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Abstract: This paper is concerned with leader-following consensus control for multi-agent
systems under measurement noises. Time-varying consensus gains are introduced into the
network protocol designed. By using the tools of stochastic analysis and algebraic graph theory,
a sufficient condition is obtained for the protocol to ensure strong mean square consensus under
the fixed topologies. This condition is shown to be necessary and sufficient in the noise-free
case. In addition, by using a common Lyapunov function, the result is extended to the switching
topology case.

1. INTRODUCTION

In recent years, leader-following consensus problems have
attracted many researchers, due to their broad applica-
tions in swarms and flocks (Yu et al., 2005; Olfati-Saber,
2006), formation control (Leonard & Fiorelli, 2001; Fax
& Murray, 2004), and large scale robotic systems (Belta
& Kumar, 2002), etc. In leader-following multi-agent sys-
tems, the leaders are usually independent of their followers,
but have influence on the followers’ behaviors. Therefore,
one can realize one’s control objective of the agents by
only controlling the leaders, which transfers the control
of a multi-agent system to that of a single-agent. This
not only simplifies the design and implementation of the
controls but also helps to save energy and reduce control
cost (Ren et al., 2004; Cutts & Speakman, 1994).

Jadbabaie et al. (2003) considered the nearest neighbor-
hood principle, and under time-varying topologies, proved
that if all the agents were jointly connected with their
leader, then their states would converge to the state of the
leader as time goes on. Ren & Beard (2005) extended the
results of (Jadbabaie et al., 2003) to the directed topology
case. Hu & Hong (2005) considered the leader-following
consensus with time-varying time-delays under fixed and
switching topologies.

A common feature of the above literature on leader-
following consensus is that measurement noises are not
considered and the state information is assumed to be
exactly obtained. However, real communication processes
are often disturbed by various random factors, and mea-
surement noises seem always there. Therefore, just as Ren,
Beard & Atkins (2005) pointed out, for the consensus
problems it is important to investigate how to design
consensus protocols applicable to the cases with commu-
nication noises.

⋆ This work was supported by the National Natural Science Foun-
dation of China under grants 60221301 and 60674038.

Recently, consensus problems under measurement noises
have gradually been studied in (Huang & Manton, 2006;
Ren, Beard & Kingston, 2005; Kingston et al., 2005; Li
& Zhang, 2007). Ren, Beard & Kingston (2005) designed
a consensus protocol based on Kalman filter structure.
Kingston et al. (2005) showed that the protocol designed
in (Ren, Beard & Kingston, 2005) was input-to-state
stable (from measurement noises to consensus errors). Li &
Zhang (2007) considered average-consensus problem under
measurement noises and fixed topologies. All these works
are characterized by leader-free. To our knowledge, there is
no result of leader-following consensus under measurement
noises, which is the main focus of this paper.

In this paper, for simplicity, the state of the leader is
assumed to be a constant. However, the follower collects
information and updates its state in a decentralized way,
based on the measurements of its neighbors corrupted by
white noises. To overcome the impact of the measurement
noises, time-varying consensus gains are introduced in
the followers’ consensus protocols, which attenuate the
noises effectively, but render the closed-loop system a
time-varying stochastic differential equation whose state
matrix is neither symmetric nor diagonalizable, since what
we consider is a digraph. Thus, the closed-loop system
cannot be decoupled, and hence, it is hard to analyze
the convergence of the consensus protocol. It is worth
pointing out that, different from (Li & Zhang, 2007),
here the digraph is not required to be balanced, thus,
the method of the symmetrized graph in (Li & Zhang,
2007) is not suitable. It is also different from the noise-
free cases in (Jadbabaie et al., 2003; Lin et al., 2004),
where the state matrix of the closed-loop equation can
be easily transformed to a stochastic matrix, and so, the
convergence properties can be analyzed by employing the
theory of stochastic matrices. But, here due to the time-
varying consensus gains, the state matrix of the closed-loop
equation is no longer a stochastic matrix, so the tools of
stochastic matrices do not work. We combine stochastic
analysis and algebraic graph theory together, and use
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the common Lyapunov function to do the convergence
analysis of the consensus protocol. A sufficient condition
is obtained for the state of each follower to converge to
that of the leader in mean square, which is also found
necessary and sufficient in the noise-free case. In addition,
the protocol is shown to be strong mean square consensus
under switching topologies if the subgraph formed by the
followers is balanced.

The remainder of this paper is organized as follows. In
section 2, some concepts in graph theory and the prob-
lem to be investigated are formulated. In section 3, the
convergence properties of the closed-loop systems are an-
alyzed under fixed and switching topologies, respectively.
In section 4, a numerical example is given to illustrate our
results. In section 5, some concluding remarks and future
research topics are discussed. In addition, due to space
limitation only the proof of Theorem 2 is provided.

The following notations will be used throughout this pa-
per: 1 denotes a column vector with all ones; R

n×n denotes
the family of all n×n dimensional matrices; λmax(X) and
λmin(X) denote the maximum and minimum eigenvalues
of the real symmetric matrix X, respectively; Im denotes
the m dimensional identity matrix. P > 0 denotes the
matrix P is positive definite. For a given set S, χS denotes
the indicator function of S. For a given vector or (square)
matrix A, AT denotes its transpose; tr(A) denotes its
trace. For a family of random variables {ξλ, λ ∈ Λ},
σ(ξλ, λ ∈ Λ) denotes the σ-algebra 1 generated by {ξλ ∈
B,B ∈ B, λ ∈ Λ} where B denotes the 1 dimensional
Borel sets.

2. PROBLEM FORMULATION

Before formulating our problem, we first introduce some
basic concepts and notions in algebraic graph theory.

2.1 Preliminaries

(Godsil & Royle, 2001; Olfati-Saber & Murray, 2004)

Let G = (V, E ,A) be a weighted digraph with the set of
vertices V = {1, 2, ..., n} and the set of edges E ⊆ V×V. In
G, the ith vertex represents the ith agent, and a directed
edge from i to j is denoted as an ordered pair (i, j) ∈ E ,
which means that agent j can directly receive information
from agent i. If there is a directed edge from i to j, then
the vertex i is called the parent vertex and the vertex j
is called the child vertex. The set of neighbors of the ith
agent is denoted by Ni = {j ∈ V | (j, i) ∈ E}.

A = (aij) ∈ R
n×n is called the weighted adjacency

matrix of G with nonnegative elements and aij > 0 ⇔
j ∈ Ni. The in-degree and out-degree of vertex i are
defined as degin(i) =

∑n

j=1 aij and degout(i) =
∑n

j=1 aji,
respectively. Then the Laplacian of the weighted di-
graph G is defined as LG = D − A, where D =
diag(degin(1), degin(2), · · · , degin(n)). If degin(i) =
degout(i), i = 1, 2, ..., n, then we call G a balanced digraph.

A sequence of edges (i1, i2), (i2, i3), · · ·, (ik−1, ik) is called
a directed path from vertex i1 to vertex ik. If there is a
directed path from i to j between any two distinct vertices

1
σ-algebra is defined in (Chow & Teicher, 1997).

i, j ∈ V, then G is called strongly connected. A directed
tree is a directed graph where every vertex except the root
vertex, which has only children but no parent, has exactly
one parent. A spanning tree of a digraph is a directed tree
formed by graph edges that connected all the vertices of
the graph.

Below is a theorem for the Laplacian matrix.

Theorem 1. (Ren & Beard, 2005) The Laplacian matrix
LG of a digraph G = (V, E ,A) has at least one zero
eigenvalue and all of the nonzero eigenvalues are in the
open right half plane. Furthermore, LG has exactly one
zero eigenvalue if and only if G has a spanning tree.

2.2 Consensus Protocols

Here we consider a system consisting of N+1 agents where
an agent indexed by 0 acts as the leader and the other
agents indexed by 1, 2, ..., N , respectively, are referred to as
the followers. The dynamics of the ith follower is described
as follows:

ẋi(t) = ui(t), i = 1, 2, ..., N, (1)

where xi(t) ∈ R and ui(t) ∈ R are the state and control
input of the ith follower, respectively. In general, the
behavior of the leader is independent of the followers. x0

denotes the state of the leader and keeps being a constant.

With regarding the N + 1 agents as vertices, the topology
relationships among them can be conveniently described
by a digraph G = (V, E ,A) with V = {0, 1, 2, ..., N} and

A =









0 0 · · · 0
a10 a11 · · · a1N

...
...

. . .
...

aN0 aN1 · · · aNN









∈ R
(N+1)×(N+1).

For simplicity, let the digraph G = (V, E ,A) repre-
sent the subgraph formed by the N followers and B =
diag(b1, b2, ..., bN ) represent the leader adjacency matrix
associated with G where

V = V \ {0},A =







a11 · · · a1N

...
. . .

...
aN1 · · · aNN






∈ R

N×N , bi = ai0 ≥ 0.

Obviously, bi > 0 ⇔ 0 ∈ Ni.

As it is well-known, real communication processes are often
disturbed by random noises. In our models, the ith agent
receives information from its neighbors with measurement
noises. Let

yji(t) = xj(t) + nji(t), j ∈ Ni,

denote the measurement of the jth agent’s state xj(t) by
the ith agent, where {nji(t), j ∈ Ni, i = 1, 2, ..., N} are
independent standard white noises.

A group of controls

U = {ui, i = 1, 2, ..., N}

is called a measurement-based distributed protocol (Li &
Zhang, 2007), if ui(t) ∈ σ(xi(s),

⋃

j∈Ni
yji(s), 0 ≤ s ≤

t),∀ t ≥ 0, i = 1, 2, ..., N .

The so-called leader-following consensus problem is to
design a measurement-based distributed protocol such
that as the system evolves, each follower’s state will finally
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converge to the leader’s. We propose a protocol for the ith
agent as:

ui(t) = a(t)





∑

j∈Ni

aij (yji(t) − xi(t)) + bi(y0i(t) − xi(t))



 ,

(2)
where t ≥ 0, i = 1, 2, ..., N, a(·) : [0,∞) −→ (0,∞)
is a piecewise continuous function, usually called a time-
varying consensus gain (Li & Zhang, 2007) and the set of
neighbors Ni = Ni(G) of vertex i varies in the switching
topology case.

Remark 1. (i) Different from the leader-following con-
sensus protocols in (Jadbabaie et al., 2003; Ren & Beard,
2005; Hu & Hong, 2005), the measurement noises are
explicitly taken into account in the consensus protocol
(2). (ii) From (2) it is obvious that the consensus protocol
devised for the ith agent is indeed a measurement-based
distributed protocol since it depends only on the state
information of itself and its neighbors’.

Let αi represent the ith row of the matrix A, H =
diag(α1, α2, ..., αN ) which is an N ×N2 dimensional block
diagonal matrix, n0(t) = (n01, n02, ..., n0N )T , ni(t) =
(n1i, n2i, ..., nNi)

T , i = 1, 2, ..., N , and Q = (B, H)
is an N × N(N + 1) dimensional block matrix. Denote
X(t) = (x1(t), x2(t), · · · , xN (t))T . Substituting the con-
sensus protocol (2) to the system (1), we have

dX(t)

dt
= a(t)(−L

G
− B)X(t) + a(t)B · 1x0 + a(t)QZ(t),

(3)
where Z(t) = (nT

0 (t), nT
1 (t), ..., nT

N (t))T is an N(N + 1)
dimensional independent standard white noise sequence.
We can construct an N dimensional standard Brownian
motion W (t) = (W1(t), W2(t), · · · , WN (t))T , and rewrite
(3) as

dX(t) = a(t)(−L
G
−B)X(t)dt+a(t)B·1x0dt+a(t)GdW (t),

(4)
where

G = diag





√

b2
1 +

∑

j∈N1

a2
1j , · · · ,

√

b2
N +

∑

j∈NN

a2
Nj



 .

In the sequel, we will show that under the consensus
protocol (2), each follower’s state will converge to the
leader’s.

3. CONVERGENCE ANALYSIS

Prior to establishing the convergence properties of the
consensus protocol (2), we first introduce a definition of
consensus protocols for stochastic systems.

Definition 1. (Huang & Manton, 2006) A distributed
protocol U = {ui, i = 1, 2, ..., N} is called a strong mean
square consensus protocol if U = {ui, i = 1, 2, ..., N}
renders the system (1) has the following properties:
limt→∞ E(xi(t) − x∗)2 = 0, i = 1, 2, ..., N , where x∗ is
a random variable and E(x∗)2 < ∞.

Secondly, we make the following assumptions:

(A1) : G has a spanning tree.

(A2) :
∫ ∞

0
a(s)ds = ∞.

(A3) :
∫ ∞

0
a2(s)ds < ∞.

Remark 2. Generally speaking, a digraph does not al-
ways have a spanning tree. However, a strongly connected
digraph must have a spanning tree. Therefore, the span-
ning tree requirement of Assumption (A1) is weaker than
the strong connectivity condition. Assumptions (A2)-(A3)
are standard assumptions often used in the stochastic
approximation (Nevel’son & Has’minskii, 1976), which
(especially (A2)) in some cases happen to be the weakest
conditions to ensure a consensus protocol (see Theorem 3
below).

Let δ(t) = X(t) − x0 · 1. Then, by (4) we have

dδ(t) = a(t)(−L
G
− B)δ(t)dt + a(t)GdW (t). (5)

Next, we will demonstrate that the protocol (2) is a strong
mean square consensus protocol under Assumptions (A1)-
(A3).

3.1 Fixed Topology

Theorem 2. For system (1) with the consensus protocol
(2), if Assumptions (A1)-(A3) hold, then

lim
t→∞

E‖δ(t)‖2 = 0. (6)

That is, (2) is a strong mean square consensus protocol.

Proof. Noticing the definition of the matrix B and the
fact that L

G
is the Laplacian matrix of G, we know

LG =

[

0 0
−B · 1 L

G
+ B

]

is the Laplacian matrix of G. Consequently, from Assump-
tion (A1) and Theorem 1 it follows that −L

G
− B is a

stable matrix. Thus, the Lyapunov equation

(−L
G
− B)P + P (−L

G
− B)T = −IN (7)

has a unique positive definite solution P . Let

V (t) = δT (t)Pδ(t).

Then, by (5) and Itô formula, we get

dV (t) = − a(t)δT (t)δ(t)dt + a2(t)tr(PGGT )dt

+ 2a(t)δT (t)PGdW (t).

Noticing that P > 0, we have

dV (t) ≤−
a(t)

λmax(P )
V (t)dt + a2(t)tr(PGGT )dt

+ 2a(t)δT (t)PGdW (t).

(8)

Now we prove that

E

∫ t

t0

a(s)δT (s)PGdW (s) = 0, ∀ 0 ≤ t0 ≤ t. (9)

For any given t0 ≥ 0 and T ≥ t0, let τ t0
K = inf{t ≥ t0 |

δT (t)Pδ(t) ≥ K}, where K is a given positive integer.
From (8) one can get

E[V (t ∧ τ t0
K )χ{

t≤τ
t0
K

}] − E[V (t0)]

≤−
1

λmax(P )

∫ t

t0

a(s)E[V (s ∧ τ t0
K )χ{

s≤τ
t0
K

}]ds

+tr(PGGT )

∫ t

t0

a2(s)ds
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≤ tr(PGGT )

∫ T

t0

a2(s)ds, ∀ t0 ≤ t ≤ T,

which implies that there exists a constant Mt0,T > 0 such
that

E[V (t ∧ τ t0
K )χ{

t≤τ
t0
K

}] ≤ Mt0,T < ∞, ∀ 0 ≤ t0 ≤ T.

Noticing that t ∧ τ t0
K

a.s.
−−−−→
K→∞

t, by the above inequality and

the Fatou lemma, we have

sup
t0≤t≤T

E[V (t)] ≤ Mt0,T .

Thus,

E

∫ t

t0

a2(s)V (s)ds ≤ sup
t0≤t≤T

E[V (t)]

∫ T

t0

a2(s)ds < ∞,

∀ t0 ≤ t ≤ T.

By the arbitrariness of T , we obtain

E

∫ t

t0

a2(s)V (s)ds < ∞, ∀ 0 ≤ t0 ≤ t.

This together with

E

∫ t

t0

a2(s)‖δT (s)PG‖2ds ≤ ‖P‖‖G‖2E

∫ t

t0

a2(s)V (s)ds

gives (9). From (8) it follows that for any t ≥ 0 and h > 0,

E[V (t + h)] − E[V (t)] ≤−
1

λmax(P )

∫ t+h

t

a(s)E[V (s)]ds

+ tr(PGGT )

∫ t+h

t

a2(s)ds,

Further,

lim sup
h→ 0+

E[V (t + h)] − E[V (t)]

h

≤−
1

λmax(P )
a(t)E[V (t)] + tr(PGGT )a2(t).

Thus, by the comparison principle (Michel & Miller, 1977),
we have that for any t ∈ [0, t + h],

E[V (t)] ≤ E[V (0)]exp{−
1

λmax(P )

∫ t

0

a(s)ds}

+tr(PGGT )

∫ t

0

a2(s)exp{−
1

λmax(P )

∫ t

s

a(τ)dτ}ds.(10)

By Assumption (A3), for any given ǫ > 0 there exists
s0 > 0 such that

∫ ∞

s0
a2(s)ds < ǫ. Hence,

tr(PGGT )

∫ t

0

a2(s)exp{−
1

λmax(P )

∫ t

s

a(τ)dτ}ds

≤tr(PGGT )exp{−
1

λmax(P )

∫ t

s0

a(τ)dτ}

∫ ∞

0

a2(s)ds

+ tr(PGGT )

∫ ∞

s0

a2(s)ds

≤o(1) + tr(PGGT )ǫ, t → ∞.

Since ǫ is arbitrary,

lim
t→∞

tr(PGGT )

∫ t

0

a2(s)exp{−
1

λmax(P )

∫ t

s

a(τ)dτ}ds = 0.

Noticing that ‖δ(t)‖2 ≤ V (t)
λmin(P ) , by Assumption (A2) and

(10), (6) holds. 2

Remark 3. From Theorem 2 we can see that in the fixed
topology case, under Assumptions (A1)-(A3), the designed
protocol ensures that the state of each follower converges
to that of the leader in mean square.

Remark 4. Different from (Li & Zhang, 2007), here we
only require G has a spanning tree, and do not require it
is balanced.

Remark 5. It is worth pointing out that, unlike (Jad-
babaie et al., 2003) and (Tsitsiklis et al., 1986), here
random measurement noises are considered. To reduce
the influence of noises, time-varying consensus gains are
adopted, which renders the closed-loop system (5) is a
time-varying stochastic differential equation. Assumption
(A1) ensures the existence of a Lyapunov function, with
which we complete the convergence analysis of the closed-
loop system; while Assumptions (A2)-(A3) ensure that the
mean square error E[‖δ(t)‖2] converges to zero.

As stated in Theorem 2, Assumptions (A1)-(A3) are suf-
ficient conditions to guarantee that the protocol (2) is a
strong mean square consensus protocol. In what follows,
we will prove that when the measurement noises are zeros,
Assumptions (A1)-(A2) are necessary, too.

When nji(t) ≡ 0, the protocol (2) is reduced to

ui(t) = a(t)





∑

j∈Ni

aij (xj(t) − xi(t)) + bi(x0 − xi(t))



,

t ≥ 0, i = 1, 2, ..., N.

(11)

In this case, applying the protocol (11) to the system (1),
we obtain a tracking error equation as follows:

dδ(t) = a(t)(−L
G
− B)δ(t)dt. (12)

For this tracking error, we state the following result.

Theorem 3. For the system (1), if the protocol (2) is
applied and nji(t) ≡ 0, j ∈ Ni, i = 1, 2, ..., N, then for
any initial value X(0), limt→∞ ‖δ(t)‖ = 0 if and only if
Assumptions (A1)-(A2) hold.

Remark 6. When nji(t) ≡ 0, from Theorem 3 it can be
seen that Assumptions (A1)-(A2) are the necessary and
sufficient conditions ensuring the followers can eventually
follow the leader, where Assumption (A1) guarantees the
connectivity of the network topology which makes the
state of each follower eventually equal the leader’s; and
Assumption (A2) guarantees the consensus error δ(t) con-
verges to zero with a certain rate.

Remark 7. When nji(t) ≡ 0, in (Jadbabaie et al., 2003;
Tsitsiklis et al., 1986) the theory of stochastic matrices
and nonnegative matrices was used for the convergence
analysis. However, here Assumption (A2) cannot guaran-
tee that there exists a positive constant α > 0 such that
a(t) ≥ α, ∀ t ≥ 0 (for example, a(t) = 1

t+1 , ∀ t ≥ 0), and
so, the positive entries of those off-diagonal ones in the
state matrix of the closed-loop system (12) are not uni-
formly bounded away from zero. Thus, the main condition
Assumption 1(b) in (Tsitsiklis et al., 1986 ) does not hold,
and the stochastic matrix methods used in (Jadbabaie et
al., 2003; Tsitsiklis et al., 1986) do not work here.
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Remark 8. In Theorem 3 G is not required to be bal-
anced, which makes the tools of symmetric digraphs used
in (Li & Zhang, 2007) do not work. Here, we propose a
Lyapunov-based approach to deal with the problem.

As shown above, we analyze the convergence of the con-
sensus protocol (2) under the fixed topologies. However,
in most real communication processes, the communication
links among the agents often change in time. For example,
in the flocking and vehicle formation control, the com-
munication topology depends on the environment of the
flocking and the relative positions of the vehicles, which
are usually changing in time. Thus, it will be interesting
to study the convergence of the consensus protocol under
switching topologies.

3.2 Switching Topology

σ(t) : [0,∞) −→ IT ∗ is a switching signal that determines
the communication topology. The set T ∗ is a set of
digraphs with a common vertex set V. Since at most a
digraph with vertex set V has N(N +1) directed edges, the
set T ∗ is finite and can be denoted as T ∗ = {G1, ...,GN∗},
where N∗ represents the total number of digraphs in T ∗

and IT ∗ = {1, 2, ..., N∗} is the index set associated with
the elements of T ∗. We can rewrite consensus protocol (2)
as

ui(t) = a(t)

[

∑

j∈Ni(Gσ(t))

aij(Gσ(t))(yji(t) − xi(t))

+ bi(Gσ(t))(y0i(t) − xi(t))

]

, t ≥ 0,

(13)

where i = 1, 2, ..., N ; Ni(Gσ(t)) is the set of neighbors of
agent i in the digraph Gσ(t); aij(Gσ(t)) (i, j = 1, 2, ..., N) is
the element of the adjacency matrix of Gσ(t), and BGσ(t)

=

diag(b1(Gσ(t)) ,..., bN (Gσ(t))) such that bi(Gσ(t)) > 0 if and
only if 0 ∈ Ni(Gσ(t)).

Let δ(t) = X(t) − x0 · 1 as in Section 3.1. Then, by
substituting the protocol (13) to the system (1), we get

dδ(t) = a(t)(−L
Gσ(t)

− BGσ(t)
)δ(t)dt + a(t)GGσ(t)

dW (t),

(14)
where L

Gσ(t)
is the Laplacian matrix of the digraph Gσ(t)

formed by N followers and

GGσ(t)
=diag





√

b2
1(Gσ(t)) +

∑

j∈N1(Gσ(t))

a2
1j(Gσ(t)),

· · · ,

√

b2
N (Gσ(t)) +

∑

j∈NN (Gσ(t))

a2
Nj(Gσ(t))



 .

In the sequel, we will analyze the convergence of the
consensus protocol (13) based on the closed-loop system
(14). The main result of this section can be summarized
as follows:

Theorem 4. For the system (1) with the protocol (13), if
for any t ≥ 0, Gσ(t) is balanced, and Gσ(t) has a spanning
tree, then under Assumptions (A2)-(A3),

lim
t→∞

E‖δ(t)‖2 = 0.

Remark 9. From Theorem 4 it can be seen that even
under the switching topologies, the consensus protocol (2)
can still guarantee the state of each follower converges
to that of the leader, i.e., (2) is a strong mean square
consensus protocol.

4. NUMERICAL EXAMPLE

In this section, we give a numerical simulation to illustrate
our results.

We consider a system consisting of one leader indexed by 0
and two followers indexed by 1 and 2, respectively. x0 = 1
is the state of the leader and the dynamics of ith follower
is described as follows:

ẋi(t) = ui(t), i = 1, 2. (15)

Assume the initial states of the two followers indexed by
1 and 2 are x1(0) = 2 and x2(0) = −2, respectively. Let
G = (V, E ,A) be the communication topology graph as
shown in Fig.1 with

A =

[

0 0 0
1 0 0
1 1 0

]

.

yji(t) = xj(t)+nji(t)(j ∈ Ni, i = 1, 2) is the measurement
of jth agent’s state xj(t) by ith agent, where {nji(t), i, j =
0, 1, 2} are independent standard white noises.

We choose the consensus gain function a(t) = 1
t+1 , t ≥ 0,

and apply the consensus protocol (2) to the system (15).
The simulation result for the states of the leader and the
two followers is shown in Fig.2, from which we can see that
two followers can eventually follow the leader.
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Fig.2 Curves of states of the agents
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5. CONCLUSION

This paper is concerned with leader-following consensus
control for multi-agent systems under measurement noises.
Time-varying consensus gains are introduced into the net-
work protocol designed. By using the stochastic analysis
and algebraic graph theory, it is shown that the protocol
designed is a strong mean square consensus protocol under
the fixed topologies. In addition, if the subgraph formed by
the followers is balanced, the protocol is still strong mean
square consensus even under the switching topologies.

It is worth pointing out that this paper is only a prelim-
inary step on leader-following consensus under measure-
ment noises. When the state of the leader is not a constant,
it will be more interesting to study consensus protocols to
guarantee the convergence of the state of each follower to
that of the time-varying leader under measurement noises.
However, as Ren (2007) pointed out, the extension of
consensus algorithms from a constant reference to a time-
varying one is non-trivial. There are, of course, many other
topics worth investigating, such as, how to design protocols
for time-delay cases, and how to get almost sure consensus
protocols, etc.
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