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Abstract: This paper deals with the H∞ filtering problem for a class of nonlinear systems.
This class of nonlinear systems is composed of a bilinear part and of a lipschitzian one. Using an
unbiasedness condition for the bilinear part permits to parameterize the filter matrices through
a single gain. Two LPV extensions of the bounded real lemma are used to solve the H∞ filtering
problem. This approach reduces the conservatism inherent to the boundedness of the inputs.
Then the filtering solution is expressed in terms of LMI (Linear Matrix Inequalitiy) to be verified
at the vertices of a polytope.
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1. INTRODUCTION

As many physical processes cannot be modeled satisfacto-
rily by a linear system, a lot of works have been accorded
to the state estimation of some class of nonlinear systems
as bilinear ones ((Gérard et al., 2007)) or lipschitzian ones
((Zhu and Han, 2002), (Lu and Ho, 2002)). In this work,
we present an alternative approach that consists in melting
this two kinds of nonlinearities to act with more accuracy
on each one. The approach proposed here is to consider
the control inputs as varying parameters as in (Gérard
et al., 2007), so the system is described in an LPV form
((Apkarian et al., 1995)).

The linear parameters varying approach (LPV) can enable
us to find solutions easily, by adding some degree of free-
dom for the LMI, nevertheless we must have the bounds
of the inputs derivatives. Using Lyapunov method, we
express the quadratic stability and the H∞ performance
through an inequality that is transformed into LMI as we
have an affine system.

The paper is organized as follows. The conditions for the
unbiasedness of H∞ filter for continuous-time bilinear part
of the system and for the parametrization of the filter
matrices through an unique gain are studied in section
2. Two LPV lipschitzian real bounded lemmas to ensure
quadratic stability and L2 attenuation of the filter are
stated in section 3. These lemma are applied to the
estimation problem in section 4. Finally an illustrative
example is given in section 5.

Notations. Throughout this paper, ‖x‖ =
√

xT x is the
Euclidean vector norm. A† is a generalized inverse of
matrix A satisfying A = AA†A ((Rao and Mitra, 1971)).

2. PARAMETRIZATION OF THE H∞ FILTER

2.1 Problem Formulation

Consider the following class of nonlinear systems




ẋ = A0x +

m∑

i=1

Aiuix + Ru + Bw + f(t, x, u(t))

y = Cx + Dw

(1)

where x(t) ∈ IRn is the state vector,

u(t) = [ u1(t) . . . um(t) ]
T ∈ IRm is the known control

input vector and y(t) ∈ IRp is the measured output.
f(t, x, u(t)) is time-varying nonlinear function and satisfies
the following LPV-Lipschitz condition for all (t, x, u) and
(t, x′, u) ∈ IR×IRn × IRm

‖f(t, x, u) − f(t, x′, u)‖ ≤ ‖K(u)(x − x′)‖ (2)

where K(u(t)) is a IRn×n matrix linear in u(t).

Remark 1. The nonlinear systems studied in this article
are constituted by a linear part, a bilinear part and a
lipschitzian part.

The vector w(t) ∈ IRq represents the unknown disturbance
vector. The problem is to estimate the vector x(t) from
the measurements y(t) and the control inputs u(t). As in
the most cases for physical processes, the bilinear system
(1) has known bounded control inputs, moreover their
derivatives are assumed to be bounded too. So let us define
the following set

Ω = {u : t → IRm | ∀ t ∈ IR+,
ui min ≤ ui(t) ≤ ui max

µi min ≤ u̇i(t) ≤ µi max

i = 1, . . . ,m}(3)
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As u(t) is bounded, LPV-Lipschitz or k-Lipschitz are
equivalent properties. Indeed if u(t) is bounded, then
maxu∈Ω(σ(K(u)) exists and is a lipschitz scalar gain for f .
Moreover if f is k-lipschitz, K(u) = kIn can be the LPV
matrix lipschitz gain.

The proposed filter is given by




η̇ = H0η +

m∑

i=1

Hiuiη + J0y +

m∑

i=1

Jiuiy

+Gu + (In − EC)f(t, x̂, u)
x̂ = η + Ey

(4)

where x̂(t) ∈ IRn is the estimate of x(t). The filtering error
is defined as follow

e = x − x̂ = e − EDw (5)

where e = Ψx − η and Ψ = In − EC.

To characterize the disturbance attenuation, the following
definition is introduced.

Definition 1. Let γ > 0, the mapping from w(t) to e(t) is
said to have L2 gain less than or equal to γ if

Jew =

∫ ∞

0

(
‖e(t)‖2 − γ2‖w(t)‖2

)
dt ≤ 0 (6)

∀ w(t) ∈ L2[0,∞), and with zero initial conditions. ♦

The definition 1 can be seen as a generalization of
the H∞ norm for linear systems to nonlinear ones (see
(van der Schaft, 1992)). The design of the filter (4) for
nonlinear system (1) is stated as follows.

Problem 1. In this paper, the problem of the filter design
is to determine G, H0, Hi, J0, Ji and E such that

(i) the filter (4) is unbiased for the bilinear part if w(t) =
0 (see (Seron et al., 1997), p. 176), i.e. the filtering
error e(t) is independent of x(t),

(ii) the filtering error e(t) is quadratically stable for
u(t) ∈ Ω and w(t) = 0,

(iii) the mapping from the disturbance input w(t) to the
filtering error e(t) has L2 gain less than a given scalar
γ for u(t) ∈ Ω. ♦

The error system (5) can be parameterized as follows




ė = (Au(u) + ZAz(u))e
+(Bu(u) + ZBz(u))w + Ψ(f(t, x, u) − f(t, x̂, u))

e = Ce + Dw

(7)
where all matrices Au, Az, Bu, Bz, C and D dependent
of matrices of system (1) (see (Gérard et al., 2007)). The
parameterization is not given due to a lack of space then
the H∞ filter synthesis is equivalent to the determination
of Z in order to stabilize the system (7) and to ensure the
L2 gain attenuation between w(t) and e(t).

3. TWO BOUNDED REAL LEMMA
REFORMULATION FOR AN AFFINE LPV SYSTEM

WITH LIPSCHITZ TERM

Consider the following LPV system (similar to (7), with
{ui(t), i = 1, . . . ,m} as varying parameters
{

ė = A(u)e + B(u)w + Γ(g(t, x, u) − g(t, x̂, u))
e = e + Dw.

(8)

with e = x − x̂, g(t, x, u(t) a time-varying nonlinear
function which satisfies the LPV-Lipschitz condition (see
(2)).

To ensure quadratic stability and H∞ performance, we can
use a kind of bounded-real lemma for LPV systems where
Lyapunov matrix is separated from the system dynamics
in the Lyapunov inequality. This is done in order to take
a Lyapunov matrix with a particular structure.

3.1 First approach using majoration

First, we recall the well-known following lemma

Lemma 2. If M , N , G are real matrices with appropriated
dimensions such that GTG ≤ I, then

2xT MGNy ≤ αxT MMT x +
1

α
yT NT Ny (9)

∀ α ∈ IR+∗, ∀ x, y vectors with appropriated dimensions. ▽

Now, we can state the following lemma.

Lemma 3. For given ε and ε′, the LPV system (8) is
quadratically stable and has a L2 gain from w(t) to e(t) less
than or equal to γ if there exist matrices P (u) = P (u)T >
0 and F such that [

Λ11 Λ12

ΛT
12 Λ22

]
< 0 (10)

with

Λ11 =




(1, 1) (1, 2) FB(u) C
T

(1, 2)T −F − FT FB(u) 0
(FB(u))T (FB(u))T −γ2I D

T

C 0 D −Iq




Λ12 =




1√
ε
K(u)T 1√

ε′
K(u)T

√
εFΓ 0

0 0 0
√

ε′FΓ
1√
ε
(K(u)D)T 1√

ε′
(K(u)D)T 0 0

0 0 0 0




Λ22 =−I4n

where u(t) ∈ Ω and

(1, 1) = Ṗ (u) + FA(u) + A
T (u)FT and

(1, 2) = P (u) − F + A
T (u)FT . ♦

Proof. As in (Chughtai and Munro, 2004), we consider
system (8) with the following “descriptor formulation”
(with φ = ė)




[
I 0
0 0

] [
ė

φ̇

]
=

[
0 I

A(u) −I

] [
e
φ

]
+

[
0

B(u)

]
w

+

[
0

Γ(g(t, x, u) − g(t, x′, u))

]

e = [C 0]

[
e
φ

]
+ Dw.

(11)

Let V (e) be the candidate Lyapunov function

V (e) = eT P (u)e =

[
e

ė

]T [
P (u) F

0 F

]
E

[
e

ė

]

with

E =

[
I 0
0 0

]
, P (u) = PT (u) > 0.
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The time derivative of the Lyapunov function is given by

V̇ (e) = 2

[
e

ė

]T [
P (u) F

0 F

]
E

[
ė

ë

]
+

[
e

ė

]T [
Ṗ (u) 0

0 0

] [
e

ė

]

= 2

[
e

ė

]T [
P (u) F

0 F

] [
ė
0

]
+

[
e

ė

]T [
Ṗ (u) 0

0 0

] [
e

ė

]

= 2

[
e

ė

]T[
P (u) F

0 F

]


ė(
−ė + A(u)e + B(u)w

+Γg̃(t, x, x̂, u)

)



+

[
e

ė

]T [
Ṗ (u) 0

0 0

] [
e

ė

]
(12)

with all (t, x, u) and (t, x′, u) ∈ IR×IRn × IRm

g̃(t, x, x̂, u) = g(t, x, u) − g(t, x̂, u). (13)

Substituting (11) in (12) and using the facts that V (0) = 0
and V (∞) > 0, reminding equation (6), the following
inequality is obtained

Jew ≤
∫ ∞

0

(
eT e − γ2wT w

)
dt + V (∞) − V (0)

≤
∫ ∞

0

(
eT e − γ2wT w + V̇ (e)

)
dt (14)

Using (2) and (13), we can write

g̃ T (t, x, x̂, u)g̃(t, x, x̂, u) − eT KT (u)K(u)e ≤ 0 (15)

which is equivalent to (from (5)

g̃ T (t, x, x̂, u)g̃(t, x, x̂, u) − eT KT (u)K(u)e

− wT (K(u)D)T (K(u)D)w + 2eKT (u)K(u)Dw ≤ 0 (16)

In equation (12), we have two terms to major (14) :

2eT FΓg̃ and 2ė
T
FΓg̃. Using lemma 2, we can write

2eT FΓg̃ ≤ εeT FΓΓT FT e +
1

ε
g̃ T g̃

≤ εeT FΓΓT FT e +
1

ε
eT KT (u)K(u)e

≤ εeT FΓΓT FT e

+
1

ε
(e − Dw)T KT (u)K(u)(e − Dw) (17)

We obtain the same kind of relation with ė.

Using (17), the equation (14) is rewritten as (see (12))

Jew ≤
∫ ∞

0







e

ė
w




T [
Θ11 Θ12

ΘT
12 Θ22

]


e

ė
w





 dt (18)

where

Θ11 =

[
P (u) F

0 F

] [
0 I

A(u) −I

]
˙+

[
0 I

A(u) −I

]T [
P (u) 0
FT FT

]

+

[
C

T
C + Ṗ (u) 0

0 0

]

+

[
(
1

ε
+

1

ε′
)KT (u)K(u) + εFΓΓT FT 0

0 ε′FΓΓT FT

]

Θ12 =

[
P (u) F

0 F

][
0

B(u)

]
+

[
C

T
D−(

1

ε
+

1

ε′
)KT (u)K(u)D 0

0 0

]

Θ22 = D
T

D − γ2I + (
1

ε
+

1

ε′
)(K(u)D)T K(u)D

So if the following relation[
Θ11 Θ12

ΘT
12 Θ12

]
< 0 (19)

is satisfied, then we have Jew < 0. Applying Schur lemma
((Apkarian et al., 1995)) to the relation (19), inequality
(10) is obtained. �

Notice that matrices P ,F and Y are differents in different
lemma or theorems of this article.

3.2 Second approach using a new variable

We state the following lemma in order to give a second
formulation of a LPV bounded real lemma with less terms,
moreover all variables to be determined can be some
variables of the LMI.

Lemma 4. For a given ε, the LPV system (8) is quadrati-
cally stable and has a L2 gain from w(t) to e(t) less than
or equal to γ if there exist matrices P (u) = P (u)T > 0, F
such that [

Π11 Π12

ΠT
12 Π22

]
< 0 (20)

with

Π11 =




(1, 1) (1, 2) FB(u)
(1, 2)T −F − FT FB(u)

(FB(u))T (FB(u))T −γ2I


 (21)

Π12 =




FΓ C
T

√
ǫK(u)T

FΓ 0 0
0 D

T
√

ǫ(K(u)D)T


 (22)

Π22 =



−
√

ǫIn 0 0
0 −Iq 0
0 0 −In


 (23)

where u(t) ∈ Ω and

(1, 1) = Ṗ (u) + FA(u) + A
T (u)FT and

(1, 2) = P (u) − F + A
T (u)FT . ♦

Proof.

We consider the following state vector
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[
e(t)T ė(t)T g̃(t, x, x̂, u

]T
with the same approach as in

section 3.1 equation (12) (i.e. g̃(t, x, x̂, u) is consider as a
variable).

4. FILTER SYNTHESIS

We define

A(u) = Au(u) + ZAz(u) (24a)

B(u) = Bu(u) + ZBz(u) (24b)

C = C = Ir (24c)

D = D = −E1D (24d)

Γ = Ψ = I − E1C − ZE2C, (24e)

the two systems (7) and (8) are equivalent. So the system
(7) can be considered as an affine LPV system with Lips-
chitz terms where the control inputs ui(t) are considered
as affine time-varying parameters thus we can apply the
LPV bounded real lemma 3 and 4 to the system (7).

First application of lemma 3 to system (7).

Lemma 5. The LPV system (7) is quadratically stable and
satisfies the H∞ performance (6) if there exist matrices
P (u) = P (u)T > 0, F and Y and two strictly positive
scalars ε and ε′ such that[

Λ̃11 Λ̃12

Λ̃T
12 Λ̃22

]
< 0 (25)

where u(t) ∈ Ω and

Λ̃11 =




(1, 1) (1, 2) (1, 3) In

(1, 2)T −F − FT (1, 3) 0

(1, 3)T (1, 3)T −γ2Iq D
T

In 0 D −In


 (26)

Λ̃12 =




K(u)T

√
ε

K(u)T

√
ε′

√
ε(1, 7) 0

0 0 0
√

ε′(1, 8)
(K(u)D)T

√
ε

(K(u)D)T

√
ε′

0 0

0 0 0 0



(27)

Λ̃22 = I4n (28)

with

(1, 1) = Ṗ (u) + FAu(u) + Y Az(u))

+AT
u (u)FT + AT

z (u)Y T

(1, 2) = P (u) − F + AT
u (u)FT + AT

z (u)Y T

(1, 3) = FBu(u) + Y Bz(u)

(1, 7) = (1, 8) = F (I − E1C) + Y E2C

and Z = F−1Y . ♦

Proof. If (25) has a solution, then F + FT > 0 and F

is invertible. That is if LMI (25) has a solution, then Z

is always computable. Using expression of Z and inserting
(24) in LMI (25), we obtain inequality (20). Since system
(8) with equations (24) represents system (7), using lemma
4, lemma 6 is proved. �

Second application of 4 to system (7).

Lemma 6. The LPV system (7) is quadratically stable and
satisfies the H∞ performance (6) if there exist matrices
P (u) = P (u)T > 0, F and Y such that

[
Π̃11 Π̃12

Π̃T
12 Π̃22

]
< 0 (29)

where u(t) ∈ Ω and

Λ̃11 =




(1, 1) (1, 2) (1, 3)
(1, 2)T −F − FT (1, 3)
(1, 3)T (1, 3)T −γ2Iq


 (30)

Λ̃12 =




F (I − E1C) + Y E2C In K(u)T

F (I − E1C) + Y E2C 0 0

0 D
T

(K(u)D)T


 (31)

Λ̃22 =−I3n (32)

with (1, 1) = Ṗ (u) + FAu(u) + Y Az(u)) + AT
u (u)FT +

AT
z (u)Y T , (1, 2) = P (u) − F + AT

u (u)FT + AT
z (u)Y T ,

(1, 3) = FBu(u) + Y Bz(u) and Z = F−1Y . ♦

Proof. Similar to the proof of lemma 5. �

To be able to solve problem 1, we use the fact that u(t) ∈ Ω
and thus we can solve the LMIs of the two last theorem
on the vertices of a convex polytope. In order to state the
final theorems, we set the following notations.

In this paper, we consider that matrix P (u) has the
following bilinear structure P (u) = P0 +

∑m
i=1

uiPi where

Pi are constant matrices. So we have Ṗ (u) =
∑m

i=1
u̇iPi.

Consider the following ρ,

ρ(t) =




ρ1(t)
...

ρm(t)
ρm+1(t)

...
ρ2m(t)




=




u1(t)
...

um(t)
u̇1(t)

...
u̇m(t)




(33)

Thus we can define P̃ and P as follows

P̃ (ρ) = P0 +
m∑

i=1

ρiPi = P (u) (34a)

P (ρ) =

m∑

i=1

ρm+iPi = Ṗ (u). (34b)

and we have from (24)

Âρ(ρ) = H01 +

m∑

i=1

ρiHi1 = Au(u) (35a)

Âz(ρ) = H02 +

m∑

i=1

ρiHi2 = Az(u) (35b)

B̂ρ(ρ) = LB − E1CB −
(

Υ01 +

m∑

i=1

ρiΥi1

+(H01 +

m∑

i=1

ρiHi1)E1

)
D = Bu(u) (35c)

B̂z(ρ) = −E2CB −
(

Υ02 +

m∑

i=1

ρiΥi2

+(H02 +

m∑

i=1

ρiHi2)E1

)
D = Bz(u) (35d)

K(ρ) = K(u). (35e)
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Using the above notations, we have ρ(t) ∈ P where P is a
convex polytope given by

P = [u1,min, u1,max] × . . . × [um,min, um,max]×
[µ1,min, µ1,max] × . . . × [µm,min, µm,max] . (36)

Let S be the set of vertices of polytope P given by

S =
{

β = [β1 . . . β2m]
T ∈ IR2m|∀ i ∈ [1, m] ,

βi ∈ {ui,min, ui,max}
and ∀ i ∈ [m + 1, 2m] , βi ∈ {µi,min, µi,max}} . (37)

ν = 22m is the number of elements of S.

Then the two following theorems give two different ap-
proaches to obtain the gain matrix Z from (7) through a
resolution of some LMI.

Theorem 7. Given two strictly positive scalars ε and ε′.
Problem 1 has a solution if there exist matrices Pi = PT

i >

0, Pi ∈ IRn×n (for i = 0, . . . ,m), F ∈ IRn×n and Y ∈ IRn×α

and a real γ > 0 such that, for j = 1, . . . , ν,[
Λ11j Λ12j

Λ
T

12j Λ22j

]
< 0 (38)

where

Λ11j =




(1, 1)j (1, 2)j (1, 3)j In

(1, 2)T
j −F − FT (1, 3)j 0

(1, 3)T
j (1, 3)T

j −γ2Iq D

In 0 D
T −Iq


 < 0, (39)

with

(1, 1)j = P (βj) + FÂρ(βj) + Y Âz(βj)

+ÂT
ρ (βj)F

T + ÂT
z (βj)Y

T

(1, 2)j = P̃ (βj) − F + ÂT
ρ (βj)F

T + ÂT

βj
Y T

(1, 3)j = FB̂ρ(βj) + Y B̂z(βj).

and

Λ̃12j =




K(βj)
T

√
ε

K(βj)
T

√
ε′

√
ε(1, 7) 0

0 0 0
√

ε′(2, 8)
(K(βj)D)T

√
ε

(K(βj)D)T

√
ε′

0 0

0 0 0 0




Λ̃22j =−I4n

with (1, 7) = (2, 8) = F (I − E1C) + Y E2C and βj ∈ S.

The gain matrix Z is given by Z = F−1Y . ♦

Proof. As the system (7) represents the filtering error of
filter (4), using equation (34) and definition (33), LMI (25)
is linear in ρ(t). Using (34) to (37), LMI (25) holds if LMI
(38) is satisfied for the ν vertices of the convex polytope P,
i.e. for each element βj of S (see (Apkarian et al., 1995)).
Thus lemma 6 holds, the system (7) is quadratically stable
for u(t) ∈ Ω and w(t) = 0 and the mapping from the
disturbance input w(t) to the filtering error e(t) has L2

gain less than a given scalar γ for u(t) ∈ Ω.

Then problem 1 is solved and the filter matrices Hi, Υi,Ji,
E and G are given thanks to Z (see (Gérard et al., 2007)).
�

Theorem 8. The problem 1 has a solution if there exist
matrices Pi = PT

i > 0, Pi ∈ IRn×n (for i = 0, . . . ,m),
F ∈ IRn×n and Y ∈ IRn×α, and a real γ > 0 such that, for
j = 1, . . . , ν, [

Π11j Π12j

Π
T

12j Π22j

]
< 0 (40)

where

Π11j =




(1, 1)j (1, 2)j (1, 3)j

(1, 2)T
j −F − FT (1, 3)j

(1, 3)T
j (1, 3)T

j −γ2Iq


 < 0, (41)

with

(1, 1)j = P (βj) + FÂρ(βj) + Y Âz(βj)

+ÂT
ρ (βj)F

T + ÂT
z (βj)Y

T

(1, 2)j = P̃ (βj) − F + ÂT
ρ (βj)F

T + ÂT

βj
Y T

(1, 3)j = FB̂ρ(βj) + Y B̂z(βj).

and

Π12j =




(1, 4) In K(βj)
T

(2, 4) 0 0

0 D
T

(K(βj)D)T


 (42)

Π22j =−Ip+2n (43)

with (1, 4) = (2, 4) = F (I − E1C) + Y E2C and βj ∈ S.

The gain matrix Z is given by Z = F−1Y. ♦

Proof. Similar to the proof of theorem 7. �

5. ILLUSTRATIVE EXAMPLE

In order to illustrate our approach, we design a filter for
the following bilinear system



ẋ =

[
−0.146 0
−0.1763 −1.197

]
x +

[
−0.097 0.09
0.08 0.05

]
u1x

+

[
0.2 −0.3
0.1 0.1

]
u2x +

[
u1 0
0 u2

] [
0.2 ∗ sin(x1)
0.2 ∗ cos(x2)

]
+

[
0.8
0.1

]
w

y = [1 0]x + 0.9w

where x(t), y(t), w(t) and u are defined as in section 2.1,
with (for i = 1, 2) −1 ≤ ui(t) ≤ 1, −10 ≤ u̇i(t) ≤ 10 and
γ = 1.

5.1 First approach : with majoration

Applying theorem 7 yields ε = 0.7 and the gain Z is

Z = 108

[
0.2585 1.8962 0.8861 −1.2384 −0.3338
−0.0063 −0.0186 −0.0107 0.0213 0.0012

1.0386 −0.6089 1.8962 −1.2384 1.0386
−0.0146 0.0137 −0.0186 0.0213 −0.0146

]
.

Finally, we obtain the following filter matrices

H0 =

[
−3.1571 0
0.0093 −1.197

]
, H1 = 10−2

[
−0.12 7.94
0.89 5.05

]
,

H2 = 10−2

[
−0.39 −26.47
1.34 9.83

]
, J0 =

[
2.6565
−0.1785

]
,

J1 = 10−2

[
−8.5
7.13

]
, J2 = 10−2

[
18.14
8.87

]
,

E = 10−2 [11.77 − 0.57] .

The obtained attenuation gain is given by γopt = 1.182.
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5.2 Second approach : with augmented state variable

Applying theorem 8 yields ǫ = 1.5 and the gain Z is

Z = 108

[
0.1951 1.3745 0.5530 −0.7898 −0.2714
−0.0072 −0.0134 −0.0087 0.0180 0

0.7238 −0.4851 1.3745 −0.7898 0.7238
−0.0112 0.0162 −0.0134 0.0180 −0.0112

]
.

Finally, we obtain the following filter matrices

H0 =

[
−3.2012 0
0.0138 −1.197

]
, H1 = 10−2

[
−0.04 7.94
0.93 5.05

]
,

H2 = 10−2

[
−0.66 −26.47
1.43 9.83

]
, J0 =

[
2.6955
−0.1824

]
,

J1 = 10−2

[
−8.57
7.09

]
, J2 = 10−2

[
18.38
8.79

]
,

E = 10−2 [11.77 − 0.57] .

The obtained attenuation gain is given by γopt = 1.16.

5.3 Results

The inputs are a mix of steps and sinusoids, the state of
the system (44) are presented in figure 1. The filtering
errors and the disturbance are given in figures 2 and 3.
The difference between the two filters is negligible.

6. CONCLUSION

This paper has presented a computationally tractable
solution to the H∞ unbiased filtering problem via a LPV
approach for bilinear systems with lipschitz terms. The
proposed design is shown to be efficient via a numerical
example.
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Fig. 1. States x1(t) and x2(t)
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Fig. 2. Filtering error e1(t) for the two approaches and
disturbance w(t)
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Fig. 3. Filtering error e2(t) for the two approaches and
disturbance w(t)
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