
Faster Linear Iterations for Distributed

Averaging ⋆

Björn Johansson and Mikael Johansson ∗

∗ School of Electrical Engineering, Royal Institute of Technology
(KTH), 100 44 Stockholm (email: firstname.lastname@ee.kth.se).

Abstract: Distributed averaging problems are a subclass of distributed consensus problems,
which have received substantial attention from several research communities. Although many of
the proposed algorithms are linear iterations, they vary both in structure and state dimension.
In this paper, we investigate the performance benefits of adding extra states to distributed
averaging iterations. We establish conditions for convergence and discuss possible ways of
optimizing the convergence rates. By numerical examples, it is shown that the performance can
be significantly increased by adding extra states. Finally, we provide necessary and sufficient
conditions for convergence of a more general version of distributed averaging iterations.

1. INTRODUCTION

In this paper, we discuss distributed averaging, which
is a special class of distributed consensus. Distributed
averaging has found diverse applications in areas such as
multi-robot coordination, distributed synchronization and
resource allocation in communication networks. A large
body of literature exists, see the recent survey Olfati-Saber
et al. (2007) for a good starting point.

Since the distributed consensus problem has received a
large attention from several diverse research communities
(from physics, mathematical programming to control and
communications), it is natural that several different al-
gorithms have been proposed. Many of these are linear
iterations where each agent maintains one internal consen-
sus state. Other algorithms are nonlinear, or have a larger
state dimension than the basic iteration. One example of
this is when the consensus is used for distributed quadratic
programming where nodes maintain states corresponding
to primal and dual (Lagrange multiplier) iterates. The it-
erations are then still linear, but of higher state dimension
than the basic distributed averaging algorithm.

The objective of this paper is to try to understand the po-
tential benefits of linear averaging iterations with extended
state dimension. We establish conditions for convergence
and explore how one could optimize the parameters to
obtain faster convergence. Somewhat surprisingly, we show
that it is possible to make existing distributed averaging
algorithms substantially faster with a simple extension
that do not change the communication topology.

We consider systems of the following type
{

x(k + 1) = Ax(k) +Bu

y(k + 1) = Cx(k + 1),
(1)

where x(k) is a vector of the nodes’ internal states; y(k) is
a vector of the nodes’ outputs; and u is a vector with con-
stant input. The asymptotic output should be the average
value of the starting values of the nodes. Furthermore, the

⋆ This work was supported in part by the European Commission.

matrices A, B, and C respect the communication topology
of the network, so that the nodes need to rely on only peer-
to-peer communication to execute the iterations.

1.1 Assumptions and Notation

The network is composed of N nodes, and it is described
by a graph with vertices V = {1, ..., N} and edges E ⊆
{(i, j) | i, j ∈ V}. The network is assumed to be strongly
connected and the links are assumed to be bidirectional,
i.e., (i, j) ∈ E implies (j, i) ∈ E . The system matrices
should respect the communication topology and each node
should only need state information from its neighbors.
To this end, we define the set S = {S ∈ R

N×N |Sij =
0 ∀ (i, j) /∈ E}, and all matrices in this set respect the
communication topology. Each node i has an initial value,
zi, and the asymptotic output for each node should be the
mean value of all nodes’ starting values, limk→∞ yi(k) =
∑N
j=1

zj/N . The symbol 1N denotes the N×1 vector with
all entries equal to one, and the symbol IN denotes the
N ×N identity matrix. Finally, we denote the Kronecker
product with ⊗.

We can use different notions of convergence rates to
quantify how fast the different algorithms approaches the
desired output or fixed point. One choice is the worst case
per step convergence factor,

sup
x 6=0

||Ax||2
||x||2

= ||A||2,

which is the spectral norm. However, the most common
choice is the worst case geometric average convergence
factor, for which we have the following (Varga, 1962,
Theorem 3.2)

lim
k→∞

(

sup
x 6=0

||Akx||2
||x||2

)1/k

= ρ(A),

where ρ(A) is the spectral radius of A, i.e., the eigenvalue
of A with the largest magnitude.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2861 10.3182/20080706-5-KR-1001.3395

1.2 Related Work

Xiao and Boyd (2004) consider the iterations

x(k + 1) = Ax(k) (2)

and provide necessary and sufficient conditions on the
matrix A for the iterations to converge to the average of
the initial values. The average is reached if A fulfills

lim
k→∞

Ak =
1

N
1N1⊺

N .

For the case of a symmetric A, they also provide a
convex optimization problem formulation to find an A
that minimizes the spectral radius. However, it is possible
to do better using a slightly modified algorithm: if we
allow scaling of the output, then it is possible to get
the spectral radius arbitrarily close to zero (Olshevsky
and Tsitsiklis, 2006). The drawback is that the resulting
algorithm will suffer from numerical difficulties. Olshevsky
and Tsitsiklis (2006) also provide simple and numerically
stable algorithms that have good worst case performance.
In addition, it is possible to boost the convergence by using
a shift-register in the stochastic version of (2), as noted by
Cao et al. (2006).

It is also possible to reach similar iterations by a com-
pletely different approach. Namely, if we view the average
value as the optimal solution to a least-squares problem,

minimize
{xi}N

i=1

N
∑

i=1

1

2
(xi − xi(0))2

xi = xj , ∀(i, j) ∈ E ,

(3)

then a distributed optimization algorithm solving this
problem will also be a distributed averaging algorithm.
Several optimization algorithms can be used, e.g., dual
relaxation combined with a subgradient method (Rabbat
et al., 2005) or the alternating direction multiplier method
(Schizas et al., 2007). With a carefully posed optimization
problem, both of the methods result in iterations of the
same form as in (1).

In addition, these alternative formulations can be used
to devise iterations with bolstered resilience to commu-
nication noise, as shown in Schizas et al. (2007). This
extension can be useful, since the iterations (2) is sensitive
to communication noise due to its eigenvalue at 1 for A.
However, the algorithm presented in Schizas et al. (2007)
has the problem that internal values in the nodes blow up,
since the desired fixed point is encoded in x(k+ 1)− x(k).

In this paper we look at convergence conditions and pos-
sible optimization schemes for the augmented versions
of (2). We also look at convergence conditions for itera-
tions of the more general form (1).

1.3 Outline

In Section 2, the general shift-register case for systems
without input is considered. Then, in Section 3, we discuss
how the system matrices can be found using different
optimization schemes. Next, in Section 4, we investigate
the possible benefits of these schemes using numerical
examples. In Section 5, we provide necessary and sufficient
conditions for convergence for the more general case of (1)
with nonzero input. Finally, the paper is concluded with a
discussion in Section 6.

2. GENERAL SHIFT-REGISTER CASE

Shift-registers can be used to speed up convergence in the
stochastic version of (2) (Cao et al., 2006). As we will see
later in this section, shift-registers can be used to speed
up convergence in the deterministic case as well. In fact,
shift-registers are known to speed up several types of other
iterative methods as well (Young, 1972).

For the consensus iteration case, shift-registers result in
iterations of the type

x(k + 1) =

(

βA11 (1 − β)IN
IN 0

)

x(k), x(0) =

(

IN
IN

)

z

y(k + 1) =
(

IN 0
)

x(k + 1),

where β is a scalar constant, A11 is a matrix constant
(a matrix coming from (2) can be used). The limit (if it
exists) has the structure

lim
k→∞

(

βA11 (1 − β)IN
IN 0

)k

=

(

α∆ (1 − α)∆
α∆ (1 − α)∆

)

,

where α is a function of β.

The generalized version of this iteration, with M copies of
the initial state, is the following

{

x(k + 1) = Ax(k), x(0) = 1M ⊗ z

y(k + 1) =
(

IN 1⊺

M−1
⊗ 0
)

x(k + 1),
(4)

where A ∈ R
MN×MN . To describe this generalized ver-

sion in terms of (1), we have that B = 1M ⊗ 0 and
C =

(

IN 1⊺

M−1
⊗ 0N

)

. Furthermore, in order for the
asymptotic output to reach the desired average, A needs
to satisfy the limit

lim
k→∞

Ak =
1

N

1N
...

1N

(α11

⊺

N . . . αM1⊺

N) ,

M
∑

i=1

αi = 1, (5)

since then

lim
k→∞

y(k) =
1

N

M
∑

i=1

αi1N1⊺

Nz.

We have the following theorem (similar to Theorem 2 in
Xiao and Boyd (2004)).

Theorem 1. The iteration (4) satisfies (5) if and only if A
and α fulfill the following conditions.

a)

Af = f, f =
1

N

1N
...

1N

. (6)

b)

g⊺(α)A = g⊺(α), g(α) =

α11N
...

αM1N

,
M
∑

i=1

αi = 1.

(7)
c)

ρ (A− fg⊺(α)) < 1, (8)

where ρ(·) denotes the spectral radius.

Proof. We start with showing sufficiency of the conditions.
If conditions a) and b) are satisfied, then we have that

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2862

(A− fg⊺(α))t = (A−Afg⊺(α))t = At(I − fg⊺(α))t

= At(I − fg⊺(α)) = At − fg⊺(α),

where we used Af = f in the first equality, and the
third equality is based on the fact that (I − fg⊺(α))(I −
fg⊺(α)) = I − 2fg⊺(α) + fg⊺(α)fg⊺(α) = I − 2fg⊺(α) +

fg⊺(α)(1/N)
∑M

i=1
Nαi = I − fg⊺(α). Now condition

c) implies that limk→∞ At − fg⊺(α) = limk→∞(A −
fg⊺(α))t = 0, and sufficiency is established. We continue
with necessity. The limit limk→∞ At = fg⊺(α) exists if and
only if (Meyer and Plemmons, 1977)

A = T

(

Iκ 0
0 Z

)

T
−1

, (9)

where T is an invertible matrix, Z is a matrix with
ρ(Z) < 1, and Iκ is the κ-dimensional identity matrix.
Since

T

(

Iκ 0
0 0

)

T
−1

= fg⊺(α)

and rank fg⊺(α) = 1, we know that rank Iκ = 1 and
κ = 1. The limit and (9) also imply that fg⊺(α)A =
Afg⊺(α) = fg⊺(α), thus f is a right eigenvector and g
is a left eigenvector, both with eigenvalue 1. Finally, we
also have that

ρ(A− fg⊺(α)) = ρ

(

T

(

0 0
0 Z

)

T
−1

)

< 1.

We conclude that the conditions are both necessary and
sufficient.

3. MINIMIZING THE SPECTRAL RADIUS

As mentioned in Section 1.1 and Theorem 1, the spectral
radius is crucial for the convergence rate. Thus, it is
of interest to find an A with minimal spectral radius.
Optimization of the spectral radius is very hard in general,
but in the case of a Hermitian A, the spectral norm and
the spectral radius coincide; the spectral norm is much
easier to work with.

3.1 Scaling

Inspired by Xiao and Boyd (2004), we will now search for
a transformation that allow us to use Hermitian matrices
in the optimization problem. We desire that A fulfills the
convergence conditions given in Theorem 1. Let A ∈ S
be given by the following similarity transformation of a
Hermitian matrix Ã,

A = T ÃT−1.

Condition a) in Theorem 1 becomes

Af = f ⇔ ÃT−1f = T−1f.

Condition b) (with fixed α) in Theorem 1 becomes

g⊺(α)A = g⊺(α) ⇔ g⊺(α)T Ã = g⊺(α)T.

Since Ã is assumed to be Hermitian, a left-eigenvector,
g⊺(α)T , will imply the following right-eigenvector

(g⊺(α)T Ã)∗ = Ã∗T ∗ḡ = ÃT ∗ḡ.

The two eigenvectors should be equal in order for the
scaling to be useful,

T ∗ḡ = T−1f ⇔ TT ∗ḡ = f.

If such a T exists, we can use the following convex
optimization problem to find the fastest converging A of
the form A = T ÃT−1,

minimize
Ã,A

||Ã− T−1fg⊺(α)T ||2

such that Ã∗ = Ã

ÃT−1f = T−1f

AT = T Ã
A ∈ S.

The drawback is that it is not known which the best
transformation T is, and that the fastest converging A
may not be on the form A = T ÃT−1.

3.2 Bilinear Matrix Inequalities

Instead of trying to find a scaling that convert the problem
back to the symmetric case, we can directly look for an
unsymmetric matrix (for a fixed α in condition b)) that
satisfies Theorem 1 and the sparsity constraints. Define
the error, x̂(k), as x̂(k) = x(k) − x⋆, where x⋆ is the fixed
point of the linear iteration. The error should decay to zero
as fast as possible. Consider the following inequality

||x̂(k + 1)||2Q − ||x̂(k)||2Q ≤ −ψ||x̂(k)||2Q,

which, using the Schur complement and a congruence
transformation, is equivalent with the following positive
semidefinite expressions

(

(1 − ψ)Q−1 Q−1(A− fg⊺(α))⊺

(A− fg⊺(α))Q−1 Q−1

)

≥ 0

Q−1 > 0.

(10)

If ψ, Q−1, and A are decision variables, then (10) is a so
called bilinear matrix inequality (BMI). We can then use
the following optimization problem

minimize
A,ψ,Q−1,Υ

−ψ

such that Υ = A− fg⊺(α)

0 ≤

(

(1 − ψ)Q−1 Q−1Υ⊺

ΥQ−1 Q−1

)

0 < Q−1

f = Af
g⊺(α) = g⊺(α)A

0 ≤ β ≤ 1
A ∈ S,

to find an unsymmetric A that minimizes ||x̂(k + 1)||2Q,

and thereby also pushing down the spectral radius of (A−
fg⊺(α)), while still satisfying Theorem 1 and the sparsity
constraints. The drawback with this approach is that the
optimization problem is nonconvex.

4. NUMERICAL EXAMPLES

To evaluate the performance of the different linear it-
erations that achieve distributed averaging, we consider
the simple network in Figure 1. To avoid numerical diffi-
culties and maintain computational tractability, the net-
work consists of only 7 nodes. We test four methods of
finding the system matrices, using the software packages
YALMIP (Löfberg, 2004), SDPT3 (Tutuncu et al., 2003),
and PENBMI (Kocvara and Stingl, 2003).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2863

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 1. Topology of the random 7 node network.

4.1 Symmetric Matrix Algorithm. Dimension N ×N .

We use the method described in Xiao and Boyd (2004)
in conjunction with YALMIP and SDPT3 to find the
symmetric A that minimizes the spectral norm (which is
the same as the the spectral radius in this case).

4.2 Unsymmetric Matrix Algorithm. Dimension N ×N .

The method outlined in Section 3.2 is used in conjunction
with YALMIP and PENBMI to find an unsymmetric
matrix that is a local minimum of the matrix normm(A) =
||A − 1N1⊺

N/N ||2Q, and since we are optimizing over Q as
well, this norm is close to the spectral radius.

4.3 Shift-Register Algorithm. Dimension 2N × 2N .

Consider the shift-register example (with a fixed matrix
A11 and M copies of the state) once again. The structure
of A is

A =

β1A11 . . . βM−1I βMI
I 0 . . . 0
...

. . .
...

...
0 . . . I 0

.

With this structure and
∑M

i=1
βi = 1, condition a) in The-

orem 1 is satisfied. To satisfy condition b) in Theorem 1,
α and β need to satisfy

αM = α1βM ,

αM−1 = α1βM−1 + αM ,

αM−2 = α1βM−2 + αM−1,

...

α1 = α1β1 + α2,

in addition with
∑M
i=1

αi = 1. Finally, to satisfy condition
c) in Theorem 1, α, β, and A need to satisfy

ρ (A(β) − fg⊺(α)) < 1.

We use the above conditions with M = 2 (this means
we have one shift-register and one scalar weight to chose,
namely β) and use the A matrix from Section 4.1 as our
A11 matrix. A search for the optimal β in the interval
[−2, 2] is then performed. Since we only have one scalar
variable to chose, the interval search is rather computa-
tionally cheap. The interval search gave β = 1.1717.

4.4 General Shift-Register Algorithm. Dimension 2N ×
2N .

Here we use the f and g vectors from Section 4.3 (M = 2
and β = 1.1717) and search for a general unsymmetric A
using the method in Section 3.2, with

A =

(

A11 A12

A21 A22

)

, A11, A12, A21, A22 ∈ S.

It is possible to do a search over β in this case as well, but
it is not really tractable, since the optimization with BMI
is rather time consuming.

4.5 Results

For the communication topology shown in Figure 1, the
performance of the four resulting algorithms are shown
in Figure 2. We use the following performance metrics: for
the N ×N matrices

performanceN×N(k) =
∥

∥Ak − 1N1⊺

N/N
∥

∥

2
, (11)

and for the 2N × 2N matrices

performance2N×2N (k) =

∥

∥

∥

∥

(IN 0)Ak
(

IN
IN

)

− 1N1⊺

N/N

∥

∥

∥

∥

2

.

(12)

The general shift-register algorithm has significantly bet-
ter performance than the other algorithms. The unsym-
metric matrix algorithm is second best, and the shift-
register algorithms is quite close. The symmetric matrix
algorithm has the worst performance in this example.
Thus, this example suggests that much can be gained from
using the general shift-register algorithm. However, since
this optimization problem is bilinear, it is computationally
intractable for topologies with more than ten nodes. The
same is valid for the unsymmetric matrix algorithm.

The most computationally viable way to increase the
convergence speed is thus the shift-register algorithm
from Section 4.3. In Figure 3, we show Monte Carlo sim-
ulations for the shift-register algorithm and the optimal
symmetric algorithm. For each number of nodes, 1000
connected random networks were generated, and the mean
of the performance (using (11) and (12)) for k = 5, 25, 125
is shown. The simulations indicate that the shift-register
algorithm is better if high accuracy is desired, while the op-
timal symmetric algorithm has better initial convergence
speed.

Thus, a performance boost can be achieved by using the
simple shift-register algorithm, with virtually no extra
computational burden on the nodes nor on the off-line
algorithm that computes the system matrices.

5. GENERAL CASE

We now look at necessary and sufficient conditions for the
most general case of (1) to converge to the average of
the starting values, while respecting the communication
constraints between the nodes.

We consider the following system

x(k + 1) = Ax(k) +Bz

y(k + 1) = Cx(k + 1)

x(0) = Ez,

(13)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2864

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Iterations (k)

P
e
rf

o
rm

a
n
c
e

Optimal Symmetric, NxN matrix

Unsymmetric, NxN matrix
Shift−Register, 2Nx2N matrix

General Shift−Register, 2Nx2N matrix

Fig. 2. Performance of the four algorithms for a 7 node
network.

with x(k) ∈ R
NM , y(k) ∈ R

N ,

A =

A11 . . . A1M

...
. . .

...
AM1 . . . AMM

, Aij ∈ S, (14)

B =

B1

...
BM

, Bi ∈ R

N×N and diagonal, (15)

C = (C1 . . . CM) , Ci ∈ R
N×N and diagonal, (16)

E =

E1

...
EM

, Ei ∈ R

N×N and diagonal. (17)

We have the following theorem.

Theorem 2. Consider the system defined by (13)-(17). The
limit limk→∞ Ak exists, the sequence of states, {x(k)}, is
bounded, and the corresponding system output satisfies
limk→∞ y(k) = 1N1⊺

Nz/N if and only if the matrices A,
B, C, and E satisfy the following conditions:

a) There exist two matrices, T and Z, and an integer, κ,
such that

A = T

(

Iκ 0
0 Z

)

T−1, ρ(Z) < 1, 0 ≤ κ ≤ NM. (18)

We divide the rest of the conditions into B = 0 and B 6= 0.
For B = 0, the last condition is:

b) The matrix T from a) satisfies

CT

(

Iκ 0
0 0

)

T−1E = 1N1⊺

N/N. (19)

For B 6= 0, the last conditions are:

c) If κ from a) is greater than zero, then the κ eigenvec-
tors of A with eigenvalue 1 are orthogonal to Bz.

d) There exists a vector, x̄, such that

x̄ = Ax̄ +Bz and Cx̄ = 1N1⊺

Nz/N. (20)

e) The nullspace of (A−INM) is a subset of the nullspace
of C.

Proof. The limit limk→∞ Ak exists if and only if (Meyer
and Plemmons, 1977) condition a) is satisfied. We divide

20 40 60 80 100

10
0

Number of Nodes

P
e

rf
o

rm
a

n
c
e

k = 5

Optimal Symmetric NxN

Shift−Register 2Nx2N

20 40 60 80 100

10
−3

10
−2

10
−1

10
0

Number of Nodes

P
e

rf
o

rm
a

n
c
e

k = 25

Optimal Symmetric NxN

Shift−Register 2Nx2N

20 40 60 80 100

10
−8

10
−6

10
−4

10
−2

Number of Nodes

P
e

rf
o

rm
a

n
c
e

k = 125

Optimal Symmetric NxN

Shift−Register 2Nx2N

Fig. 3. Average performance of the Symmetric Matrix
Algorithm and the Shift-Register Algorithm. For each
number of nodes, 1000 random networks were gener-
ated and averaged over. The thick line denotes the
average and the thin line denotes the sum of the
average and the computed variance.

the rest of the proof into two parts, one for B = 0 and one
for B 6= 0.

When B = 0, existence of limk→∞ Ak implies that the
sequence {x(k)} is bounded. The limit of the output is
then

lim
k→∞

CTAkT−1E = CT

(

Iκ 0
0 0

)

T−1E.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2865

Hence, the desired output can only be reached if and only
if condition b) is satisfied.

When B 6= 0, we can write the state as

x(k) = AkEz+

k−1
∑

j=0

AkBz = AkEz+

k−1
∑

j=0

T

(

Iκ 0
0 Z

)k

T−1Bz,

with

T−1 = (t1 . . . tN)
⊺

and T =
(

t̃1 . . . t̃N
)

.

When κ = 0, then

lim
k→∞

x(k) = lim
k→∞

AkEz + (INM −A)−1Bz,

which implies that the sequence of states is bounded.
When κ > 0, by using the unique representation of Bz

in the basis {t̃1, . . . , t̃N}, Bz =
∑N

i=1
γit̃i, we can write

x(k)−AkEz =
k−1
∑

j=0

T

((

Iκ 0
0 0

)

+

(

0 0
0 Zk

))

T−1

N
∑

i=1

γi t̃i

=
k−1
∑

j=0

(

T

(

Iκ 0
0 0

)

T−1

κ
∑

i=1

γi t̃i + T

(

0 0
0 Zk

)

T−1

N
∑

i=κ+1

γi t̃i

)

=

k−1
∑

j=0

κ
∑

i=1

γit̃i +

k−1
∑

j=0

T

(

0 0
0 Zk

)

T−1

N
∑

i=κ+1

γi t̃i,

since t⊺i t̃j = 0 if i 6= j and t⊺i t̃i = 1. Hence, we have

lim
k→∞

x(k) = T

(

Iκ 0
0 0

)

T−1Ez + lim
k→∞

k−1
∑

j=0

κ
∑

i=1

γit̃i+

+

(

INM − T

(

0 0
0 Z

)

T−1

)−1 N
∑

i=κ+1

γi t̃i,

where limk→∞

∑k−1

j=0

∑κ
i=1

γi t̃i exists and the sequence of
states is bounded if and only if γi = 0 for all i = 1, ..., κ,
which is equivalent with condition c). Also note that
limk→∞ x(k) is a fixed point to (13).

Condition d) is equivalent with that a fixed point with the
desired properties exists.

Finally, condition e) is equivalent with that if there are
multiple fixed points, all of them give the desired output:
assume that there are two fixed points x̄ and x̄+ x′, then
the vector x′ will be in the nullspace of (A − INM). Now
condition e) gives that x′ is in the nullspace of C, which
implies that Cx̄ = C(x̄ + x′).

Remark 3. The conditions in Theorem 2 are difficult to
use in an optimization problem. For example, condition e)
can easily be shown to be nonconvex (in its present form).

Remark 4. It is possible to find matrices fulfilling the
conditions in Theorem 2. One choice is the matrices from
the algorithms in Section 4. Another choice is the matrices
from a dual relaxation solution algorithm to (3).

6. CONCLUSIONS

Motivated by the many different algorithms that have been
proposed for distributed averaging, we have investigated
the convergence of a more general class of linear averaging
iterations. First, we considered iterations that allow nodes
to maintain several internal states. We provided necessary
and sufficient conditions for convergence, and discussed

some possible optimization schemes to improve the conver-
gence rate. It turns out that with a single shift-register it
is easy to search for the optimal weights (a one-parameter
search), giving a computationally inexpensive way to find
a weight matrix A that in some cases converges faster than
the original algorithm in Xiao and Boyd (2004). If we
search for a nonsymmetric weight matrix, numerical ex-
amples indicate that performance can be vastly improved.
However, this optimization problem is computationally in-
tractable for larger network topologies. Finally, we looked
at necessary and sufficient conditions for the convergence
to consensus of a larger class of algorithms with input.
These conditions are not amenable for optimization in
their present form, but we are looking into this in our
future work.

7. ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for
their detailed comments as well as Alberto Speranzon and
Dag Lindbo for helpful discussions.

REFERENCES

M. Cao, D.A. Spielman, and E.M. Yeh. Accelerated gossip
algorithms for distributed computation. In Allerton
Conference, 2006.

M. Kocvara and M. Stingl. PENNON - a code for convex
nonlinear and semidefinite programming. Optimization
Methods and Software, 18:317–333, 2003.

J. Löfberg. Yalmip : A toolbox for modeling and
optimization in MATLAB. In Proceedings of the
CACSD Conference, Taipei, Taiwan, 2004. URL
http://control.ee.ethz.ch/ joloef/yalmip.php.

C. D. Meyer and R. J. Plemmons. Convergent powers
of a matrix with applications to iterative methods for
singular linear systems. SIAM Journal on Numerical
Analysis, 14:699–705, 1977.

R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consen-
sus and cooperation in networked multi-agent systems.
Proceedings of the IEEE, 95(1):215–233, 2007.

A. Olshevsky and J. Tsitsiklis. Convergence rates in
distributed consensus and averaging. In IEEE CDC,
2006.

M. Rabbat, R. Nowak, and J. Bucklew. Generalized con-
sensus computation in networked systems with erasure
links. In IEEE SPAWC, 2005.

I. Schizas, A. Ribeiro, and G. Giannakis. Consensus in
ad hoc WSNs with noisy links - part I: Distributed
estimation of deterministic signals. IEEE Transactions
on Signal Processing, 2007. Submitted.

R.H Tutuncu, K.C. Toh, and M.J. Todd. Solving
semidefinite-quadratic-linear programs using SDPT3.
Mathematical Programming Ser. B, 95:189–217, 2003.

R. Varga. Matrix Iterative Analysis. Prentice-Hall, 1962.
L. Xiao and S. Boyd. Fast linear iterations for distributed

averaging. Systems & Control Letters, 53(1):65–78,
2004.

D. M. Young. Second-degree iterative methods for the so-
lution of large linear systems. Journal of Approximation
Theory, 5:137–148, 1972.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2866

