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Abstract: The objective of this contribution is to discuss some aspects of system identification of cascade
systems. Models of such systems are important in for example cascade control applications. We will
restrict our attention to systems with one input signal and two output signals. First, we will analyze some
fundamental limitations regarding the statistical properties of such estimated models and in particular
why it can be difficult to identify cascade systems where the sub-transfer functions are close to each
other. We will then show how an unstructured SIMO model estimate can be used to find a cascade
system model using an indirect prediction error method or balanced model reduction.
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1. INTRODUCTION

System identification concerns the construction and validation
of mathematical models of dynamical systems from experimen-
tal data. Important issues when designing the experiment are the
choices and locations of the measurement sensors. For example,
if all internal states of a linear dynamical system are mea-
surable, the state-space equations can be effectively estimated
using a standard least squares method. Most classical system
identification methods concern, however, single-input single-
output (SISO) systems, where the input signal and correspond-
ing output signal are pre-specified by the choice of sensors and
actuators. Many of these results can be generalized to multi-
input multi-output (MIMO) systems. In particular, subspace
system identification methods have shown very useful when
dealing with the MIMO case. It is, however, important to take
the structure of the underlying system into account when spec-
ifying the model structure. The objective of this contribution
is to analyze identification of systems with a cascade or series
structure as illustrated in Fig. 1.
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Fig. 1. Cascade system.

We will in more detail study systems with one input signal and
two output signals. The following notation will be used.

y1(t) = G1(q)u(t)+ e1(t)

y2(t) = G2(q)G1(q)u(t)+ e2(t)

Here the input signal is denoted by u(t) and the two output
signals are y1(t) and y2(t), respectively. The transfer functions
are G1(q) and G2(q), and e1(t) and e2(t) are the measurement
noise processes. The input to G2(q) is denoted by u2(t), and
sometimes we will use the notation G3(q) = G2(q)G1(q) for
the transfer function from u(t) to y2(t).

1 This work was partially supported by The Swedish Science Foundation and
the Linnaeus Center ACCESS at KTH.

We assume that the dimensions of the input and the two output
signals are all one (the scalar case).

Cascade systems are very common in both process control
and in control of servo mechanical systems. In process control
application, the primary output y2(t) is often a quality variable
such as temperature or levels, while the secondary output y1(t)
typically concerns an intermediate variable such as flows or
pressures. In mechanical application y1(t) is often a rate while
y2(t) is a position. The quality of the sensors for measuring the
two outputs can be quite different. We will model this by the
choice of the variances of e1(t) and e2(t). High variance means
a poor measurement quality.

Another important example of a cascade system is when
G2(q) is the transfer function of an extra sensor used to mea-
sure y1(t). This sensor may have some unknown characteris-
tics/parameters that have to be estimated.

There are several questions that have to be answered and im-
portant user choices to be made when applying system identi-
fication methods to a data set obtained from a cascade system
of the form {u(t),y1(t),y2(t)}. Any single-input-multi-output
(SIMO) system identification method, such as subspace system
identification, can be applied, but it is often not straightforward
to impose the cascade model structure. For example, a subspace
system identification method would return an estimate of the
form

x(t +1) = Ax(t)+Bu(t)

y1(t) = C1x(t)

y2(t) = C2x(t)

where the specific state-space realization is indirectly given by

the method. A natural estimate of G1(q) is C1(qI−A)−1B. Due

to uncertainty in the estimate of C1(qI −A)−1B, it is, however,
not trivial to find a minimal state space realizations of G1(q).
It is also rather complicated how to find the transfer function

G2(q) from estimates of the state space matrices (A,B,C1,C2).
This is a topic that will be further studied in this paper.

From an engineering point of view it is common to first estimate
G1(q) from the data {u(t),y1(t)} and then in a second step iden-
tify G2(q) from data {û2(t),y2(t)}, where û2(t) is an estimate of
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the input signal u2(t) to the second subsystem G2(q). There are
several options for determining this input signal. If the model

estimate Ĝ1(q) is reliable one can use û2(t) = Ĝ1(q)u(t). The
other extreme would be to take û2(t) = y1(t). It is of course
also possible to use an optimal predictor of u2(t) based on the
statistical properties of e1(t). In all these cases this introduces
input noise/uncertainty, which may cause systematic estimation
errors if a standard system identification method is applied
to estimate G2(q) from the data {û2(t),y2(t)} . A solution
would be to use a more advanced errors-in-variables method,
see Söderström [2006] for a recent overview.

It is of course possible to apply a Prediction Error Method
(PEM) or the Maximum Likelihood (ML) method, Ljung
[1999], to a constrained model structure that only allows
for models of cascade form. Because of the product product
G1(q)G2(q) simple linear in the parameters model structures
such as FIR or ARX models are not directly applicable. How-
ever, structured PEM and ML are asymptotically statistically
optimal methods to solve the structured cascade system identi-
fication problem.

For state-space models one can use model structures with a
constrained cascade state-space realization, e.g.

x1(t +1) = A1x1(t)+B1u(t)

x2(t +1) = B2C1x1(t)+A2x2(t)

y1(t) = C1x1(t)

y2(t) = C2x2(t)

Here (A1,B1,C1) are the matrices of a state-space realization of
G1(q), and (A2,B2,C2) correspond to a state-space description
of G2(q).

The outline of this paper is as follows. First we will analyze
the statistical properties of PEM estimates of cascade systems.
This will be inspired by a recent geometric approach to variance
analysis in system identification developed in Mårtensson and
Hjalmarsson [2007a,b], Mårtensson [2007].

In the second part of the paper we will discuss how to find cas-
cade model structures using indirect prediction error methods
proposed in Söderström et al. [1991]. We will also discuss how
this relates to model reduction.

2. VARIANCE ANALYSIS: FIR EXAMPLE

To illustrate the statistical properties of PEM cascade model
estimates we will start with a very simple example. Consider
the model structure

y1(t) = G1(q)u(t)+ e1(t)

y2(t) = G2(q)G1(q)u(t)+ e2(t)

with two first order FIR transfer functions

G1(q) = 1+b1q−1

G2(q) = 1+b2q−1

Here the parameters b1 and b2 need to be estimated from data
{u(t),y1(t),y2(t)}. Let the true values of the FIR parameters be
denoted by bo

1 and bo
2. Furthermore, assume that the measure-

ment noise processes {e1(t)} and {e2(t)} are independent white
noise stochastic processes with variances λ1 and λ2, respec-
tively. Let the input signal u(t) be white noise with variance 1.

The asymptotic covariance of the PEM estimate of b1 and b2

given N measurements of {u(t),y1(t),y2(t)}, which also in this
case corresponds to the Cramér-Rao lower bound, is then given

by M−1, where

M = NE{ψ(t)ψT (t)}

ψ(t) =











u(t −1)√
λ1

u(t −1)+bo
2u(t −2)√

λ2

0
u(t −1)+bo

1u(t −2)√
λ2











This gives that the asymptotic variance of the parameter esti-
mate of the first subsystem G1 equals

Var b̂1 ∼
1

N

λ1

1+
λ1(b

o
1 −bo

2)
2

λ2(1+(bo
1)

2)

We have used the notation ∼ to stress the asymptotic (large data
records) relation. This variance expression reveals some well
known properties, but also some more novel results:

• In case only the output from the first system y1(t) is used
to estimate b1, the asymptotic variance of the FIR estimate
equals

Var b̂1 ∼
λ1

N
This corresponds to setting λ2 = ∞ in the general expres-
sion.

• If the quality of the first measurement y1(t) is much worse
than for the second one y2(t), i.e.

λ1 >> λ2

we have (by letting λ1 → ∞)

Var b̂1 ∼
λ2

N

(1+(bo
1)

2)

(bo
1 −bo

2)
2

Notice that it is not possible to separate bo
1 from bo

2 using
only y2(t). Notice that bo

1 = bo
2 gives further problems, as

will be discussed below.

• Unless bo
1 = bo

2, adding an additional sensor y2(t) strictly
improves the quality of the estimate. However, if the two
transfer functions are identical, i.e. bo

1 = bo
2, no improve-

ment is obtained from the second output y2(t), and the
variance will equal

Var b̂1 ∼
λ1

N

which is the same as for the only y1(t) case discussed
above. This is a special case of a recent result of Mårtens-
son and Hjalmarsson [2007b], and as will be shown in next
section holds for more general model structures. We will
study in detail why this is the case.

It is of course possible to estimate a second order FIR model

G3(q) = G1(q)G2(q)

= (1+b1q−1)(1+b2q−1) = 1+ b̄1q−1 + b̄2q−2

from only {u(t),y2(t)} without any problem. It is, however,
impossible to decide from only y2(t) which of the two roots
of this polynomial that corresponds to G1. Furthermore, a first
order perturbation analysis reveals that

(

∆b1
∆b2

)

=
(

1 1
b2 b1

)−1
(

∆b̄1

∆b̄2

)
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Hence, this mapping is not invertible if b1 = b2 and even
a small perturbation in coefficient b̄1 or b̄2 can give a large
perturbation in the roots. This is of course a well known result
in e.g. numerical analysis. Notice that the FIR model of G3 is
more general in the sense that it also covers complex valued
roots. The asymptotic covariance matrix of the estimates of b̄1

and b̄2 from measurement of only y2(t) equals

Cov

(

ˆ̄b1
ˆ̄b2

)

∼ λ2

N

(

1 0
0 1

)

which by the perturbation analysis gives

Cov

(

b̂1

b̂2

)

∼ λ2

N

(

1 1
bo

2 bo
1

)−1 (

1 1
bo

2 bo
1

)−T

=
λ2

N

1

(bo
1 −bo

2)
2

(

1+(bo
1)

2 −(1+bo
1bo

2)
−(1+bo

1bo
2) 1+(bo

2)
2

)

Hence, we again obtain

Var b̂1 ∼
λ2

N

(1+(bo
1)

2)

(bo
1 −bo

2)
2

if only y2(t) is measured.

If it is known in advance that G2 = G1, one should of course
use this constraint in the model structure and in this example
only estimate one parameter b1, since b2 = b1. The asymptotic
variance of estimate will then be

Var b̂1 ∼
1

N

λ1

1+
λ1(4+4(bo

1)
2)

λ2

If λ1 >> λ2 we obtain

Var b̂1 ∼
1

N

λ2

4+4(bo
1)

2
,

which of course behaves well. Hence, using the information that
G2 = G1 really improves the estimated model quality.

3. VARIANCE ANALYSIS: GENERAL CASE

The observation and results from the simple example above can
be extended to the general case using the geometric variance
analysis framework of Mårtensson and Hjalmarsson [2007a,b].
It is also possible to use simple direct matrix computations, as
will shown in this section.

Let G1(q,θ1) and G2(q,θ2) be arbitrary models of the cascade
system with independent parameterizations

y1(t) = G1(q,θ1)u(t)+ e1(t)

y2(t) = G2(q,θ2)G1(q,θ1)u(t)+ e2(t)

and define

ψ(t) =











G′
1(q,θ o

1 )u(t)√
λ1

G2(q,θ o
2 )G′

1(q,θ o)u(t)√
λ2

0
G′

2(q,θ o
2 )G1(q,θ o

1 )u(t)√
λ2











where prime denotes differentiation with respect to the parame-
ter vectors. The asymptotic covariance matrix of the parameter
estimate is then given by

Cov

(

θ̂1

θ̂2

)

∼ M−1

where
M = NE{ψ(t)ψT (t)}

See e.g. , Ljung [1999] for details.

Assume now that the two true transfer functions are identical

G2(q,θ o
2 ) = G1(q,θ o

1 ) = G(q,θ o)

and that we are using the same model structure for both
G1(q,θ1) and G2(q,θ2) and hence

G′
2(q,θ o

1 ) = G′
1(q,θ o

2 ) = G′(q,θ o)

This means that M will have the block structure

M =
(

A+B B
B B

)

where

A =
N

λ1
E{[G′(q,θ o)u(t)][G′(q,θ o)u(t)]T ,}

B =
N

λ2
E{ [G′(q,θ o)G(q,θ o))u(t)]

× [G′(q,θ o)G(q,θ o))u(t)]T},
• The matrix A−1 is the asymptotic covariance matrix of θ̂1

if only y1(t) is available,

• The matrix B−1 is the asymptotic covariance matrix of θ̂2

if G1(q) is known (or equally λ1 = 0).

It is now easy to verify that

M−1 =

(

A−1 −A−1

−A−1 A−1 +B−1

)

and hence

Cov
(

θ̂1

)

∼ A−1

Cov
(

θ̂2

)

∼ A−1 +B−1

Key Results: If G2(q,θ o
2 ) = G1(q,θ o

1 ) = G(q,θ o), we can
make the following observation:

• Since the asymptotic covariance matrix of θ̂1 equals A−1,
the quality of the estimate of θ1 is never improved by
measuring y2(t). This is independent of the quality of the
second measurement!

• The covariance of the estimate of θ2 equals A−1 + B−1,
and is thus always larger than or equal to the covariance

of θ̂1, since

A−1 +B−1 ≥ A−1

This is true even if one has noise free measurements of
y2(t). It is also always larger than or equal to B−1, which
corresponds to setting λ1 = 0, i.e. a perfect sensor for
y1(t).

If it is known in advance that G2 = G1, this should of course be
used in the model structure,

y1(t) = G(q,θ)u(t)+ e1(t)

y2(t) = G(q,θ)G(q,θ)u(t)+ e2(t)

The asymptotic covariance matrix M−1 of θ̂ can then calculated
using

ψ(t) =

(

G′(q,θ o)u(t)√
λ1

2G′(q,θ o)G(q,θ o)u(t)√
λ2

)

in M = NE{ψ(t)ψT (t)}. This means that M = A + 4B with
the notation above. Hence, the variance can be considerably
smaller than for the case with separate parameterizations for
which M = A, since

(A+4B)−1
< A−1

for positive definite matrices A and B.
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Standard model validations tools can be used to test the hy-
pothesis θ o

1 = θ o
2 from the estimates.If the answer is affirma-

tive then, in a second step, constrain the parametrization to
G2 = G1 = G.

4. INDIRECT PEM

The cascade system identification problem fits well into the
framework of indirect prediction error methods for system
identification developed in Söderström et al. [1991]. Ordinary
PEM and indirect PEM have the same asymptotic statistical
properties.

Let us illustrate this idea using the previous simple FIR exam-
ple. Assume that we estimate two independent model structures

y1(t) = u(t)+b1u(t −1)+ e1(t)

y2(t) = u(t)+ b̄1u(t −1)+ b̄2u(t −2)+ e2(t)

For a cascade system we then have

b̄1 = b1 +b2, b̄2 = b1b2

Let us in a first step estimate the three parameters (b1, b̄1, b̄2).
This can be done solving two independent least squares prob-
lems. Assume that the input signal u(t) is white noise with
variance 1. Then

Cov(b̂1,
ˆ̄b1,

ˆ̄b2)
T ∼ M−1 =

1

N
diag(λ1, λ2, λ2)

The idea of the indirect PEM approach now is to solve equa-
tions

b1 = b̂1, b1 +b2 = ˆ̄b1, b1b2 = ˆ̄b2

with respect to b1 and b2 in a weighed least squares sense,

V (b1,b2) = [(b1 − b̂1) (b1 +b2 − ˆ̄b1) (b1b2 − ˆ̄b2)]
1

N
M

×[(b1 − b̂1) (b1 +b2 − ˆ̄b1) (b1b2 − ˆ̄b2)]
T

with respect to b1 and b2. In the example with a white input
signal, we obtain the cost function

V (b1,b2) =
(b1 − b̂1)

2

λ1
+

(b1 +b2 − ˆ̄b1)
2

λ2
+

(b1b2 − ˆ̄b2)
2

λ2

This is still a non-quadratic minimization problem, but is rather
straightforward to handle. This idea can of course be extended
to the general case.

5. MODEL REDUCTION

As illustrated by the indirect PEM example the problem of
estimating two SISO models or an unstructured SIMO model
and then in a second step find a structured cascade model is
closely related to model approximation. It is, however, impor-
tant to take the statistical properties of the model into account
when doing the model reduction. A simple approach is to first
estimate G1 from u(t) and y1(t) and then the series transfer
function G3 = G2G1 from u(t) and y2(t). Denote the corre-

sponding estimates by Ĝ1 and Ĝ3, respectively. To find the
cascade transfer function G1 and G2 we can minimize the cost
function

V̄ (G1,G2) =
1

λ1

∫ π

−π
|G1(e

iω)− Ĝ1(e
iω)|2Φu(ω)dω

+
1

λ2

∫ π

−π
|G2(e

iω)G1(e
iω)− Ĝ3(e

iω)|2Φu(ω)dω

where Φu(ω) is the input spectral density. This approach is
called the asymptotic ML approach in Wahlberg [1989], and
is closely related to PEM methods. It can also be generalized

to cover the colored noise case. For a white input signal the
spectral density Φu(ω) is a constant and it is easy to verify that
then

V̄ (G1,G2) = V (b1,b2)
for the FIR example. Hence, the asymptotic ML estimate and
the indirect PEM estimate will for the white input case coincide.

The idea of using model reduction to find structured models,
which be discussed below, has been motivated by the discussion
of applications of subspace methods in process industry given
in Wahlberg et al. [2007]. Assume now that we have estimated
a SIMO state-space model, using e.g. a subspace approach,
resulting in an unstructured state-space model estimate

x(t +1) = Âx(t)+ B̂u(t)

y1(t) = Ĉ1x(t)

y2(t) = Ĉ2x(t)

We will assume that the true system and the corresponding
estimate are both stable. For an exact estimate it would then be
possible to use a state-space vector transformation to the trans-
form estimated model to a cascade state-space representation

x1(t +1) = A1x1(t)+B1u(t)

x2(t +1) = B2C1x1(t)+A2x2(t)

y1(t) = C1x1(t)

y2(t) = C2x2(t)

However, due to model mismatch this would not be possible for
an estimated model.

The following approximation approach is then possible:

Step 1 Find a reduced order model approximation of

x(t +1) = Âx(t)+ B̂u(t)

y1(t) = Ĉ1x(t)

Since the corresponding transfer function is an estimate of
G1 it should be possible to find a good n1-order model with
reduced number of states using e.g. a balanced model reduction
approach Moore [1981]. The idea is to transform the system to
a balanced realization using state variable transformation

(

x1(t)
x̄2(t)

)

= Tbx(t)

We will not give any details on balanced model reduction and
how to find e.g. Tb, but this is in principle straightforward
solving linear Lyapunov equations. This will give the approxi-
mation

x1(t +1) = Â1x1(t)+ B̂1u(t)

x̄2(t +1) = Ā21x1(t)+ Â2x̄2(t)+ B̄2u(t)

y1(t) = Ĉ1x1(t)

y2(t) = C̄21x1(t)+Ĉ2x̄2(t)

where

TbÂT−1
b =

(

Â1 Ā12

Ā21 Â2

)

TbB̂ =

(

B̂1

B̄2

)

,

(

Ĉ1

Ĉ2

)

T−1
b =

(

Ĉ1 C̄12

C̄21 Ĉ2

)

The balanced realization G1-approximation has been obtained
by neglecting the contributions from Ā12x̄2(t) in the update
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equation of x1(t + 1) and removing C̄12x̄2(t) from the y1(t)-
equation.

Step 2: The difficulty is now how to find x2(t) to give a cascade
realization. Let us try to use the state-space transformation

x2(t) = T x1(t)+ x̄2(t)

Then

x2(t +1) = (T Â1 + Ā21)x1(t)

+ Â2(x2(t)−T x1(t))+(TB̂1 + B̄2)u(t)

= (T Â1 + Ā21 − Â2T )x1(t)

+ Â2x2(t)+(TB̂1 + B̄2)u(t)

y2(t) = (C̄21 −Ĉ2T )x1(t)+Ĉ2x2(t)

Hence, if we could find T and B̂2, such that

(T Â1 + Ā21 − Â2T ) = B̂2Ĉ1

T B̂1 + B̄2 = 0

C̄21 −Ĉ2T = 0 (1)

the the matrices (Â2, B̂2,Ĉ2) would give a state-space realiza-
tion of G2. This relations form a set of linear equations in the

elements of T and B̂2. The dimension of the matrix T is n2×n1,
where n1 is the order of the G1 approximation, n2 is the order of
G2 and n = n1 +n2 is the dimension of the original system. We

also have n2 free parameters in B̂2. The number of equations
in (1) is n1 + n2 + n1n2, which should be compared with the
number of free parameters n2 + n1n2. This means that we in
general due to uncertainty cannot expect to exactly solve these
equations, and have instead to confine with e.g. a least squares
solution. Notice that not all SIMO system can be transformed
to a cascade realization! This is the reason why we have more
equations than parameters.

Another approach closely related to cascade control is to find a
high gain controller for the inner loop, e.g.

u(t) = −K(y1(t)− r2(t))

such that the closed loop system is stable and

KĜ1

1+KĜ1

≈ 1

Here r2(t) is the reference signal to the second system. The
interpretation of the approximation is that the dynamics of
closed loop inner system should be much faster than G2. Next
do model reduction of

x(t +1) = (Â−KB̂Ĉ1)x(t)+KB̂r2(t)

y2(t) = Ĉ2x(t)

to find a reduced order state-space model of G2. This is closely
related to using the inverse

K

1+KĜ1

≈ 1

Ĝ1

and performing model reduction of

K

1+KĜ1

Ĝ3

to find G2. Here Ĝ3 is an estimate of G2G1 obtained from the
data {u(t),y2(t)}. An advantage of using this inverse is that
stability of the transfer functions is preserved. See Markusson
[2002] for more ideas of using feedback inversion in system
identification.

6. CONCLUSION

The objective of this contribution has been to discuss some
important issues in identification of cascade systems. We have
used a simple analytic FIR example to explain the fundamental
quality problems when the two transfer functions of the subsys-
tems to be estimated are almost identical.

Cascade systems correspond to SIMO system identification.
The problem of identification of MISO has recently been thor-
oughly investigated by Gevers et al. [2006] and Mårtensson
[2007]. Many of these results can be modified to the SIMO
case. It would be interesting to further study this connection.

We have also shown how to use model reduction as a tool to find
models with a cascade structure from unstructured estimates.
The proposed method is quite ad hoc and the problem of
cascade structured model reduction is more or less open. It
would for example be interesting to find error bounds on the
approximation error.

An important remaining problem is input design for identifi-
cation of cascade systems. Notice that the input signal to the
second subsystem is

u2(q) = G1(q)u(t)

which consequently is directly colored by the the first unknown
subsystem. Hence, a good input for identification of G1 may
give a bad input to G2 and vice versa.
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