high levels of injections where high 
values of MAF and especially MAP occur, cause fast changes 
to models of lower mean injection. MAF and especially MAP 
values are not decreasing that fast which means that the local 
model of low load has to be extrapolated in a wide range as in 
identification data neither points containing such high values 
were included nor were possible. Polynomial functions of 
low order show much better extrapolation abilities than for 
example ANN-models but here even these are overstrained. 
To handle these effects more accurate, suitable regions of 
transient identification cycles could be included into the 
identification process of the local models. 

These effects are apparently influencing the opacity model 
much more. Though the validation at local models is quite 
good, global validation seems to have room for improvement. 
It is to mention here that especially soot model identification 
was very difficult at low speed levels with higher injection. 
Especially in regions where rail pressure is limited by low 
engine speed, many effects are caused by local flame 
instabilities which are hardly describable. 

General speaking, identification of models at low load was 
more difficult than doing this at higher load areas. This can 
be explained by the fact that variation of inputs was hold 
constant for all models and therefore for instance a  
3 mg/cycle fuel mass change at a mean injection level of  
5 mg/cycle has relatively much more influence than doing 
this at a mean level of 25 mg/cycle. 

6. CONCLUSIONS 

The main message of this work is that our method is able to 
provide a sufficient good model. The global structure of 
switching between local models shows advantages as 
different dynamics as well as sensitivities can be handled 
easily. In combination with the variable selection criterion for 
the local models, this structure shows a wide range of validity 
as well as high accuracy. Though improvements especially 
for the PM model are possible, their necessity has to be 
checked by using these for control optimization. Finally, it 
could be shown that accurate engine emission models 
containing only ECU values are possible and therefore 
predestined as basis for control applications. 
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