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Abstract: We analyze the problem of optimally controlling a system governed by a Volterra integral 

equation, when the controls take the values 0 or 1 and induce what we term here "amplified memory 

effect". Under certain conditions, we derive a set of Hamiltonian equations and a set of necessary 

conditions for optimality. 

 

1. INTRODUCTION 

The classical theory of optimal control deals with systems 

governed by ordinary differential equations or, in the case of 

discrete-time systems, finite difference equations. That basic 

theory has been extended in many directions: for example, 

we may have ssystems governed by partial differential 

equations, systems governed by sets of inequalities that 

involve partial derivatives, continuous-time systems with 

discrete-time controls (switching control or hybrid control), 

systems governed by impulsive differential equations, or 

delay-differential equations, or various types of integral 

equations, etc. 

In this paper, we focus on systems governed by Volterra 

integral equations. Volterra integral equations are used to 

model a variety of systems with memory effects, i.e. 

hereditary systems, including applications to population 

dynamics, epidemiology, economics, continuum mechanics 

of visoelastic bodies, etc. 

The particular type of control systems we consider here are 

characterized by three important effects: (i) switching nature 

of the control, (ii) what we have termed "amplified memory 

effects", and (iii) multiplicity of Hamiltonians. The concept 

of amplified memory effects means, roughly, that the 

Hamiltonians that become relevant for these problems have 

memory with respect to both state and co-state; this will be 

explained later in this paper. (By contrast, for other types of 

controlled Voltera integral equations, the Hamiltonian has 

memory only with respect to the co-state, but not with respect 

to the state.) The multiplicity of Hamiltonians is also a new 

phenomenon, and it refers to the fact that one set of 

Hamiltonians is used for the equations that determine the co-

state, and a different set of Hamiltonians is used for an 

extremum principle akin to Pontryagin's maximum principle. 

The combination of these phenomena is peculiar to hereditary 

systems, and it has no counterpart in the theory of controlled 

ordinary differential equations. 

 

2. STATEMENT OF THE PROBLEM 

We consider a system governed by a Volterra integral 

equation: 
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The state x(t) takes values in a finite-dimensional Euclidean 

space, and the control u(t,s) is a piecewise-continuous 

function of two variable, defined on the domain 

}:),{(: Tts0stDT ≤≤≤= , where T is the finite time-

horizon of the control problem. 

In addition, we require that u takes values in a finite set 

},,,{: m21 ααα L=A . For simplicity, in this paper we shall 

restrict our attention to the case in which A has exactly two 

members, which we designate as 0 and 1. 

This type of controlled Volterra integral equation has an 

interpretation in the context of systems theory.  

A Volterra operator dssxstgtVx
t
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then this discretized operator is the connection in parallel of 

the gains kG .  

Let us set ;),,,(:),,(,),,,(:),,( 1xstfxstf0xstfxstf 10 ==  

at each time-instant t, we choose to utilize 0f  for the 

integration over s (in the Volterra integral equation) in a 

certain part of the interval [0, t], and 1f  in the remaining part 

of [0, t]. In terms of the interpretation of a connection of 

gains in parallel, this amounts to having two sets of gains, 

those based on 0f  and those based on 1f , say ))(,(
)( ⋅xtG

0
k

 

and ))(,(
)( ⋅xtG
1
k . Now, for each t and for each k, we choose 

one of ))(,(
)( ⋅xtG

0
k

, ))(,(
)1( ⋅xtG

k
, with different choices for 

different values of t and k, and we connect our chosen gains 

in parallel, disregarding the other gains. This also amounts to 

selective use of past information about the system to be 

utilized in the system dynamics. Actual applications to real-

world problems may arise in a variety of contexts; one 

example is an advertising campaign, which is dynamically 
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evolving, and different aspects of the past history (those 

events that could be relevant to the campaign) are utilized to 

affect the current presentations at different times. 

 

The objective of an optimal control problem is to extremize 

(here, for definiteness, to minimize) a cost functional of the 

following form: 
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3. BACKGROUND  FROM  CONTROLLED ODES AND 

ORDINARY VOLTERRA CONTROL 

In order to put the present problem into proper perspective, it 
is useful to briefly outline two other problems: (i) the 

problem of optimal control of ordinary differential equations 

with discrete-valued controls, and (ii) the ordinary problem of 

control of Volterra integral equations. The information of this 

section is offered as background for the new results that are 

stated in the next section. 

 

A controlled ODE system with discrete-valued controls has 

the form 
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and the objective is to minimize a functional 
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This problem can be handled either by the method of 

Pontryagin's maximum principle or by the method of 

dynamic programming. In the method of dynamic 

programming, we define the value function 
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where ξsx  is the solution of the ODE with side conditions 

ξξ =)(sxs . Then V satisfies (in the appropriate sense of 

generalized solutions) the Hamilton-Jacobi equation 
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This method cannot be used for the problem we are studying 

in this paper. 

 

The standard case of controlled Volterra integral equations 

concerns a model of the form 
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t

00 ))(),(,,()()( ∫+=  

 

and the optimization objective is the minimization of a cost 

functional  
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One  important difference between this classical case of 

Volterra control and the problem of binary Volterra control 

we study in this paper is that, in the classical case, the control 

is a function of one variable, whereas in the problem of this 

paper the control is a function of two variables; this 

difference, in turn, creates huge differences in the variational 

analyses of the two types of problems. The classical case of 

Volterra control has been studied primarily in Schmidt (1982) 

and Vinokurov (1969); some other related works are Belbas 

(2007, 2007a). The approach based on the ideas of 

Pontryagin's maximum principle uses a Hamiltonian 

functional 
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The variable X stands for x(T). The Hamiltonian is a 

functional in the co-state, but a function of the value of the 

control, and, apart from the dependence on x(T), a function of 

the current value x of the state. This is an important 

difference between controlled ODEs and controlled Volterra 

integral equations. The co-state ψ satisfies the Hamiltonian 

integral equation (Volterra integral equation in reverse time) 
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Under suitable conditions, if )(* ⋅u  is an optimal control and 

)(,)( ** ⋅⋅ yx  are the corresponding state trajectory and co-

state trajectory, )(* ⋅u  satisfies, for almost all ],[ T0t∈ ,  
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This method cannot be used for the binary Volterra control 

problem of this paper, because the extremal principle above 

does not hold when the control function depends on two 

variables. 
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4. THE RESTRICTED PROBLEM 

In order to obtain reasonable analytical results, we restrict the 

class of admissible control functions as follows: admissible 

control functions for the restricted problem are defined via 

two collections of interval-valued functions (in other words, 

interval-valued multi-functions), 

We consider a collection of time-varying intervals 

))(),((,))(),(( tbtbtata 1jj1ii ++  which cover the interval  

(0, t). We assume that the functions )(),( ⋅⋅ ji ba  are 

continuously differentiable. We use the following notation: 
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The definition of a control policy requires, among other 

things, a measurable selection from TD  into }.,{ 10≡A  

 

A control function ),( ⋅tu  is determined by 

 

.)(
~

)(),(
~

)(

),()(),(),(

;)(
~

)(),(ˆ\)(),(

;)(
~

)(),(ˆ\)(),(

tBtBtAtA

tBtAsforststu

tBtBtAtBsfor1stu

tAtAtBtAsfor0stu

∈∈

∩∈=

∈∈=

∈∈=

σ
  (13) 

 

The restricted optimal control problem concerns the 

minimization of the functional J over control policies of the 

type defined in this section.  

 

It should be noted that, although for theoretical reasons we 

have called this "restricted problem", this model is quite 

general for practical implementations, and anything more 

general would be difficult to interpret in terms of practical 

implementation. 

 

We define 
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Similar definitions are used for )(),(),( ,,, jj1j0 SbSbS βσ ±±± . 

Preparatory to the variational analysis of our problem, we 

introduce some notation concerning different types of 

variations. 

For )(, ik aSE ±∈  or )(, jk bSE ±∈ , where },,{ σ10k ∈ , we 

define 
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Then the variation of the state trajectory, under a variation of 

the multi-functions that define a control policy, satisfies 
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In view of the definitions of 
ia

δ and 
jb

δ , the last equation 

can be written in compact form as 
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In an analogous way, the variation of the cost functional J can 

be expressed as 
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The functions jiF ΨΦ ,,
~

 can be expressed in terms of the 

functions ,,,, fFFF 012  and the terms that appear in the 

definitions of the operators 
ia

δ  and 
jb

δ ; in this paper, we 

omit the explicit expressions for these functions, since they 

are very long and complicated, and they do not contribute to 

a conceptual understanding of the remaining of the 

variational analysis. The subscript 2x  denotes partial 

differentiation with respect to the second slot that contains x 

among the variables displayed inside F
~
. The symbol u~  

denotes the symmetric extension of u , i.e.  
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The above integral equation for xδ  is linear in xδ , and 

therefore it possesses a resolvent kernel ),( stR . 

Consequently, we define a co-state function )(tq  by 
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Then, by using the duality theory for Volterra integral 

equations, we conclude that )(tq  satisfies 
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This leads to the definition of the Hamiltonian-Volterra 

functional 
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so that the co-state q  satisfies 
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Thus, in our problem, the Hamiltonian is a functional (rather 

than a function) in both the state and the co-state, whereas in 

the standard Volterra control problem the Hamiltonian is a 

functional of the co-state but a function in the state. Because, 

for our problem, the Hamiltonian has memory with respect to 

both state and co-state, we have termed this phenomenon 

"amplified memory effect". 

 

Now, in both controlled ODEs and the classical case of 

control of Volterra integral equations, the increments of the 

Hamiltonian can be used to evaluate the variation of the cost 

functional. However, for the problem of this paper, a new set 

of Hamiltonians (utilizing, nevertheless, the same co-state) is 

needed to evaluate the variation of the cost functional. We 

have termed this phenomenon "multiplicity of Hamiltonians". 

 

The previously obtained form of the variation of J leads us to 

define the Hamiltonians 
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With these definitions, the variation of J can be expressed as 
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and a necessary condition for optimality can be given in 

variational form as 

 

0J ≥δ        (26) 

 

for all admissible variations )}({,)}({ ⋅⋅ ji ba δδ . 

 

We note that the Hamiltonian equations in our case are not 

merely Volterra integral equations in reverse time, but rather 

a species of general functional equations (functional-Volterra 

equations), because of the presence of terms like 

))((,))(( tbxtax ji  in the Hamiltonians. 

Other, stronger, form of the optimality conditions seem 

possible, but the technical details will be the subject of future 

work. Finally, these results can be extended to more general 

sets (not just binary) of admissible values of the control. 
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