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Abstract: This article presents a flatness–based approach to the trajectory planning and
feedforward control problem for the inviscid Burger equation with and without an additional
quadratic nonlinearity. It uses the property of formal power series parameterizability of the
underlying partial differential equation and uniform Euler–summability of the resulting power
series to derive a parameterization of the system state and the system input in terms of a flat
output. The article thereby extends the application of the formal power series approach from
parabolic to first–order hyperbolic distributed–parameter systems.
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1. INTRODUCTION

A commonly used approach in control theory to achieve
good tracking performance is the two–degrees–of–freedom
scheme (see, e.g., Horowitz (1963)). The approach sepa-
rates the feedforward from the feedback part of the control
design. The feedforward control design, which is considered
in this article, consists of two major tasks: Determine an
adequate trajectory for the system output, and calculate
— at least approximately — the input that produces the
desired system output in case of no disturbances and on
the assumption of an exact mathematical model.

In the case of parabolic distributed–parameter systems
like the heat equation and diffusion–convection–reaction
systems, flatness–based concepts using formal power series
have been successfully applied to achieve these targets as
described in Laroche et al. (2000); Lynch and Rudolph
(2002); Wagner et al. (2004); Meurer (2005). Here, the
system state is represented as a formal power series in the
spatial variable whose coefficients are functions of time.
This allows a parameterization of the system state and
input in terms of the flat output and its derivatives with
respect to time. Motivated by these results, this article
extends this approach to the inviscid Burger equation as a
first step towards a general approach to the flatness–based
feedforward control of nonlinear hyperbolic systems.

For linear hyperbolic systems, the general approach for
flatness–based feedforward control designs consists of
using Mikusiński’s operational calculus (see Mikusiński
(1983); Mikusiński and Boehme (1987)), which leads to
solutions in terms of distributed shift operators acting on
the flat output, and hence pre– and post–actuations. Using
this approach, the feedforward control design has already
been applied to the linear wave equation in Fliess et al.

(1995); Mounier et al. (1995), the linear heat exchanger
in Rudolph (2000), the heavy chain in Petit and Rouchon
(2001), and a gantry crane in Thull et al. (2006). However
— as opposed to the formal power series approach — this
approach cannot be easily extended to nonlinear systems,
and is therefore not considered in this contribution.

The inviscid Burger equation is chosen as an application
example because it can be rigorously proven that the
proposed approach yields the exact solution to the feed-
forward control problem, at least for certain trajectories.
However, it is possible to invert the inviscid Burger equa-
tion based on the fact that the solution is constant along
characteristic curves as described in Petit et al. (1998).
Therefore, an example from fluid dynamics is considered,
where a quadratic term is added to the equation. This
creates an example that demonstrates the applicability of
the approach to more complex systems, for which straight-
forward solution methods do not exist, i.e., for which the
solution is not constant along characteristic curves.

The article is organized as follows. Section 2 formulates the
problem considered in the article. In Section 3 and 4 the
formal power series solution and corresponding simulation
results are given for the classical as well as the modified
inviscid Burger equation. Section 5 summarizes the results
and presents a brief outlook on future research activities.

2. PROBLEM FORMULATION

Consider the partial differential equation

xt(z, t) = x(z, t)xz(z, t) + α[x(z, t)]2 (1)

with α ∈ R and initial and boundary conditions

x(z, t−) = x0(z), (2)

x(1, t) = u(t), (3)
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where t− is the point of time at which a change in the input
is necessary to produce a change in the output at the time
t = 0. Therefore, t− depends on the delay present in the
system. Furthermore, u(t) is the system input and

y(t) = x(0, t) (4)

serves as the system output. The systen (1)–(4) describes
the velocity distribution of particles in a one dimensional
tube, where the individual particles do not interact with
each other, but are subject to a force proportional to the
square of their velocity. For α = 0, it is often used in fluid
dynamics as a simple model for describing shock waves.

The control objective considered in the following is to steer
the output y(t) along a desired trajectory yd(t). For this,
we focus on desired trajectories that produce a setpoint
change of the output from an initial to a final steady state.
To achieve this, the simplest choice is given by

yd(t) =

{

y0 , t < 0
y0 + t , 0 ≤ t ≤ 1
y0 + 1 , 1 < t

(5)

for a rising trajectory, and

yd(t) =

{

y0 , t < 0
y0 − t , 0 ≤ t ≤ 1
y0 − 1 , 1 < t

(6)

for a falling trajectory, i.e., a polynomial of degree one
during the setpoint change. However, the approach may be
applied to any other kind of trajectory planning problems.

3. FEEDFORWARD CONTROL FOR THE
CLASSICAL INVISCID BURGER EQUATION

In a first step, we consider the case α = 0. This represents
the classical inviscid Burger equation for which the exact
solution is known.

3.1 Exact Solution

To determine the exact solution, the characteristic curves
of (1)–(4) are required. The differential equation determin-
ing the characteristic curves reads as

det

(

1 −x(z, t)
dt dz

)

= 0. (7)

Transforming (1) into the characteristic coordinates

ζ = z, (8)

τ = t +
1

x(z, t)
z, (9)

yields the differential equation

χζ(ζ, τ) = 0. (10)

In consequence, the solution is constant along characteris-
tic curves, which — in view of (9) — are given by

γyd,t0 : t(z, t0) = − 1

yd(t0)
z + t0. (11)

For simple trajectories like the ones given in (5) and (6),
the exact solution can thus be determined.

Definition 1. Let R1 be the region of the (z, t)–plane
bounded by the curves z = 0, t = −1/y0 and t = γyd,0(z)
as shown in Figure 1. Let R2 be the region bounded by
the curves z =0, z = 1, t = γyd,0(z), and t = γyd,1(z). Let
R3 be the region bounded by the curves z = 1, t = 1 and
t = γyd,1(z). Let R = R1 ∪R2 ∪R3.

R1

R2

R3 R

(a)

1 z

1

t

t−
R1

R2

R3

R

(b)

1 z

1

t

t−

Fig. 1. Characteristic curves of the inviscid Burger equa-
tion in the (z, t)–plane passing through (z, t) = (0, 0)
and (z, t) = (0, 1), respectively, and separation of the
region R of interest into the subregions R1, R2, and
R3. (a) For a trajectory as defined in (5). (b) For a
trajectory as defined in (6).

Proposition 2. Let the inviscid Burger equation be given
as defined in (1)–(4) with α=0, t− =−1/y0, and x0(z)=
y0, and let the desired trajectory be defined as given in (5)
with y0 > 0. Then, the solution to the feedforward control
problem is given by

x(z, t) =























y0 , (z, t) ∈ R1

y0+t

2
+

√

(

y0+t

2

)2

+z , (z, t) ∈ R2

y0 + 1 , (z, t) ∈ R3,

(12)

with u(t) = x(1, t).

Proof. Note that x(z, t) = y0 and x(z, t) = y0 + 1 are
steady state solutions to (1) fulfilling the relevant initial
and boundary conditions on R1 and R3, respectively, as
well as x(0, t) = yd(t). Differentiating (12) with respect to
z and t and inserting the results into (1) completes the
proof.

Proposition 3. Let the inviscid Burger equation be given
as defined in (1)–(4) with α = 0, t− = −1/y0, and
x0(z) = y0, and let the desired trajectory be defined as

given in (6) with y0 > 1
2

(

1 +
√

5
)

. Then, the solution to
the feedforward control problem is given by

x(z, t) =























y0 , (z, t) ∈ R1

y0−t

2
+

√

(

y0−t

2

)2

−z , (z, t) ∈ R2

y0 − 1 , (z, t) ∈ R3,

(13)

with u(t) = x(1, t).

Proof. Analogous to the proof of Proposition 2.

The following section is dedicated to recovering these
solutions by applying the formal power series approach
and introducing an appropriate summation method.

3.2 Formal Power Series Solution

The formal power series approach consists of representing
the system state as a formal power series and deriving
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a recurrence that describes the calculation of the series
coefficients in terms of the flat system output. In order
for the approach to work, the system needs to be formal
power series parameterizable as defined in Wagner et al.
(2004).

Definition 4. Consider a system as given in (1)–(4). Let
the state x(z, t) be represented as a formal power series

x̂(z, t) =

∞
∑

n=0

x̂n(t)
zn

n!
. (14)

If formally differentiating the representation with respect
to z and t and inserting the results into (1)–(4) yields a
recurrence of the form

x̂0(t) = y(t), (15)

x̂n(t) = fn(x̂0, ..., x̂n−1, ˙̂x0, ..., ˙̂xn−1), n ≥ 1, (16)

then the system is called formal power series parame-
terizable by the parameterizing output y(t). The formal
parameterized input is then given by

ûd(t) := x̂(1, t) =

∞
∑

n=0

x̂n(t)
1

n!
. (17)

In order for the approach to be successful, the solution
must be piecewise analytical in z. For hyperbolic systems
like the inviscid Burger equation, the solution must then
also be piecewise analytical in t, which makes the use of
non–analytical Gevrey functions for the desired trajectory
as done in Laroche et al. (2000); Lynch and Rudolph
(2002) for parabolic distributed–parameter systems im-
possible and justifies the choice of piecewise polynomial
trajectories as given in Section 2.

Since the solution on R1 and R3 is given by x(z, t) = y0

and x(z, t) = y0 ± 1, respectively, and is therefore trivial,
this section concentrates on the solution on R2. Inserting
the formal power series approach (14) into the inviscid
Burger equation (1)–(4) yields the differential recurrence

x̂0 = y, (18)

x̂n+1 =
1

x̂0



 ˙̂xn −
n
∑

j=1

(

n

j

)

x̂j x̂n−j+1



 , n ≥ 0. (19)

Since the conditions mentioned in Definition 4 are fulfilled,
(1)–(4) is formal power series parameterizable by y(t).
However, the solution on R2 cannot be parameterized by
yd(t) for t < 0, because the formal power series solution
would have to be identical to the solution on R1, i.e.
x̂(z, t) = y0, which is obviously incorrect. Therefore, in
order to derive the solution on R2, we assume that there
exists a solution which is analytical in z on R2 and which
can be analytically continued on R1. To find this solution,
the desired trajectory yd(t) is analytically continued from
[0, 1] on [t−, 1], producing a function ya(t). This is possible
due to the choice of trajectories taken in Section 2. If such
a solution exists, it can be parameterized by ya(t).

Proposition 5. Let the inviscid Burger equation be given
as defined in (1)–(4) with α=0, t− =−1/y0, and x0(z)=
y0 > 0, and let the desired trajectory be defined as given
in (5), which is analytically continued from [0, 1] on [t−, 1].
Then

(1) the interval I, on which the formal power series ûd(t)
needs to be calculated is given by

I =

[

− 1

y0
,

y0

y0 + 1

]

, (20)

(2) the coefficients x̂n(t) of the formal power series for
the analytical continuation ya(t) are given by

x̂0 = y0 + t, (21)

x̂1 =
1

y0 + t
, (22)

x̂n = 2
(−1)n+1(2n − 3)!

(y0 + t)2n−1(n − 2)!
, n ≥ 2, (23)

(3) for y0 > 1 +
√

2, x̂(z, t) converges uniformly ∀(z, t) ∈
R1 ∪R2,

(4) for y0 <1+
√

2, ∃ (z, t) ∈ R2 for which x̂(z, t) diverges,

(5) for 1 < y0 < 1 +
√

2, x̂(z, t) is not convergent ∀(z, t)
∈ R1 ∪ R2, but ∃ q for which x̂(z, t) is uniformly
(E, q)–summable ∀(z, t) ∈ R1 ∪R2.

Proof.

(1) The characteristic curves γya,θ(z) as given in (11)
intersect the line z = 1 at

T (θ) = θ − 1

y0 + θ
, (24)

which evaluates to

T (0) = − 1

y0
, T (1) =

y0

y0 + 1
(25)

at the points θ = 0 and θ = 1, respectively. Since
dT/ dθ > 0 ∀ θ ∈ (0, 1), all γya,θ(z) with θ ∈ (0, 1)
intersect the line z = 0 in between those two values
of T .

(2) The proof of the expression for x̂n(t) is obtained by
inserting (21)–(23) as an induction hypopthesis into
(18)–(19) and using a first induction with respect to
n and a second induction with respect to j.

(3) Using the convergence criterion of d’Alembert to
determine the region of uniform convergence of x̂(z, t)
on R1 ∪R2 yields

lim
n→∞

∣

∣

∣

∣

x̂n+1n!z

x̂n(n + 1)!

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

− 4z

(y0 + t)
2

∣

∣

∣

∣

∣

z=1+δ,t=−
1

y0

(26)

=
4(1 + δ)
(

y0 − 1
y0

)2 =: Q < 1 (27)

for y0 > 1 +
√

2 with adequate positive δ = δ(y0).
(4) Using the divergence criterion of d’Alembert at z = 1

and t = −1/y0 yields the claimed result.
(5) Due to Theorem 13 given in Appendix A, it is

sufficient to show summability at z = 1+δ with δ > 0
and t = −1/y0. With an = x̂n(−1/y0)/n!, it follows,
that the operator E acting on an arbitrary an for
n ≥ 1 is given by

E =
an+1

an

=

[

−4 +
6

n + 1

]

[

1

y0 − 1
y0

]2

(1 + δ). (28)

Due to Theorem 10 given in Appendix A, the summa-
bility of

∑

an can be deduced from the summability
of
∑

an+1. Since y0 > 1 the operator E can be
bounded by

−L := −4

(

1

y0 − 1
y0

)2

(1 + δ) < E < 0 (29)
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for all n ≥ 1, which — using Proposition 12 from
Appendix A — completes the proof.

A similar result holds true for decreasing trajectories as
shown in the following proposition.

Proposition 6. Let the inviscid Burger equation be given
as defined in (1)–(4) with α = 0, t− = −1/y0, and
x0(z) = y0, and let the desired trajectory be defined as
given in (6), which is analytically continued from [0, 1] on
[t−, 1], with y0 > 2. Then

(1) the interval I, on which the formal power series ûd(t)
needs to be calculated, is given by

I =

[

− 1

y0
,
y0 − 2

y0 − 1

]

, (30)

(2) the coefficients x̂n(t) are given by

x̂0(t) = y0 − t, (31)

x̂1(t) = − 1

y0 − t
, (32)

x̂n(t) = 2
(2n − 3)!

(y0 − t)2n−1(n − 2)!
, n ≥ 2, (33)

(3) ûd(t) is uniformly convergent everywhere in I.

Proof.

(1) Analogous to the proof of Proposition 5 we find

T (θ) = θ − 1

y0 − θ
, (34)

which evaluates to the claimed values at θ = 0 and
θ = 1, respectively. Also, dT/ dθ > 0 ∀ θ ∈ (0, 1), i.e.,
all γya,θ(z) with θ ∈ (0, 1) intersect the line z = 0 in
between those two values of T .

(2) Analogous to the proof of Proposition 5.
(3) Using the convergence criterion of d’Alembert, x̂(z, t)

can be shown to converge for all t < y0 − 2. Noting
y0 − 2

y0 − 1
< y0 − 2 (35)

for y0 > 2 completes the proof.

The formal power series therefore represents an analytical
function on R2. It remains to show that this analytical
function is the correct solution.

Proposition 7. The formal power series solutions as deter-
mined in Proposition 5 and 6 and the exact solutions as
given in (5) and (6), respectively, are equivalent on R2.

Proof. The exact solutions are analytical functions on
R2 which can be analytically continued on R1. Therefore,
they can be expanded into their respective Taylor series at
z = 0 on R1 ∪R2. By induction, it can be shown that the
Taylor series coefficients and the power series coefficients
are identical. Noting the summability property of the series
completes the proof.

Since infinite series cannot in general be exactly evaluated,
especially, when the coefficients are determined by a dif-
ferential recurrence, a finite approximation is needed.

Definition 8. The terms x̂ǫ(z, t) and ûd,ǫ(t) denote ap-
proximations of x̂(z, t) and ûd(t), respectively, and are
defined by a finite (E, q)–sum using N coefficients and
the summation parameter q as given in Definition 9 in
Appendix A.

Using the knowledge of the exact solution, the maximum
error ue,max in the approximate input ûd,ǫ(t) as compared
to the exact input ud(t) obtained from (12) and (13) for
z = 1, respectively, can be determined by

ue,max = max
t∈I

|ûd,ǫ(t) − ud(t)| . (36)

The results for a choice of summation parameters N and
q as well as a choice of y0 are given in Table 1. The
results show that the summation parameter q should not
be chosen too large and that excellent approximations are
possible even with a moderate number of coefficients.

Table 1. Input error using the formal power
series approach to calculate the input to (1)–
(4) with α=0 for trajectories as defined in (5)

evaluated on I in steps of ∆t .

y0 N q ue,max ∆t

2 30 2 < 10−4 0.001
2 50 2 < 10−8 0.001
2 30 3 < 10−3 0.001
2 50 3 < 10−5 0.001

1.5 30 3 < 10−3 0.001
1.5 40 3 < 10−4 0.001

3.3 Simulation Results

For more complex systems and trajectories, for which
the solution is not explicitly known, the quality of the
approximate input determined by the formal power series
approach must be verified by simulation. Therefore, the
simulation is performed at first for the classical inviscid
Burger equation with α = 0. The results are obtained
by applying a finite difference method with forward in-
tegration using the discretization steps ∆z = 0.005 and
∆t = 0.001 in space and time, respectively. They are given
in Figure 2 for a trajectory as given in (5). These and later
results are presented in the following way: In part (a), the
reference solution for the necessary input ud(t) as stated
in Proposition 2 and 3, respectively, and the finite formal
power series solution ûd,ǫ(t) using (E, q)–summation are
given. Part (b) compares the desired trajectory yd(t) to the
simulation result y(t) which is obtained when using as an
input to the system the finite formal power series solution
ûd,ǫ(t). In part (c), the solution x(z, t) is given, which is
obtained by the simulation model when using the finite
formal power series solution ûd,ǫ(t) as the input. Finally,
part (d) shows the maximum error

ye,max := max
t∈[0,1]

|y(t) − yd(t)| (37)

of the simulated output y(t), which uses ûd,ǫ(t) as the
input, compared to the desired output yd(t) as a function
of the summation parameters.

The results displayed in Figure 2b confirm that the for-
mal power series approach paired with Euler–summation
and an adequate choice of summation parameters yields
a highly satisfactory approximation ûd,ǫ(t) for the input.
Also, the variation of summation parameters shown in Fig-
ure 2d demonstrates the robustness of the solution method
with respect to the choice of summation parameters and
suggests that the parameter q should be chosen based on
the number of coefficients N that can be calculated.
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Fig. 2. Numerical simulation results for the inviscid Burger
equation as defined in (1)–(4) with α = 0 for the
desired trajectory as defined in (5) with y0 = 1.5,
using the summation parameters N = 30 and q = 3.
(a) Reference input and formal power series solution.
(b) Desired and obtained output. (c) Solution on R.
(d) Maximum output error.

4. FEEDFORWARD CONTROL FOR THE MODIFIED
INVISCID BURGER EQUATION

Since the exact solution to (1)–(4) can be found for
trajectories as defined in (5) and (6) for the case α = 0
without the presented formal power series approach, this
section is dedicated to the case α 6= 0. Previous methods
that use certain properties of the Burger equation or
apply Mikusiński’s operational calculus demand that the
partial differential equation or the corresponding ordinary
differential equation can be solved in closed form. In
contrast, the formal power series approach simply requires
that the system is parameterizable and that the solution
is piecewise analytical.

4.1 Formal Power Series Solution

For α 6= 0, the differential recurrence reads as

x̂0 = yd, (38)

x̂n+1 =
˙̂xn

x̂0
−

n
∑

j=1

(

n

j

)

x̂j

x̂0
[x̂n−j+1 + αx̂n−j ] − αx̂n, (39)

which — similar to the case α=0 — shows that the system
is still formal power series parameterizable. Although an
analytical expression for the coefficients an(t) = x̂n(t)/n!
cannot be found, the numerical behavior of a finite number
of coefficients can be determined for a given yd(t).

For this, in Figure 3a and 3b, the ratio of subsequent coef-
ficients an+1(t)/an(t) is given for various t as a function of
the index n for an increasing and a decreasing trajectory
as defined in (5) and (6), respectively. The behavior for the
increasing trajectory shows that the ratio tends towards a
negative value smaller than −1 for various values of t. This
suggests that the series is not convergent for the considered
values of t. However, since the ratio is negative, there is
a good chance that the series is (E, q)–summable with an
appropriate choice of the summation parameter q.
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Fig. 3. Numerical evaluation of an+1(t)/an(t) for various
t as a function of the index n for the inviscid Burger
equation with a quadratic nonlinearity using α = 0.5
and y0 =1.5. (a) For a rising trajectory as defined in
(5). (b) For a falling trajectory as defined in (6).
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Fig. 4. Numerical simulation results for the modified
inviscid Burger equation as defined in (1)–(4) with
α=0.5 for the desired trajectory as defined in (5) with
y0 = 1.5, using the summation parameters N = 24
and q = 4. (a) Reference input and formal power
series solution. (b) Desired and obtained output.
(c) Solution on R. (d) Maximum output error.

For the decreasing trajectory, Figure 3b shows that the
ratio tends to a positive value with absolute value smaller
than 1. This suggests that the series is convergent and that
no special summation method is needed in the solution
process; in fact, since the series does not seem to be
alternating, a summation method would not be beneficial.
This can be verified by simulation.

4.2 Simulation Results

The simulation results are depicted in Figure 4. They
demonstrate that the heuristic approach of applying for-
mal power series to the modified inviscid Burger equation
produces excellent tracking behavior if the summation
parameters are chosen adequately. As oppposed to the
classical Burger equation, the steady state solutions are
no longer constant, but functions of z, and a change in the
amplitude of u(t) of approximately 0.6 — as opposed to 1.0
— produces a change of 1.0 in the output y(t). Figure 4d
indicates that q should be chosen larger than 3 and that a
minimum number of coefficients N is required.
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5. SUMMARY

This article extends existing flatness–based power series
methods for the trajectory planning and feedforward con-
trol from parabolic to hyperbolic distributed–parameter
systems. It demonstrates that polynomials are the ad-
equate choice for the desired trajectory during the set-
point change, and that the notion of convergence must be
replaced by the notion of summability to maximize the
set of trajectories that can be successfully planned and
tracked. For the inviscid Burger equation, the applicability
of the method is rigorously proven for a particular choice
of trajectories, whereas for the inviscid Burger equation
with a quadratic nonlinearity, the method is shown to be
a heuristic method that yields excellent results as demon-
strated by simulation. Therefore, a first step towards a
comprehensive feedforward control design technique for
nonlinear hyperbolic distributed–parameter systems has
been completed. Future research will be directed towards
the application of the approach to second order hyperbolic
systems like the linear and nonlinear variants of the tor-
sional rod, the heavy chain, and the heat exchanger.
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Appendix A. SUMMATION METHODS

In the following, only Proposition 12 and its proof con-
stitute new results, whereas all remaining definitions and
theorems are taken from Hardy (1964).

Definition 9. Let a series
∑

an be given and define

bn :=
1

(q + 1)n+1

n
∑

i=0

(n

i

)

qn−iai. (A.1)

If
∑

bn converges towards a limit A for a given value of
q, then the series

∑

an is called (E, q)–summable to A.
(E, 1)–summable series are said to be Euler–summable.

Theorem 10. If the series
∑

an is (E, q)–summable to A,
then

∑

an+1 is summable to A − a0.

Definition 11. Let a series
∑

an be given. Then, the E–
operator of the series is defined by

an+1 = E{an}. (A.2)

i.e., the operator acting on the set of series coefficients that
transforms a coefficient an into its subsequent coefficient
an+1.

Using the E–operator, the coefficients bn occurring in the
definition of (E, q)–summability can be rewritten as

bn =
(q + E)n

(q + 1)n+1
{a0}, (A.3)

where En is interpreted as n successive applications of E.

Proposition 12. Let a series
∑

an be given. If there exists
an ǫ > 0 and an L > 0 such that the operator E as given
in Definition 11 can be bounded by

−L < E ≤ 1 − ǫ, (A.4)

then ∃ q = q(L) for which
∑

an is (E, q)–summable.

Proof. Using (A.3) we can write

bn+1 =
q + E

q + 1
{bn}. (A.5)

Taking the absolute value on both sides and using the
operator norm ‖.‖ yields

|bn+1| =

∣

∣

∣

∣

q + E

q + 1
{bn}

∣

∣

∣

∣

≤
∥

∥

∥

∥

q + E

q + 1

∥

∥

∥

∥

|bn|, (A.6)

which can be used to apply the convergence criterion of
d’Alembert for the series

∑

bn. For q = 2L this yields
∣

∣

∣

∣

bn+1

bn

∣

∣

∣

∣

≤
∥

∥

∥

∥

q + E

q + 1

∥

∥

∥

∥

=

∥

∥

∥

∥

2L + E

2L + 1

∥

∥

∥

∥

< 1 − δ (A.7)

with δ > 0 depending only on L and ǫ, which completes
the proof.

Theorem 13. Let a power series
∑

anzn be given that is
(E, q)–summable at a point z = z1 for a given value of q.
Then, the series is (E, q)–summable on the interval [0, z1]
for the same value of q. If 0 < z0 < z1, then

∑

anzn is
uniformly (E, q)–summable on [0, z0].
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