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Abstract: We consider a setting where mobile nodes with sensing capacity form a network
whose mission is to collect measurements for parameter estimation of a distributed parameter
system (DPS). Two techniques to optimize node motions are presented which constitute a trade-
off between the achievable accuracy of parameter estimates and limited motion resources of
sensor network nodes. The framework is based on the use of the D-optimality criterion defined
on the Fisher information matrix associated with the estimated parameters as a measure of
the information content in the measurements. Restrictions on maximal distances traveled by
sensor nodes are imposed so as to guarantee realizable solutions. The approach is to convert the
problem to a canonical optimal control one in Mayer form, in which both the control forces of the
sensors and the initial sensor positions are optimized. Numerical solutions are then obtained
using the Matlab PDE toolbox and the RIOTS 95 optimal control toolbox which handles
various constraints imposed on the node motions. Illustrative numerical experiments with the
proposed techniques are presented.

1. INTRODUCTION

The importance of measurement system design for estimation of
unknown coefficients in distributed parameter systems (DPSs), i.e.,
systems described by partial differential equations (PDEs), has been
recognized for a long time, but relatively few attempts have been
made at solving this problem, cf. surveys in [Kubrusly and Male-
branche, 1985, Uciński, 2005, 1999, Patan, 2004, van de Wal and
de Jager, 2001]. It has found special interest in many areas, e.g.,
air quality monitoring systems, groundwater-resources management,
recovery of valuable minerals and hydrocarbon, model calibration
in meteorology and oceanography, chemical engineering, hazardous
environments and smart materials, cf. [Nehorai et al., 1995, Porat
and Nehorai, 1996, Jeremić and Nehorai, 1998, 2000, Navon, 1997,
Daescu and Navon, 2004, Christofides, 2001, Banks et al., 1996, Sun,
1994, Uciński, 2005]. The operation and control of such systems
usually requires precise information on the parameters which dic-
tate the accuracy of the underlying mathematical model, but that
information is only available through a limited number of possibly
expensive sensors. Although the details of the approaches differ, in
essence the underlying idea is to select those locations that lead to
the best estimates of the process parameters. The optimality of the
locations is judged by an appropriate measure of the estimate-error
covariance matrix.

The sensor location problem was attacked from various angles, but
the results communicated by most authors are limited to the selection
of stationary sensor positions. A generalization which imposes itself
is to apply sensors which are capable of tracking points providing
at a given time moment the best information about the parameters.
A possibility of using moving observations does arise in a variety
of applications, e.g., air pollutants in the environment are often
measured using data gathered by monitoring cars moving in an ur-
ban area and atmospheric variables are measured using instruments
carried in a satellite. Other examples include scanning measurement
of a surface temperature by optical pyrometers and measurement
of vibrations and strains in materials using optical registration.
However, communications in this field are rather limited. Rafaj lowicz
[1986] considers the determinant of the Fisher Information Matrix
(FIM) associated with the parameters to be estimated as a mea-
sure of the identification accuracy and looks for an optimal time-
dependent measure, rather than for the trajectories themselves. On
the other hand, Uciński [2005, 1999, 2000], apart from generaliz-
ing Rafaj lowicz’s results, developed some computational algorithms
based on the FIM framework. He reduces the problem to a state-

constrained optimal-control one for which solutions are obtained via
the methods of successive linearization which is capable of handling
various constraints imposed on sensor motions.

It is worth pointing out that the optimal design of moving sensor
trajectories is increasingly attracting attention in the context of
sensor networks which play a role of importance in the research
community, cf. [Zhao and Guibas, 2004, Cassandras and Li, 2005,
Sinopoli et al., 2003, Chong and Kumar, 2003, Culler et al., 2004,
Jain and Agrawal, 2005]. Technological advances in communication
systems and the growing ease in making small, low power and
inexpensive mobile systems now make it feasible to deploy a group
of networked vehicles in a number of environments, cf. [Ögren et al.,
2004]. A cooperated and scalable network of vehicles, each of them
equipped with a single sensor, has the potential to substantially
improve the performance of the observation systems. Applications
in various fields of research are being developed and interesting
ongoing projects include extensive experimentation based on test-
beds. Our work on one of such experimental platforms, namely the
MAS-net (mobile actuator and sensor networks) testbed being a
distributed system equipped with two-wheeled differentially driven
mobile robots capable of sensing the states of DPSs described by
diffusion equation, cf. [Moore et al., 2004, Chen et al., 2004], revealed
numerous deficiencies of the existing techniques of sensor location
and commanded attention to aspects which, on one hand, are of
paramount practical importance and, on the other hand, have been
neglected in the literature so far. These, in turn, lead to non-trivial
theoretical problems which still call for solutions. As a result, Uciński
and Chen [2005] attempted to properly formulate and solve the time-
optimal problem for moving sensors which observe the state of a DPS
so as to estimate some of its parameters. In the same vein, Uciński
and Chen [2006] used Turing’s measure of conditioning to make the
Hessian of the parameter estimation cost well conditioned.

The purpose of the investigations undertaken here was to establish
a practical approach to properly formulate and solve one of such
problems, namely the problem of taking account of limited motion
capabilities of mobile nodes while guiding them so as to observe
the state of a DPS and then estimate its unknown parameters.
Motivations come from technical limitations imposed on the vehicles
conveying the measurement equipment. These are inherent to mobile
platforms carrying sensors, which are supplied with power from
batteries. Unfortunately, the researchers’ attention is predominantly
focused only on the achieved precision while neglecting the problem
of realizability of the produced solutions. Our main objective has
thus been to produce results which can be useful when the distances
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traveled by the nodes are a crucial factor. Two formulations are
thus proposed: the first for the specified limit on the longest path,
and the other for the case in which the longest path length con-
stitutes a decision variable, which leads to a minimax formulation.
It is also shown that these formulations can be transformed into
equivalent optimal control problems in canonical Mayer form, which
can be efficiently solved by the Matlab toolbox RIOTS 95, a high-
performance general-purpose toolbox for solving optimal control
problems, cf. [Schwartz et al., 1997].

2. OPTIMAL SENSOR LOCATION PROBLEM

Let Ω ⊂ Rn (n = 1, 2 or 3) be a bounded spatial domain with
sufficiently smooth boundary Γ, and T = (0, tf ] a bounded time
interval. Consider a distributed parameter system (DPS) whose
scalar state at a spatial point x ∈ Ω ⊂ Rn and time instant t ∈ T is
denoted by y(x, t). Mathematically, the system state is governed by
the partial differential equation (PDE)

∂y

∂t
= F

(
x, t, y, θ

)
in Ω × T , (1)

where F is a well-posed, possibly nonlinear, differential operator
which involves first- and second-order spatial derivatives and may
include terms accounting for forcing inputs specified a priori. The
PDE (1) is accompanied by the appropriate boundary and initial
conditions

B(x, t, y, θ) = 0 on Γ × T, (2)

y = y0 in Ω × {t = 0}, (3)

respectively, B being an operator acting on the boundary Γ and
y0 = y0(x) a given function. Conditions (2) and (3) complement (1)
such that the existence of a sufficiently smooth and unique solution is
guaranteed. We assume that the forms of F and B are given explicitly
up to an m-dimensional vector of unknown constant parameters
θ which must be estimated using observations of the system. The
implicit dependence of the state y on the unknown parameter vector
θ will be reflected by the notation y(x, t; θ).

We assume that the vector θ ∈ Rm is to be estimated from
measurements made by N moving sensors over the observation
horizon T . We call xj : T → Ωad the trajectory of the j-th sensor,
where Ωad ⊂ Ω ∪ Γ is a compact set representing the area where
measurements can be made. The observations are of the form

zj(t) = y(xj(t), t) + ε(xj(t), t), t ∈ T, j = 1, . . . , N, (4)

where ε constitutes the measurement noise which is assumed to be is
zero-mean, Gaussian, spatial uncorrelated and white [Quereshi et al.,
1980, Omatu and Seinfeld, 1989, Amouroux and Babary, 1988], i.e.,

E
{

ε(xj(t), t)ε(xi(τ), τ)
}

= σ2δjiδ(t − τ), (5)

where σ2 defines the intensity of the noise; δij and δ( · ) stand for the
Kronecker and Dirac delta functions, respectively. Although white
noise is a physically impossible process, it constitutes a reasonable
approximation to any disturbance whose adjacent samples are uncor-
related at all time instants for which the time increment exceeds some
value which is small compared with the time constants of the DPS.
The white-noise assumption is consistent with most of the literature
on the subject.

In the presented framework, the parameter identification problem
is usually formulated as follows: Given the model (1)–(3) and the
outcomes of the measurements zj along the trajectories xj , j =

1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being the set of
admissible parameters) which minimizes the output least-squares fit-
to-data functional given by (for details, see [Banks and Kunisch,
1989, Omatu and Seinfeld, 1989])

θ̂ = arg min
ϑ∈Θad

N∑

j=1

∫

T

[
zj(t) − y(xj(t), t; ϑ)

]2
dt (6)

where y now solves (1)–(3) when θ replaced by ϑ.

We feel, intuitively, that the parameter estimate θ̂ depends on the
trajectories xj since the right-hand side of eqn. (6) does so. This fact
suggests that we may attempt to select these design variables so as to
produce best estimates of the system parameters after performing the
actual experiment. To form a basis for the comparison of different
trajectories, a quantitative measure of the ‘goodness’ of particular
trajectories is required. A logical approach is to choose a measure
related to the expected accuracy of the parameter estimates to be
obtained from the data collected (note that the design is to be

performed off-line, before taking any measurements). Such a measure
is usually based on the concept of the Fisher Information Matrix
(FIM), cf. [Sun, 1994, Rafaj lowicz, 1986], which is widely used in
optimum experiment design (OED) theory for lumped systems, see
[Walter and Pronzato, 1997, Fedorov and Hackl, 1997, Atkinson and
Donev, 1992]. When the time horizon is large, the nonlinearity of the
model with respect to its parameters is mild and the measurement
errors are independently distributed and have small magnitudes,
the inverse of the FIM constitutes a good approximation of the
covariance matrix for the estimate of θ, cf. [Walter and Pronzato,
1997, Fedorov and Hackl, 1997, Atkinson and Donev, 1992].

For simplicity of notations, let us write

q(t) =




x1(t)

.

.

.
xN (t)



 , ∀ t ∈ T. (7)

The FIM has the following representation, cf. [Uciński, 2005,
Quereshi et al., 1980]:

M(q) =

N∑

j=1

∫

T

p(xj(t), t)pT(xj(t), t) dt, (8)

where
p(x, t) = ∇ϑy(x, t; ϑ)

∣∣
ϑ=θ0

(9)

denotes the vector of the so-called sensitivity coefficients, θ0 being
a prior estimate to the unknown parameter vector θ [Uciński, 2000,
2005].

The sought optimal design settings can be found by maximizing some
scalar function Ψ of the information matrix. The introduction of
the design criterion permits to cast the sensor location problem as
an optimization problem, and the criterion itself can be treated as
a measure of the information content of the observations. Several
choices exist for such a function, cf. [Walter and Pronzato, 1997,
Fedorov and Hackl, 1997, Atkinson and Donev, 1992], and the most
popular one is the D-optimality criterion

Ψ[M] = log det(M). (10)

Its use yields the minimal volume of the confidence ellipsoid for the
estimates. In what follows, we shall restrict our attention to this
D-optimality criterion.

3. MOBILE NODE DYNAMICS AND CONSTRAINTS

3.1 Node Dynamics

With no loss of generality, we assume that all sensors are carried by
identical vehicles whose motions are described by

ẋj(t) = f(xj(t), uj(t)) a.e. on T , xj(0) = x
j
0 (11)

where the given function f : Rn × Rℓ → Rn is required to

be continuously differentiable; x
j
0 ∈ Rn defines an initial sensor

configuration, and uj : T → Rℓ is the control signal to be decided
which must satisfy

ul ≤ uj(t) ≤ uu a.e. on T (12)

for given constant vectors ul and uu, j = 1, . . . , N .

For each j = 1, . . . , N , given any initial position x
j
0 and any control

signal vector uj , there is a unique absolutely continuous function
xj : T → Rn which satisfies (11) a.e. on T . In what follows, we will

call it the sensor trajectory corresponding to x
j
0 and uj .

For notational simplicity, in lieu of (11) we shall subsequently use
one vector system of ODEs

q̇(t) = d(q(t), u(t)) a.e. on T , q(0) = q0, (13)

where

u(t) =




u1(t)

...
uN (t)



 , q0 =




x1

0
...

xN
0



 , (14)

d(q(t), u(t)) =




f(x1(t), u1(t))

...
f(xN (t), uN (t))



 . (15)
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3.2 Induced State Constraints

In reality, some restrictions on the motions are inevitably induced.
First of all, all sensors should stay within the admissible region Ωad
where measurements are allowed. We assume that it is a compact set
defined as follows:

Ωad = {x ∈ Ω ∪ Γ | bi(x) ≤ 0, i = 1, . . . , I} (16)

where bi’s are given continuously differentiable functions. Accord-
ingly, the conditions

bi(x
j(t)) ≤ 0, ∀ t ∈ T (17)

must be fulfilled, where 1 ≤ i ≤ I and 1 ≤ j ≤ N . To further simplify
the notation, after relabeling, we rewrite constraints (17) in the form

γl(q(t)) ≤ 0, ∀ t ∈ T, (18)

where γl, l = 1, . . . , ν tally with (17), ν = IN .

4. PROPOSED FORMULATIONS TAKING ACCOUNT OF
LIMITED PATH LENGTHS

As mentioned in Sec. 1, motion capabilities of the nodes may be
severely limited. In the sequel, we shall be primarily concerned with
restrictions imposed on their path lengths. The distance traveled by
the j-th sensor over the interval [0, t] is

sj(t) =

∫ t

0

‖ẋj(τ)‖ dτ =

∫ t

0

‖f(xj(τ), uj(τ))‖ dτ, (19)

where ‖ · ‖ signifies the Euclidean norm.

4.1 Trajectory design with hard constraints on path lengths

The distances traveled by sensor nodes are a critical factor especially
in the context of a cooperative mobile sensor network formed
from a number of wheeled mobile robots (e.g., differential drives,
synchronous drives, etc.), if a major problem in the design is the
power consumption by the robots. Then we demand that the lengths
of the trajectories do not exceed a given limit smax, i.e., we require
that

sj(tf ) ≤ smax, j = 1, . . . , N. (20)

The goal in the optimal measurement problem is to determine the
forces (controls) applied to each vehicle conveying a sensor, which
minimize a design criterion Ψ[M(q)] defined on the set of all real-
valued information matrices of the form (8) under the constraints
(12) on the magnitude of the controls and induced state constraints
(18). In order to increase the degree of optimality, in our approach
we will regard q0 as the design parameter vector to be chosen in
addition to the control signal vector u.

Clearly, in order to guarantee the correctness of such a formulation
and further derivations, it is necessary to put some restrictions on the
sensitivity coefficients p. In the remainder of this paper we require
p to be continuously differentiable.

Since sensor trajectories q are unequivocally determined as solutions
to the state equation (13), the above control problem can be
interpreted as an optimization problem over the set of feasible triples

P =
{

(q0, u) | x
j
0 ∈ Ωad, uj : T → R

ℓ,

ul ≤ uj(t) ≤ uu a.e. on T , j = 1, . . . , N
}

. (21)

This leads to the following formulation:

Problem 1. Find the pair (q0, u) ∈ P which maximizes

J1(q0, u) = Ψ[M(q)] (22)

subject to the constraints (13), (18) and (20).

4.2 Minimum-length trajectories with guaranteed efficiency

Sometimes, a limited energy budget raises the question of how
to minimize the distances run by sensor nodes while guaranteeing
an acceptable level of the information content of the collected
observations. The compromise proposed here relies on the notion
of the D-efficiency which quantifies the suboptimality of given
trajectories. In much the same way as in the classical optimum
experimental design, cf. [Atkinson and Donev, 1992, Walter and
Pronzato, 1997], we define it here as follows:

ED(q) =

{
det(M(q))

det(M(q̂))

}1/m

, (23)

where q̂ stands for the D-optimal trajectories obtained for the
observations with no constraints on the traveled distances. The
value of det(M(q̂)) can be determined beforehand, and setting a
reasonable positive threshold η < 1, we can introduce the constraint
relation

ED(q) ≥ η, (24)

which guarantees a suboptimal yet reasonable solution. It is easily
seen that (24) is equivalent to the constraint

Ψ[M(q)] ≥ C, (25)

where C = Ψ[M(q̂)] + m log(η).

We can thus formulate the following version of Problem 1:

Problem 2. Find the pair (q0, u) ∈ P which minimizes

J2(q0, u) = max
j=1,...,N

sj(tf ) (26)

subject to the constraints (13), (18) and (25).

The above minimax problem is slightly more difficult than Problem 1.
Therefore, in what follows, we shall fix our attention on Problem 2
only, as Problem 1 can be addressed in much the same way.

5. EQUIVALENT CANONICAL OPTIMAL CONTROL
PROBLEM

It is clear that Problems 1 and 2 are highly nonlinear and we
are not capable of finding closed-form formulae for their solutions.
Accordingly, we must resort to numerical techniques. This section
discusses the conversion of Problem 2 into a canonical optimal control
problem with inequality-constrained trajectories and an endpoint
cost, cf. [Polak, 1997]. Such a transcription makes it possible to
employ existing software packages for numerically solving dynamic
optimization and optimal control problems.

To simplify our notation further, consider the function svec :
Sm → Rm(m+1)/2, where Sm denotes the subspace of all symmetric
matrices in Rm×m, that takes the lower triangular part (the elements
only on the main diagonal and below) of a symmetric matrix A and
stacks them into a vector a:

a = svec(A)

= col[A11, A21, . . . , Am1, A22, A32, . . . , Am2, . . . , Amm].
(27)

Similarly, let A = Smat(a) be the symmetric matrix such that

svec(Smat(a)) = a for any a ∈ Rm(m+1)/2.

To set forth our basic idea, define first the matrix-valued function

Π(q(t), t) =

N∑

j=1

p(xj(t), t)pT(xj(t), t). (28)

Setting r : T → Rm(m+1)/2 as the solution of the differential
equations

ṙ(t) = svec(Π(q(t), t)), r(0) = 0, (29)

we have
M(q) = Smat(r(tf )), (30)

i.e., maximization of Ψ[M(r)] thus reduces to maximization of a
function of the terminal value of the solution to (29).

The distances sj traveled by sensor nodes, cf. (19), are easily incor-
porated into the usual optimal control formulation by augmenting
the system dynamics with additional states

s(t) = col[s1(t), . . . , sN (t)] (31)

being the solutions of the Cauchy problems

ṡ(t) = h(q(t), u(t)), s(0) = 0, (32)

where

h(q(t), u(t))

= col[‖f(x1(t), u1(t))‖, . . . , ‖f(xN (t), uN (t))‖]. (33)

It is clear that the non-differentiability of the norm under the
integrand (19) when the function f is equal to zero may lead to
some difficulties during the minimization, as common non-linear
programming packages usually have strong requirements regarding
the smoothness of the cost functions. Obviously, it is possible
to use some specialized procedures, but an alternative solution,
which is very suitable here, consist in replacing the original non-
smooth problem by minimization of a smooth function being an
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approximation to the minimal distance. Being more precise, it is
possible to exchange the mentioned norm by a smooth symmetric
exponential penalty function [Polak, 1997, p.248].

Defining the augmented state vector

w(t) =

[
q(t)
r(t)
s(t)

]
, (34)

we can have

w0 = w(0) =

[
q0
0

0

]
. (35)

Then, the equivalent canonical optimal control problem consists of
finding a triple (q0, u, ̺) ∈ P×R+ which minimizes the performance
index

J2(q0, u, ̺) = ̺ (36)

subject to





ẇ(t) = g(w(t), u(t)),

w(0) = w0,

φ(w(tf )) ≤ C,

βj(w(tf )) ≤ ̺, j = 1, . . . , N,

γ̄ℓ(w(t)) ≤ 0, ∀ t ∈ T, ℓ = 1, . . . , ν,

(37)

where

g(w(t), u(t)) =

[
d(q(t), u(t)

svec(Π(q(t), t))
h(q(t), u(t))

]
, (38)

φ(w(t)) = Ψ[Smat(q(t))], (39)

βj(w(t)) = sj(t), (40)

γ̄ℓ(w(t)) = γℓ(q(t)). (41)

The problem formulated in this way can be solved using existing
packages for numerically solving dynamic optimization problems,
such as RIOTS 95, cf. [Schwartz et al., 1997], DIRCOL, cf. [von
Stryk, 1999], or MISER, cf. [Jennings et al., 2002]. We employed
RIOTS 95in this work, which is designed as a Matlab toolbox
written mostly in C and runs under Windows 98/2000/XP and
Linux. It provides an interactive environment for solving a very
broad class of optimal control problems. The users’s problems can
be prepared purely as M-files and no compiler is required to solve
them. To speed up the solution process, the functions defining
the problem can be coded in C and then compiled and linked
with some pre-built linking libraries. The implemented numerical
methods are supported by the theory outlined in [Polak, 1997], which
uses the approach of consistent approximations. Systems dynamics
can be integrated with fixed step-size Runge-Kutta integration, a
discrete-time solver or a variable step-size method. The software
automatically computes gradients for all functions with respect
to the controls and any free initial conditions. The controls are
represented as splines, which allows for a high-degree of function
approximation accuracy without requiring a large number of control
parameters. There are three main optimization routines, each suited
for different levels of generality, and the most general one is based
on sequential quadratic programming methods (it was also used in
our computations reported in the next section).

6. SIMULATION EXAMPLE

As a suitable example presenting the delineated approach, let us
consider an atmospheric pollutant transport-chemistry process over
an urban area being normalized to a unit square. At the point
x0 = (0.3, 0.6) an active source of pollution is located, which leads to
changes in the pollutant concentration y(x, t). The entire process over
the observation interval T = [0, 1] and velocity field v(x, t) varying
in space and time according to the following model (cf. Fig. 1):

v(x, t) =
(
2(y + 1/4), 2(t − x)

)
, (42)

can be described by the following advection-diffusion-reaction equa-
tion:

∂y(x, t)

∂t
+∇ ·

(
v(x, t)y(x, t)

)

=∇ ·
(
κ(x)∇y(x, t)

)
+ f(x), x ∈ Ω

(43)

subject to the following boundary and initial conditions:

∂y(x, t)

∂n
= 0 on Γ × T, y(x, 0) = 0 in Ω, (44)

where the term f(x) = e−100‖x−x0‖
2

represents an intensity of active
source of pollutant, and ∂y/∂n stands for the partial derivative
of y with respect to the outward normal to the boundary Γ. In
our illustrative simulations, the following form of the turbulent
diffussivity coefficient was applied

κ(x) = θ1 + θ2x2
1 + θ3x2

2, (45)

so parameters θ = (θ1, θ2, θ3) need to be estimated based on
measurement data. The values θ1 = 0.02, θ2 = θ3 = 0.005 were
taken as the initial estimate.

Our goal is to determine the optimal trajectories for two movable
sensors subject to the assumed estimation accuracy level. In order
to verify the proposed approach, the Matlab program was written
using a PC equipped with Pentium M740 processor (1.73GHz, 1
GB RAM) running Windows XP and Matlab 7 (R14). First, the
system of PDEs was solved using some routines of the Matlab

PDE toolbox for a spatial mesh composed of 1800 triangles and
961 nodes and uniformly divided time interval (30 subintervals).
Since the PDE toolbox is not particularly designed to solve the
considered class of problems it was supplemented with additional
procedures which take into account the advection term (being not
self-adjoint operator) based on the modified Discontinuous-Galerkin
method [Ern and Guermond, 2006].

The sensitivity coefficients were then linearly interpolated and
stored. Finally, to determine the optimal mobile sensor trajectories,
the package RIOTS 95was applied. We adopt a simple sensors dy-
namics

q̇(t) = u(t), q(0) = q0,

and impose the following bounds for u

|ui(t)| ≤ 0.7, ∀t ∈ T. (46)

In order to avoid the convergence to the local minima, the simulations
were restarted several times from different initial starting points.
Each simulation took about 10–20 minutes of computation time.

The optimal trajectories are presented in Fig. 2. For comparison,
the left subplot of Fig. 2 shows the D-optimum trajectories obtained
for the setting without any constraints imposed on the lengths of
sensor paths. We can observe how sensors try to follow the complex
pollutant concentration changes leading to quite sophisticated sensor
motions. As for Problem 1, after shortening the maximal trajectory
length to smax = 0.4, the optimal trajectories are regularized and
still explore the same subregion of the spatial domain. However, the
complexity of the considered process induce the strong nonlinearity
in the dependence between trajectory lengths and efficiency of the
solutions. Therefore, a significant reduction of maximum length leads
in this case to dramatic decrease in the efficiency of the experiment
(which is decreased to ED = 41.24%). It becomes clear that the
Problem 2 is more flexible to control the quality of the observation
process and the lengths of trajectories can be significantly shortened
(sparing the valuable resources) with guaranteed level of efficiency
(cf. the right subplot of Fig. 2). The control input signals are shown
in Fig. 3 for both Problems 1 and 2. Note the actuator saturation
in Problem-2, prompting a more aggressive actuation for shorter
distance traveled.

7. CONCLUSION

This work can be considered as an attempt to establish an intercon-
nection between the quality of the parameter estimation in DPSs and
the limited motion resources of sensor network nodes. As a result,
two formulations of the related problem have been proposed: the
first for a specified constraints on the distances traveled by sensors,
and the other for the case in which the maximal sensor trajectory
length is treated as a decision variable with additional terminal
inequality constraint representing the accuracy of the estimation.
The proper reformulation of those problems into equivalent optimal
control problems in Mayer form is also briefly delineated. Then, they
can be solved using the dedicated efficient existing tools, such as
Matlab package RIOTS 95. The future research will focus on the
further extension of the proposed approach to the different control
objectives motivated in real-world engineering applications.
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Fig. 1. Temporal changes in the wind velocity field and pollutant concentration.
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Fig. 2. Left plot: Optimal sensor trajectories: D-optimal solution (the maximal trajectory length is 0.71); Middle plot:
Problem 1 for maximal trajectory lengths set to smax ≤ 0.4 (efficiency level is ED = 41.24%) and Right plot:
Problem 2 for the guaranteed D-efficiency value set to ED ≥ 0.75 (the maximal length of trajectory is J2 = 0.55).
In all plots, the initial sensor positions are marked with open circles, and the sensors positions at the consecutive
points of the time grid are denoted by discs.
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Aleksander Jeremić and Arye Nehorai. Landmine detection and
localization using chemical sensor array processing. IEEE Trans-
actions on Signal Processing, 48(5):1295–1305, 2000.
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