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Abstract: This paper deals with observability of affine discrete-time asynchronous switched
systems, that is affine switched systems whose switching times may be different from sampling
instants. Two observability notions are studied: pathwise observability and mode observability.
We show that there exist some sampling frequencies that preserve pathwise observability if any
subsystem is observable. Necessary and sufficient conditions are given for mode observability in
the autonomous case. The theoretical results are illustrated through an example.
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1. INTRODUCTION

Hybrid dynamical systems are systems whose behavior
is simultaneously described by continuous and discrete
variables. Each modality of the discrete variables corre-
sponds to a mode. For a given mode, the hybrid system’s
evolution is described by a continuous system. Modes tran-
sitions obey conditions on the discrete inputs and/or on
the states. In this paper, systems whose mode transitions
depend on unknown discrete inputs will be referred as
switched systems.

Observability of switched systems has already been studied
in several papers in the linear and nonlinear cases. In
Vidal et al. (2002), the authors deal with the observ-
ability of linear discrete-time switched systems. In their
contribution, the system is supposed to remain in each
mode during a period which is at least equal to twice
its joint-observability index. The work exposed in Vidal
et al. (2003) is the continuous-time counterpart of the
previous article. In Babaali and Egerstedt (2004), the
authors study the observability for autonomous and non-
autonomous switched linear systems which may switch at
each sampling instant. In that paper, the pathwise observ-
ability and the forward mode observability are shown to
be decidable for autonomous linear discrete-time switched
systems. The continuous-time version of this work is pre-
sented in Babaali and Pappas (2005). Generally speaking,
observability of switched systems is easier to study when
considering continuous-time systems rather than discrete-
time systems. In the first case, it is only needed to study
consecutive output derivatives obtained with the same
mode, whereas in the second case, observability criterion
is based on the consecutive outputs at different instants,
which may be obtained with different modes.

The observability of piecewise linear systems was also
characterized in Benali et al. (2004) (continous-time) and
Birouche et al. (2006) (discrete-time). In Bemporad et al.
(2000), the authors deal with observability of MLD (mixed

logic dynamical) systems which are a kind of pathwise
affine systems.

Some works were also published concerning observabil-
ity of nonlinear hybrid systems. In Boutat et al. (2004),
sufficient geometrical conditions are given to analyze the
observability of continuous-time piecewise systems. This
approach is based on observability canonical forms. A
study concerning mode and state observability for nonlin-
ear discrete-time switched systems can be found in Kajdan
et al. (2007).

In the previously cited papers dealing with the discrete-
time case, the authors consider only “pure discrete-time”
hybrid systems which switch only at sampling instants.
The particularity of the presented work is that we consider
some sampled hybrid systems whose switches may occur
between two sampling times. Such hybrid systems are said
to be asynchronous.

In this paper, we will first present the considered class
of hybrid systems. Once the collection of the consecutive
outputs on a temporal window is expressed as a function
of the state at the beginning of the window, the mode
evolution and the consecutive inputs, then pathwise ob-
servability and mode observability will be characterized.
Finally, the theoretical results will be illustrated through
an example.

2. PROBLEM STATEMENT

The following class of switched systems will be considered
in this paper:

ẋ(t) = Aq(t)x(t) +Bq(t)u(t) + φq(t) (1a)
yk = Cq(kT )x(kT ) +Dq(kT )u(kT ) + γq(kT ) (1b)

where x(t) ∈ Rn, u(t) ∈ Rm, yk ∈ Rp denote the state,
the input and the output vectors respectively. T is the
sampling period and k ∈ N. q(t) ∈ Q = {1, . . . , s} ⊂ N is
the mode of the system at time instant t. Each element
q ∈ Q represents a kind of specific dynamic given by
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the matrices Aq, Bq, Cq, Dq and the vectors φq and γq.
A switch between two modes occurs at time ts if the
unknown discrete input vector d(t) varies at time ts, i.e.
d(t+s ) 6= d(t−s ). For a given mode, the vectors φq and γq
are constant. They may represent the influence of some
discrete inputs or they can be used to model a nonlinear
system which is linearized using affine functions. In the
following, S(q) ⊂ Q \ {q} will be the subset of modes
which can be reached in one switch from a given mode q.

The following assumptions are assumed to be verified:
Assumptions 1.

• The mode q(t) is a piecewise constant, right continu-
ous function.
• The minimum time between two consecutive switch-

ing times tj and tj+1 is greater or equal to T (then
only one switch may occur at most on any time
interval [kT ; (k + 1)T [.
• The input is constant on any time interval

[kT ; (k + 1)T [: u(t) = uk, ∀t ∈ [kT ; (k + 1)T [

Because of right continuity of q(t), a switch is said to occur
at time ts if q(ts) 6= q(t−s ). For more clarity, the mode and
the state at time kT will be denoted qk and xk respectively.

3. SYSTEM EQUATIONS REWRITTEN ON A
TEMPORAL WINDOW

If the mode and the inputs are constant over the interval
[t0; t[, then the solution of the differential equation (1a)
with initial condition x(t0) is:

x(t) = f(
q(t0),t−t0

)
,u(t0)

(x(t0))

where

f(q,t),u(x) = etAqx+
(∫ t

0

e(t−τ)Aqdτ

)
(Bqu+ φq) (2)

Then, the state xk+1 at time (k+ 1)T can be written as a
function of both the previous state xk at time kT and the
path Q[k;k+1[ on [kT ; (k + 1)T [:

xk+1 = fQ[k;k+1[,uk(xk) (3)

• If no switch occurs on interval ]kT ; (k + 1)T [:
fQ[k;k+1[,uk = f(qk,T ),uk

• If a switch occurs at time ts ∈]kT ; (k + 1)T [:
fQ[k;k+1[,uk = f(

q(ts),(k+1)T−ts
)
,uk
◦ f(

qk,ts−kT
)
,uk

The path Q[k;k̄[ on the time interval [kT ; k̄T [, k̄ ≥ k + 1
is the mode evolution on this interval. It is represented
by a tuple which is composed by the different modes on
[kT ; k̄T [, and the corresponding durations for each of these
modes on [kT ; k̄T [. For instance, if switches occur at times
t1, t2,. . . , tN on the interval ]kT ; k̄T [, then:
Q[k;k̄[ =

(
qk, t1 − kT, q(t1), t2 − t1, . . . , q(tN ), k̄T − tN

)
where t1 − kT > 0, tj+1 − tj > 0 and k̄T − tN > 0.

Using equation (3), the consecutive states xk̄, may be
expressed as follows

xk̄ = fQ[k;k̄[,U[k;k̄−1]
(xk)

where the input sequence U[k;k̄−1], is given by

U[k;k̄−1] =
[
uTk uTk+1 . . . u

T
k̄−1

]T

and where the function fQ[k;k̄[,U[k;k̄−1]
, is defined recursively

by:
fQ[k;k̄[,U[k;k̄−1]

= fQ[k̄−1;k̄[,uk̄−1
◦ fQ[k;k̄−1[,U[k;k̄−2]

For more clarity, let
hq,u(x) = Cqx+Dqu+ γq

be the observation function. The output collection Y[k;k̄]

on the interval [kT ; k̄T ] may be expressed as a function of
the state xk, the input collection U[k;k̄] and the path Q[k;k̄]

on the interval [kT ; k̄T ]:

Y[k;k̄] =
[
yTk yTk+1 . . . y

T
k̄

]T
= HQ[k;k̄],U[k;k̄]

(xk)

where

HQ[k;k̄],U[k;k̄]
(xk) =[

hTqk,uk(xk) . . .
(
hqk̄,uk̄ ◦ fQ[k;k̄[,U[k;k̄]

)T
(xk)

]T
The path Q[k;k̄] on [kT ; k̄T ] is represented by a tuple. For
instance if switches occur at times t1, t2,. . . , tN on the
interval ]kT ; k̄T ], then:
Q[k;k̄] =

(
qk, t1 − kT, q(t1), t2 − t1, . . . , q(tN ), k̄T − tN

)
where t1 − kT > 0, tj+1 − tj > 0 and k̄T − tN ≥ 0. The
main difference with Q[k;k̄[ is that Q[k;k̄] takes into account
a switch which may occur at time tN = k̄T , and in this
case, k̄T − tN = 0.

If no switch occurs during interval ]kT ; k̄T ] the path on the
interval [kT ; k̄T ] is Q[k;k̄T ] = (qk, (k̄ − k)T ). Then, letting
L = k̄ − k:

H(qk,LT ),U[k;k+L]
(x) =

Ω(qk,LT )x+ Γ(qk,LT )U[k;k+L] + Λ(qk,LT ) (4)
where the observability matrix Ω(q,LT ), the matrix Γ(q,LT )

and the vector Λ(q,LT ) are given by:

Ω(q,LT ) =


Cq

Cqe
TAq

...
Cqe

LTAq

 ,Λ(q,LT ) =


γq

CqΘ(q,T )φq + γq
...

CqΘ(q,LT )φq + γq


Γ(q,LT ) =

Dq 0 . . . 0 0
CqΞ(q,T )Bq Dq . . . 0 0

...
...

...
...

CqΞ(q,LT )Bq CqΞ(q,(L−1)T )Bq . . . CqΞ(q,T )Bq Dq


with Θ(q,t) =

∫ t
0
e(t−τ)Aqdτ and Ξ(q,t) =

∫ T
0
e(t−τ)Aqdτ .

Now, we will study what happens if some switches
occur at times t1, . . . , tN on interval ]kT ; k̄T ]. Let
kj , j ∈ {1, . . . , N} be the integers such that
tj ∈]kjT ; (kj + 1)T ]

HQ[k;k̄],U[k;k̄]
(x) =

H(
qk,(k1−k)T

)
,U[k;k1]

(x)

H(
q(t1),(k2−k1−1)T

)
,U[k1+1;k2]

◦ fQ[k;k1+1[,U[k;k1](x)

...
H(

q(tN ),(k̄−kN−1)T
)
,U[kN+1;k̄]

◦ fQ[k;kN+1[,U[k;kN ](x)


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Since function f is affine, the general expression of
HQ[k;k̄],U[k;k̄]

(x), for any possible path Q[k;k̄[ is given by:

HQ[k;k̄],U[k;k̄]
(x) = ΩQ[k;k̄]

x+ ΓQ[k;k̄]
U[k;k̄] + ΛQ[k;k̄]

(5)

4. PATHWISE OBSERVABILITY

We will denote LL the set of all possible paths on any time
interval with length LT , i.e. the set of every path Q[k;k+L],
k ∈ N.
Definition 1. (Pathwise observability). System (1) is said
to be pathwise observable if there exists an integer L such
that for any pair of possible states (x, x̄) ∈ (Rn)2 and for
every path Q ∈ LL:

x 6= x̄ =⇒ HQ,U (x) 6= HQ,U (x̄)
The smallest integer L is the index of pathwise observabil-
ity.

This definition means that system (1) is pathwise observ-
able if and only if there exists an integer L such that, if
the mode is known on an interval [k; k+L], then the state
at time kT is observable. Using the expression of HQ,U (x)
given in (5), the following theorem is easily obtained:
Theorem 1. (Pathwise observability). System (1) is path-
wise observable if and only if there exists an integer L such
that for every path Q ∈ LL:

rank (ΩQ) = n

Then pathwise observability only depends on observability
matrices ΩQ but not on inputs.

The following theorem gives sufficient conditions for path-
wise observability of asynchronous affine systems:
Theorem 2. If there exists an integer ν such that

(i) for any mode q ∈ Q, rank
(
Ω(q,νT )

)
= n,

(ii) any two consecutive switching-times tj and tj+1 are
such that tj+1 − tj ≥ (ν + 1)T ,

then, system (1) is pathwise observable, and the index of
pathwise observability is lower or equal to 2ν.

Proof. Let consider a path Q[0;2ν] ∈ L2ν and assume that
assumptions (i)-(ii) are verified:

• If no switch occurs on ]0; νT ], then
rank

(
ΩQ[0;ν]

)
= rank

(
Ω(q0,ν)

)
= n and therefore

rank
(
ΩQ[0;2ν]

)
= n.

• If a switch occurs at time
ts ∈]ksT ; (ks + 1)T ] ⊂]0; νT ], where ks ∈ N,
then ks + ν + 1 ≤ 2ν and

ΩQ[0;ks+ν+1] =

[ Ω(q0,ksT )

Ω(
q(ts),νT

)e((ks+1)T−ts
)
Aq(ts)etsAq0

]

Since e

(
(ks+1)T−ts

)
Aq(ts) and etsAq0

are square invertible matrices:

rank
(

Ω(
q(ts),νT

)e((ks+1)T−ts
)
Aq(ts)etsAq0

)
= n.

Consequently, rank
(
ΩQ[0;2ν]

)
= n.

2

In order to apply theorem 2, the system needs to switch
“sufficiently slowly”, if compared to the sampling period.

Furthermore, the sampling period must preserve observ-
ability of any subsystem (i.e. affine system corresponding
to a given value q of the mode).

Let us recall the following result whose proof may be found
in (Sontag, 1998, p 275):
Theorem 3. An observable continuous-time invariant sys-
tem

ẋ = Ax+Bu

y = Cx

remains observable provided that the sampling period T
is smaller than π

| Imλ| , for any eigenvalue of A.

This result permits to obtain a sampling period which
guarantees observability of (1):
Theorem 4. If any subsystems of the switched system (1)
is continuous-time observable, that is:

rank
([
CTq ATq C

T
q . . .

(
An−1
q

)T
CTq

]T)
= n ∀q ∈ Q

and if there exists a minimum time ∆tsmin > 0 between
two consecutive switches, then the switched system (1) is
pathwise observable if the sampling period is such that:

T <
π

| Imλ|
and T ≤ ∆tsmin

n

for any eigenvalue λ of any matrix Aq.

Proof. If the sampling period is such that T < π
| Imλ| for

any eigenvalue λ of matrix Aq, then according to theorem
3, observability of any subsystem is preserved, i.e.

rank
(
Ω(q,(n−1)T )

)
= n, ∀q ∈ Q

Consequently, according to theorem 2 (with ν = n − 1),
the system (1) is pathwise observable if furthermore
T ≤ ∆tsmin

n .

2

It can be noticed that sampled pathwise observability
has been studied for linear systems with switched mea-
surements in Babaali and Egersted (2004), but with no-
switched state evolution.

5. MODE OBSERVABILITY

In the following, we will study mode observability only in
the autonomous case, that is for switched systems given
by:

ẋ(t) = Aq(t)x(t) + φq(t) (6a)
yk = Cq(kT )x(kT ) + γq(kT ) (6b)

Definition 2. System (6) is said to be mode observable
if there exists an integer L such that for any pair of
possible states (x, x̄) ∈ (Rn)2 and for every pair of paths(
Q, Q̄) = (Q[0;L], Q̄[0;L]

)
∈ L2

L:

Q[0;1[ 6= Q̄[0;1[ =⇒ HQ(x) 6= HQ̄(x̄)
The smallest integer L is the index of mode observability.

This definition means that if the system (6) is mode
observable with an index LMO, and if two different paths
Q[k;k̄[ and Q̄[k;k̄[ are considered on an interval [kT ; k̄T [
with k̄ > k, then the two corresponding output collections
on interval [kT ; (k̄ + LMO − 1)T ] will be different.
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Let ΩQ,Q̄ =
[
ΩQ ΩQ̄

]
and ΛQ,Q̄ = ΛQ − ΛQ̄, necessary

and sufficient conditions for mode observability are given
in the following theorem:
Theorem 5. System (6) is mode observable if and only if
there exists an integer L such that for every pair of paths
(Q, Q̄) = (Q[0;L], Q̄[0;L]) ∈ L2

L:

Q[0;1[ 6= Q̄[0;1[ =⇒ rank
(
ΩQ,Q̄

)
6= rank

([
ΩQ,Q̄ ΛQ,Q̄

])
Proof. HQ(x) and HQ̄(x̄) are given by

HQ(x) = ΩQx+ ΛQ and HQ̄(x̄) = ΩQ̄x̄+ ΛQ̄
then

HQ(x) 6= HQ(x̄),∀x, x̄ ∈ Rn ⇐⇒ ΛQ,Q̄ /∈ Im
(
ΩQ,Q̄

)
Consequently,

HQ(x) 6= HQ(x̄),∀x, x̄ ∈ Rn

⇐⇒ rank
(
ΩQ,Q̄

)
6= rank

([
ΩQ,Q̄ ΛQ,Q̄

])
2

Given an integer L, computing the rank of ΩQ,Q̄ and[
ΩQ,Q̄ ΛQ,Q̄

]
for any possible paths Q, Q̄ ∈ LL may be

difficult in general case. Moreover, an infinite number of
values of L must be considered to prove that the system
is not mode observable. Consequently, we propose the
following theorem for mode observability under stronger
conditions:
Theorem 6. Assume that there exists an integer µ, such
that:

(i) any two consecutive switching-times tj and tj+1 are
such that tj+1 − tj ≥ (2µ+ 1)T ,

(ii) any path (q, µT ) is observable:
x 6= x̄⇒ H(q,µT )(x) 6= H(q,µT )(x̄),

(iii) any two different paths Q = (q, µT ), and Q̄ = (q̄, µT )
are discernable:

q 6= q̄ ⇒ H(q,µT )(x) 6= H(q̄,µT )(x̄), ∀x, x̄ ∈ Rn.

Then, system (6) is mode observable, if and only if

(iv)
[
hq(x)
fP (x)

]
6=
[
hq̄(x̄)
fP̄ (x̄)

]
,∀x, x̄ ∈ Rn

(v) P[0;1[ 6= ¯̄P[0;1[ =⇒ ∀x, x̄ ∈ Rn,
[
hq(x)
fP (x)

]
6=
[
h ¯̄q(x̄)
f ¯̄P (x̄)

]
for any paths
P[0;1] = (q, t, q̄, T − t), P̄[0;1] = (q̄, T ), ¯̄P[0;1] = (¯̄q, t̄, q̄, T − t̄)
with q̄ ∈ S(q) ∩ S(¯̄q) and t, t̄ ∈]0;T ].

Moreover, if all the previous conditions are verified, the
index of mode observability is lower or equal to 3µ.

Proof.
The proof of this theorem is given in Appendix A. 2

Let us clarify the meaning of the different assump-
tions of this theorem. For this, consider two paths
Q[k;k+3µ], Q̄[k;k+3µ] and two state vectors xk and x̄k.
If Q[k;k+µ] and Q̄[k;k+µ] are two paths with no switch,
i.e. Q[k;k+µ] = (qk, µT ) and Q̄[k;k+µ] = (q̄k, µT ), then
assumption (iii) implies that the outputs HQ[k;k+3µ](xk)
and HQ̄[k;k+3µ]

(x̄k) are different when qk 6= q̄k. How-
ever, this assumption is not sufficient even if the sys-
tem switches slowly (which corresponds to assumption

(i)). If, for instance, Q[k+1;k+3µ] = Q̄[k+1;k+3µ], we need
that when Q[k;k+1[ 6= Q̄[k;k+1[ the state evolutions or
the outputs obtained with the two paths are different
on the interval [k; k + 1[ that is : hqk(xk) 6= hq̄k(x̄k)
or fQ[k;k+1[(xk) 6= fQ̄[k;k+1[

(x̄k)). This explains the neces-
sity of assumptions (iv) and (v) (for more details, the
reader can refer to the subsection A.1 of the proof).
Moreover, assumption (ii) ensures that when the evo-
lutions on [k; k + 1[ are different, then the two output
collections on [k + 1; k + µ + 1] which are given by
HQ[k+1;k+µ+1] ◦fQ[k;k+1[(xk) and HQ[k+1;k+µ+1] ◦fQ̄[k;k+1[

(x̄k)
are different. In subsection A.2 of the proof, the assump-
tions (i)-(v) are proved to be sufficient for mode observ-
ability by considering all the possible values for the paths
Q[k;k+3µ] and Q̄[k;k+3µ].

The following remark may be helpful in order to prove
mode observability:
Remark 1. Notice that, by letting z = f(q,t)(x), the con-
ditions (iv) and (v) are equivalent to:(

hq ◦ f−1
(q,t) − hq̄ ◦ f

−1
(q̄,t)

)
(z) 6= 0

and

(q, t) 6= (¯̄q, t̄)⇒
(
hq ◦ f−1

(q,t) − h ¯̄q ◦ f−1
(¯̄q,t̄) ◦ f

−1
(q̄,t−t̄)

)
(z) 6= 0

for any modes q, q̄, ¯̄q ∈ Q such that q̄ ∈ S(q) ∩ S(¯̄q), for
every state z ∈ Rn, for any t ∈]0;T ] and for any t̄ ∈]0; t].

6. EXAMPLE

Mode 1 Mode 3Mode 2

Fig. 1. Allowed switches in example system

Let us consider the autonomous switched system (6) with
the three following modes:

A1 = A3 =
[
2 0
0 3

]
, A2 =

[
5 0
0 3

]
;C1 = C2 = C3 =

[
1 0
0 1

]
φ1 = φ3 =

[
0
0

]
, φ2 =

[
5
3

]
; γ1 = γ2 =

[
0
0

]
, γ3 =

[
−1
0

]
.

Notice that (ii) is satisfied for any integer µ ≥ 0 and that
the system is pathwise observable for any T > 0. The
permitted switches are presented in figure 1.

Using (2), the functions fq, q ∈ {1; . . . ; 3} are given by:

f(1,t)(x) = f(3,t)(x) =
[
e2t 0
0 e3t

]
x

f(2,t)(x) =
[
e5t 0
0 e3t

]
x+

[
e5t − 1
e3t − 1

]
First, we want to know if there exists an integer µ such that
assumption (iii) is true. According to (4), the functions
H(q,T ), q ∈ {1; . . . ; 3} are given by:

H(1,T )(x) =


1 0
0 1
e2T 0
0 e3T

x,H(3,T )(x) =


1 0
0 1
e2T 0
0 e3T

x+

−1
0
−1
0


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H(2,T )(x) =


1 0
0 1
e5T 0
0 e3T

x+


0
0

e5T − 1
e3T − 1


For each pair (q, q̄) such that q 6= q̄, we compute the
difference H(q,T )(x)−H(q̄,T )(x̄):

H(1,T )(x)−H(2,T )(x̄)

=


1 0 1 0
0 1 0 1
e2T 0 e5T 0
0 e3T 0 e3T

[ x−x̄
]

+


0
0

1− e5T

1− e3T



H(1,T )(x)−H(3,T )(x̄) =


1 0 1 0
0 1 0 1
e2T 0 e2T 0
0 e3T 0 e3T

[ x−x̄
]

+

1
0
1
0


H(2,T )(x)−H(3,T )(x̄)

=


1 0 1 0
0 1 0 1
e5T 0 e2T 0
0 e3T 0 e3T

[ x−x̄
]

+


1
0
e5T

e3T − 1


All these three quantities are different from 0, for any
x, x̄ ∈ Rn, and for any T > 0, thus assumption (iii) is
true for µ = 1.

The following expressions:(
h1 ◦ f−1

(1,t) − h2 ◦ f−1
(2,t)

)
(z)

=
[
e−2t − e−5t 0

0 0

]
z +

[
1− e−5t

1− e−3t

]
(
h2 ◦ f−1

(2,t) − h3 ◦ f−1
(3,t)

)
(z)

=
[
e−5t − e−2t 0

0 0

]
z +

[
e−5t

e−3t − 1

]
are different from 0 for any vector z ∈ Rn, and for any
t 6= 0. This means that condition (iv) is true.

Now we want to prove that condition (v) is true.(
h1 ◦ f−1

(1,t) − h3 ◦ f−1
(3,t̄) ◦ f

−1
(2,t−t̄)

)
(z) =[

e−2t
(

1− e3(t̄−t)
)

0
0 0

]
z +

e−2t̄
(

1− e5(t̄−t)
)

+ 1

e−3t̄
(

1− e3(t̄−t)
)  (7)

is different from 0 for any t, t̄ and for any z ∈ Rn.(
h2 ◦ f−1

(2,t) − h2 ◦ f−1
(2,t̄) ◦ f

−1
(1,t−t̄)

)
(z) =[

e−5t
(

1− e3(t−t̄)
)

0
0 0

]
z +

[
e−5t − e−5t̄

e−3t − e−3t̄

]
(8)

is different from 0 for any t and t̄ such that t 6= t̄ and
for any z ∈ Rn. Using the fact that f(3,t)(x) = f(1,t)(x)
and h3(x) = h1(x) + γ3, for any x ∈ Rn, the expression
of
(
hq ◦ f−1

(q,t) − h ¯̄q ◦ f−1
(¯̄q,t̄) ◦ f

−1
(q̄,t−t̄)

)
(z) can be easily ob-

tained from (7) and (8), and we can prove that:

(q, t) 6= (¯̄q, t̄)⇒
(
hq ◦ f−1

(q,t) − h ¯̄q ◦ f−1
(¯̄q,t̄) ◦ f

−1
(q̄,t−t̄)

)
(z) 6= 0

for any modes q, q̄, ¯̄q ∈ Q such that q̄ ∈ S(q) ∩ S(¯̄q), for
any state z ∈ Rn, and for any t and t̄ verifying t ≥ t̄ > 0

Finally, using theorem 6, it can be deduced that this
system is mode observable, for any sampling period T such
that 0 < T ≤ ∆tsmin

2µ+1 = ∆tsmin
3 . Moreover, the index of

mode observability is lower or equal to 3µ = 3.

Now assume that the system can switch from mode 1 to
mode 3. Then, since f(3,t)(x) = f(1,t)(x):(

h1 ◦ f−1
(1,t) − h1 ◦ f−1

(1,t̄) ◦ f
−1
(3,t−t̄)

)
(z) = 0

for any state z ∈ Rn, for any t, and for any t̄. Consequently,
condition (v) is not satisfied and the system becomes mode
unobservable.

The unobservability of the mode is due to the the impos-
sibility to retrieve the switching-time if the system goes
from mode 1 to mode 3. In order to illustrate this, consider
two paths Q[0;∞[ and Q̄[0;∞[ such that Q[1;∞[ = Q̄[1;∞[,
Q[0;1] = (1, t, 3, T − t) and Q̄[0;1] = (1, t̄, 3, T − t̄), where
0 < t̄ < t ≤ T . These paths only differ by their
first switching-time. Since, f(1,t)(x) = f(3,t)(x), ∀t ≥ 0,
∀x ∈ Rn, the corresponding outputs obtained with the
same initial state vector x0 are equal:

HQ[0;+∞[(x0) = HQ̄[0;+∞[
(x0) =

[
h1(x0)

HQ[1;+∞[ ◦ f(1,T )(x0)

]
7. CONCLUSION

In this paper, necessary and sufficient conditions for mode
and pathwise observability of asynchronous switched sys-
tems were given. An academic example has shown the
applicability of the theoretical results presented in the
paper. Influence of inputs on mode observability will be
the topic of a future paper. Next works will also consist in
the design of observer for asynchronous switched systems.
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Appendix A. PROOF OF THEOREM 6

In this proof, it will be considered that
Q = Q[0;∞[ = (q0, t1, q(t1), t2 − t1, . . . )
Q̄ = Q̄[0;∞[ = (q̄0, t̄1, q̄(t̄1), t̄2 − t̄1, . . . )

Moreover, without loss of generality, t1 and t̄1 are assumed
to be such that t̄1 ≤ t1. kj and k̄j will denote the integers
such that tj ∈]kjT ; (kj + 1)T ] and t̄j ∈]k̄jT ; (k̄j + 1)T ]

A.1 Necessity of assumptions (iv) and (v)

Assume that k̄1 = 0 and Q[1;∞[ = Q̄[1;∞[. This implies
that: Q̄[0;1] = (q̄0, t̄1, q̄(t̄1), T − t̄1) and q1 = q̄(t̄1) where
t̄1 ∈]0;T ] and q̄(t̄1) ∈ S(q̄0). There are two cases for the
expression of Q[0;1[:

• If k1 = 0, q(t1) = q1 = q̄(t̄1) ∈ S(q0) ∩ S(q̄0) and
Q[0;1] = (q0, t1, q̄(t̄1), T − t1).
• If k1 ≥ 1, q0 = q1 = q̄(t̄1) ∈ S(q̄0) and
Q[0;1] = (q̄(t̄1), T ).

Since,
HQ(x) = HQ̄(x̄)

=⇒
{

hq0(x) = hq̄0(x̄)
HQ[1;+∞[ ◦ fQ[0;1[(x) = HQ[1;+∞[ ◦ fQ̄[0;1[

(x̄)

=⇒
{

hq0(x) = hq̄0(x̄)
fQ[0;1[(x) = fQ̄[0;1[

(x̄)

it can be deduced by considering the two possible expres-
sions for Q[0;1[ that mode observability implies assump-
tions (iv) and (v).

A.2 Sufficiency of assumptions (iv) and (v)

The values of k1 and k̄1 can be described using three cases:

(1) k̄1 ≥ µ,
(2) k1 − k̄1 ≥ µ+ 1 and k̄1 < µ,
(3) k1 − k̄1 ≤ µ and k̄1 < µ

We will prove for each case and under the assumptions of
theorem 6, including assumptions (iv) and (v), that:

Q[0;1[ 6= Q̄[0;1[ =⇒ HQ[0;3µ](x) 6= HQ̄[0;3µ]
(x̄)

Case 1
HQ[0;3µ](x) = HQ̄[0;3µ]

(x̄)⇒ HQ[0;µ](x) = HQ̄[0;µ]
(x̄)

⇒ H(q0,µ)(x) = H(q̄0,µ)(x̄)
⇒ q0 = q̄0 (by (iii))

Case 2

It can be deduced from (i) that
k̄1 + µ+ 1 ≤ min

(
k1, k̄2, 2µ

)
, then:

HQ[0;3µ](x) = HQ̄[0;3µ]
(x̄)

⇒HQ[k̄1;k̄1+1+µ]
(x) = HQ̄[k̄1;k̄1+1+µ]

(x̄)

⇒

{
hq0 ◦ fQ[0;k̄1[

(x) = hq̄0 ◦ fQ̄[0;k̄1[
(x̄)

H(q0,µ) ◦ fQ[0;k̄1+1[
(x) = H(q̄(t̄1),µ) ◦ fQ̄[0;k̄1+1[

(x̄)

⇒


hq0 ◦ fQ[0;k̄1[

(x) = hq̄0 ◦ fQ̄[0;k̄1[
(x̄)

q0 = q̄(t̄1) (by (iii))
fQ[0;k̄1+1[

(x) = fQ̄[0;k̄1+1[
(x̄) (by (ii))

If q0 = q̄(t̄1), then q0 ∈ S(q̄0) and
Q[k̄1;k̄1+1] = (q0, T )

Q̄[k̄1;k̄1+1] =
(
q̄0, t̄1 − k̄1T, q0, (k̄1 + 1)T − t̄1

)
Consequently, by applying (iv):[

hq0 ◦ fQ[0;k̄1[
(x)

fQ[0;k̄1+1[
(x)

]
6=

[
hq̄0 ◦ fQ̄[0;k̄1[

(x̄)
fQ̄[0;k̄1+1[

(x̄)

]
∀x, x̄ ∈ Rn

which means that HQ[0;3µ](x) 6= HQ̄[0;3µ]
(x̄), ∀x, x̄ ∈ Rn.

Case 3

In this case, k1 + µ+ 1 ≤ min
(
k2, k̄2, 3µ

)
, then

HQ[0;3µ](x) = HQ̄[0;3µ]
(x̄)

⇒HQ[k1;k1+µ+1](x) = HQ̄[k1;k1+µ+1]
(x̄)

⇒

{
hq0 ◦ fQ[0;k1[(x) = hq̄k1

◦ fQ̄[0;k1[
(x̄)

H(q(t1),µ) ◦ fQ[0;k1+1[(x) = H(q̄(t̄1),µ) ◦ fQ̄[0;k1+1[
(x̄)

⇒


hq0 ◦ fQ[0;k1[(x) = hq̄k1

◦ fQ̄[0;k1[
(x̄)

q(t1) = q̄(t̄1) (by (iii))
fQ[0;k1+1[(x) = fQ̄[0;k1+1[

(x̄) (by (ii))

where Q[k1;k1+1] =
(
q0, t1 − k1T, q(t1), (k1 + 1)T − t1

)
• If k̄1 < k1 and q(t1) = q̄(t̄1), then
Q̄[k1;k1+1] =

(
q(t1), T

)
and by applying (iv):[

hq0 ◦ fQ[0;k1[(x)
fQ[0;k1+1[(x)

]
6=
[
hq̄k1

◦ fQ̄[0;k1[
(x̄)

fQ̄[0;k1+1[
(x̄)

]
∀x, x̄ ∈ Rn

• If k̄1 = k1 and q(t1) = q̄(t̄1), then
Q̄[k1;k1+1] =

(
q̄0, t̄1 − k1T, q(t1), (k1 + 1)T − t̄1

)
.

Consequently by applying (v):[
hq0 ◦ fQ[0;k1[(x)
fQ[0;k1+1[(x)

]
=
[
hq̄k1

◦ fQ̄[0;k1[
(x̄)

fQ̄[0;k1+1[
(x̄)

]
⇒ Q[k1;k1+1[ = Q̄[k1;k1+1[

⇒
{
Q[0;1[ = Q̄[0;1[ if k1 = 0

q0 = q̄0 if k1 > 0
⇒ Q[0;1[ = Q̄[0;1[

Therefore, Q[0;1[ 6= Q̄[0;1[ =⇒ HQ[0;3ν](x) 6= HQ̄[0;3ν]
(x̄) in

case 3.
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