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Abstract: In this contribution, a fuel cell-based power plant which uses water and methane to
produce electrical power is considered. While earlier publications deal with the fuel cell only,
this contribution takes the whole plant into account. The distributed modelling of the hydrogen
producing reformer unit is presented. Methods are developed which allow for a fast and efficient
simulation of the model equations. As the other parts of the power plant are of similar dynamical
structure, the simulation methods are easily transferable. The identification of parameters for the
power plant is performed on the basis of measurements and dynamic simulation. Sophisticated
control concepts for the optimal operation of the power plant are proposed. They consider the
whole plant and couplings between the various elements to maximise the plant’s efficiency.
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1. INTRODUCTION

In recent years the interest in fuel cell systems (FCS) has
grown, for they are environmentally friendly and effective
resources of electricity and are widely regarded as a po-
tential alternative power source for both stationary power
plants and automotive applications Laboratory [2002], Pad
[2000]. A Proton Exchange Membrane (PEM) fuel cell
converts the chemical energy of hydrogen into electrical
power with water as the only byproduct. The hydrogen is
provided by a reformer unit which uses a catalytic reaction
to split up water into its basic substances, hydrogen and
oxygen. This chemical reaction is powered by gaseous
fuels, such as methane and ethane, which are re-newable
resources. Thus, the use of fuell cell-based power plants
decreases the dependence on fossil fuels.
Fuel cell-based power plants comprise a large variety of dif-
ferent components, including electrical, mechanical, ther-
mal, and chemical systems. The dynamics of all these com-
ponents has to be incoprorated into a system description
in order to develop control concepts for the optimal plant
operation.
In literature, there are a number of publications available
which deal with the topic of fuel cells, their modelling,
simulation, and control. One of the first publications deal-
ing with the dynamic properties of PEM fuel cells is
P. Argyropoulos and Taama [2000], who applied loading
cycles on a direct methane fuel cell (DMFC) in order to
evaluate the effect of the loading pattern and operating
conditions on the response behaviour of the fuell cell.

Eborn et al. [2003] presents a model for a PEM fuel cell
based on numerical modelling tools, such as Modelica.
However, equation-based models are not presented as they
cannot be extracted from the modelling tools. Boccaletti
et al. [2006] present and compare models for fuel cells using
PEM and Solid Oxide Fuel Cell (SOFC). The models are
veryfied by experimental results. Pukrushpan et al. [2004]
present a fuel cell model for automomtive fuel cells which
is suitable for the development of controllers and show the
observability of the linearised model. However, the design
of controllers is not performed.
The publications mentioned above deal only with the fuel
cell itself. The hydrogen which is needed for the production
of electricity is provided by a tank. The present contribu-
tion, however, takes the whole plant, consisting of reform-
ing unit, shifting unit, and the fuel cell, into account. This
allows the development of system-wide control strategies
which consider every part of the plant and couplings to
ensure the optimisation of the overall efficiency of the
plant.
This contribution is organised as follows. After stating
the task in Section 2, a model for the FCS is presented
in Section 3. As the resulting distributed model is higly
complex and thus hard to simulate, a modal transforma-
tion is applied in Section 4. Subsequently, Section 5 shows
the identification of model parameters. Having a complete
model, Section 6 points out various control approaches
which can be used to optimise the efficiency of the plant.
Section 7 concludes the contribution.
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2. TASK AND PROBLEM FORMULATION

The task of this contribution is to provide a framework
for the simulation, identification, and control of fuell cell-
based power plants which are powered by re-newable
energy resources, such as methane, ethane, and dimethyl
ether (DME).
While earlier publications (cf. Section 1) often deal with
the fuel cell only, here the whole power plant is considered
and a program package is provided which allows for
the automated simulation and identification of fuel cell-
based power plants. This prepares the ground for the
development of sophisticated control algorithms which
optimise the overall efficiency of the power plant.
Figure 1 shows the general layout of an FCS consisting
of three basic units: the reformer unit, the shifting unit,
and the fuel cell stack. The task of the reformer unit is
to produce hydrogen which is used by the fuel cell stack
to produce electrical power. The hydrogen is produced
through chemical reactions of water and fuel. The task
of the shifting unit is to reduce CO, which emerges from
the fuel burning, to CO2. Here, the functionality of the
fuel cell is not discussed in detail. The reader is referred
to literature, e. g. Laboratory [2002] and Zenith [2007].

Fig. 1. Layout of a fuel cell system

Due to space restrictions of this contribution, here, the
modelling and simulation is addressed for the reformer
only. The models for the shifting unit and the fuel cell
itself, however, are of similar structure and therefore the
same simulation methods can be applied to these parts
of the system. The identification of model parameters
is shown for the shifting unit and control concepts are
proposed for an overall plant control.
The tasks considered in this contribution are divided into
four steps:

(1) Modelling all neccessary elements, such as reforming
and shifting unit as well as the fuel cell itself leads to
a coupled system with distributed parameters

(2) Simulation of the (nonlinear) PDEs by modal trans-
formation to shorten simulation time

(3) Identification of unknown parameters through mea-
surement data (stationary and transient)

(4) Sophisticated controller design for the complex struc-
ture of the FCS which takes the nonlinearities and
couplings between the elements of the plant into ac-
count and guarantees robustness.

3. MODELLING

This section reviews the modelling of the reformer unit of a
fuell cell-based power plant. The task of the reformer unit
is to form hydrogen from water (H2O) and heat. Thus
it is the first part of a fuel cell-based power plant. The
heat is provided by fuel gases like methane and ethane. If

methane is used as fuel gas, the reactions taking place in
the reformer are:

CH4 +H2O⇀↽CO + 3H2 (1)

CO +H2O⇀↽CO2 +H2 (2)

CH4 + 2H2O⇀↽CO2 + 4H2 (3)

While CH4 and H2O are inputs to the reformer, hydrogen,
carbon dioxide, and small amounts of carbon are outputs.
The hydrogen is then passed on to the fuel cell where the
reactions take place which converts the chemical energy to
electric power.
The processes in the reformer are complex, for the re-
actions take place in different phases (fluid and gaseous)
and the reaction kinetics depend on many variables, such
as the reactor temperature and the partial masses of the
substances in the reactor. Figure 2 shows a sketch of the
reformer unit including the phases as well as the input
(both gaseous) and output fluxes fuel, water, hydrogen,
and carbon dioxide. For model simplifications, the tem-
perature in the reactor is assumed to be homogenous, i. e.
the catalytic phase (solid phase) is not considered.

Fig. 2. Model assumption (Reformer)

The quasi-homogeneous model is written as a set of partial
differential equations (PDEs). The states of this system
are the gas temperature T in the reformer, the mass
fractions wj of the components, the temperature TWi on
the inner wall, the temperature TWe on the outer wall
of the reformer, and the temperature TE of the educts.
The following subsections show the PDE for each of these
states, including the initial and boundary conditions. The
derivation of the reformer model equations can be found
in literature, e. g. Froment and Xu [1989].

3.1 Energy balance model of the reactor temperature

The energy balance is formulated as the following second
order PDE

∂T

∂t
= bT2

∂2T

∂z2
− bT1

∂T

∂z
− bT0 (T − TF ) + fT (T,wj), (4)

with parameters bT0 , bT1 , and bT2 which have to be identified.
The function fT (T,wj) describes the influence of the
chemical reactions on temperature change. The initial
condition and boundary conditions are

∂T (z, t)

∂t

∣
∣
∣
∣
t=0

= Tin
∂T (z, t)

∂z

∣
∣
∣
∣
z=L

= 0

∂T (z, t)

∂z

∣
∣
∣
∣
z=0

=
bT1
bT2

(T (0, t)− Tin).
(5)

3.2 Mass balance model

The mass balance equations show the evolution of the
partial masses of the substances which are involved in
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the chemical reactions (cf. (1)-(3)) taking place in the
reformer. PDEs are only written for two substances, the
so-called key components of the reaction, namely for CH4

and CO. The partial masses of the other substances are
calculated by algebraic equations (which are not shown
here).

∂wj

∂t
= b

wj

2

∂2wj

∂z2
− b

wj

1

∂wj

∂z
+ b

wj

0 fwj
(T,wj) (6)

with parameters b
wj

0 , b
wj

1 , and b
wj

2 which have to be
identified. The function fwj

(T,wj) describes the changes
of the mass balances due to the reactions. The initial
conditions and boundary conditions are

∂wj(z, t)

∂t

∣
∣
∣
∣
t=0

= wj,in
∂wj(z, t)

∂z

∣
∣
∣
∣
z=L

= 0

∂wj(z, t)

∂z

∣
∣
∣
∣
z=0

=
b
wj

1

b
wj

2

(wj(0, t) − win(0, t)).
(7)

3.3 Energy balance model for the reactor wall

The energy balance model describes the behaviour of the
temperature of the inner wall phase (cf. Figure 2):

∂TWi

∂t
= b

TWi

2

∂2TWi

∂z2
− b

TWi

1 (TWi
− T ) + b

TWi

0 (T − TWi
),(8)

with parameters b
TWi

0 , b
TWi

1 , and b
TWi

2 . The initial condi-
tions and boundary conditions are

TWi
(z, t)|t=0 = T 0

Wi

∂TWi
(z, t)

∂z

∣
∣
∣
∣
z=0

= 0
∂TWi

(z, t)

∂z

∣
∣
∣
∣
z=L

= 0.
(9)

The energy balance for the outer wall phase is similar to
(8) and is derived by replacing T with TE, TWi

with TWa
,

and TE with TU .

3.4 Energy balance model for the educts

The energy balance model for the educts is an important
part of the system description, for the educts form a
coupling to other elements of the power plant. The PDE
describing the behaviour of the temperature of the educts
reads

∂TE

∂t
= bT

E

2

∂2TE

∂z2
+ bT

E

1

∂TE

∂z

+bT
E

10 (TWi
− TE) + bT

E

11 (TWa
− TE). (10)

The initial conditions and boundary conditions are

TE(t)
∣
∣
t=0

= TE0
∂TE(z, t)

∂z

∣
∣
∣
∣
z=L

= 0

∂TE(z, t)

∂z

∣
∣
∣
∣
z=0

=
bT

E

1

bT
E

2

(TE(L, t) − TE,0)..

(11)

4. MODAL ANALYSIS USING GALERKIN METHODS

As shown in Section 3, the reformer unit is described by
a system of seven partial differential equations (PDE).
Using this model, Monte-Carlo simulations are performed
to identify its parameters and to develop control strategies.

However, the simulation of PDEs (e. g. by finite element
methods) is a complex task and makes high computational
demands.Therefore simplifications are made which, on the
one hand, reduce the computational demands and, on the
other hand, preserve the accuracy of the model. In this
section, a simplification is performed by transforming the
system such that it is represented by a set of ordinary dif-
ferential equations (ODE). Using a modal analysis based
on the Galerkin method, the influence of the spacial dif-
ferential operator Dz (cf. (14)) on the system dynamics is
calculated off-line and the differential equations are solved
with respect to time only.
Here, the modal analysis and transformation is carried out
exemplary for the PDE describing the reactor temperature
T (cf. (13)). As the structure of the other PDEs in the
system is similar, the same analysis and transformation
procedure is applied. In the context of this work, the
transformation is automated by using a computer algebra
system to minimise the effort of model transformation.
As the PDE describing the temporal and spacial behaviour
of the reactor temperature (cf. (13)) has non-homogenous
boundary conditions, the first transformation step consists
in splitting the temperature into a homogenous and an
inhomogenous part:

T = TH + TI . (12)

Having a constant TI = Tin, the homogenous temperature
PDE reads

bt
∂TH

∂t
− b2

∂2TH

∂z2
+ b1

∂TH

∂z
+ b0TH = RS(wj , T ) (13)

with parameters bTi , i = 1, 2, 3 and

RS(Wj , T ) = fT (wj , T ) − atṪ
+ − a0Tin.

The nonlinear function fT (wj , T ) depends on the reactor
temperature and mass fractions with initial conditions and
boundary conditions as stated in Section 3. By defining the
temporal and spacial differential operators

Dt =
∂

∂t
, Dz = −bT2

∂2

∂z2
+ bT1

∂

∂z
+ bT0 , (14)

the PDE (13) can be written in semi-linear form:

DtTH +DzTH = RS(wj , T ). (15)

Similar to Gilles [1973], the solution of the PDE 15 is
expressed by

TH =

i=∞∑

i=0

ai(t)ϕi(z), (16)

where ϕ(i)z are the eigenfunctions of the spacial differ-
ential operator Dz. The functions ai(t) are calculated
by inserting the ansatz (16) into the PDE (15). The
eigenvalues and eigenfunctions of Dz are calculated as a
Sturm-Liouville-Problem (SLP) which is formulated as a
boundary value problem (BVP):

−b2ψ
′′(z) + b1ψ

′(z) + b0ψ(z)
︸ ︷︷ ︸

=Dzψ(z)

= λψ(z) (17)

with corresponding boundary conditions (cf. (5)) and
eigenvalues λ. The eigenfunctions of Dz are the non-trivial

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7018



Eigenvalue λ

F
u
n
ct

io
n

va
lu

e

20 40 60 80 100

-6000

-4000

-2000

0

2000

Fig. 3. Function for the
determination of the
eigenvalues of Dz

Spacial coordinate z ([m])

V
a
lu

e
o
f
th

e
ei

g
en

fu
n
ct

io
n
ϕ
i(
z
,λ
i)

0 0.05 0.1

-10

-5

0

5

10

Fig. 4. Eigenfunctions ϕ1

(-), ϕ2 (-.-), and ϕ3 (-
-)

solutions of (17). The first step in solving the BVP (17) is
to calculate its eigenvalues ξ(λ) which are rendered by the
characteristic polynomial:

ξ1,2(λ) =
b1

2b2
︸︷︷︸

α

±

√
√
√
√
√
√

b21
4b22

+
b0 − λ

b2
︸ ︷︷ ︸

β(λ)

. (18)

By using various ansatz functions and inserting them
into the boundary conditions (cf. (5)), it can be shown
that solutions only exist if the eigenvalues are of complex

conjugated form, i. e. for β(λ) < 0 and thus λ >
b2
1

4b2
+ b0.

The ansatz for the solution then reads

ψ(z) =
[

A(λ) cos(β(λ)z) +B(λ) sin(β(λ)z)
]

e(αz). (19)

Inserting the ansatz into the boundary condition (cf. (5)
to (5)) renders




α−

b1

b2
β(λ)

C1(λ) · e
αL C2(λ) · e

αL





︸ ︷︷ ︸

M(λ)

·

[
A(λ)
B(λ)

]

=

[
0
0

]

(20)

with

C1(λ) = [α cos(β(λ)L) − β(λ) sin(β(λ)L)] (21)

C2(λ) = [α sin(β(λ)L) + β(λ) cos(β(λ)L)] . (22)

Solutions of the BVP (17) only exist for values of λ for
which the boundary conditions in (20) are fulfilled, i. e. for
values of λ leading to detM(λ) = 0:

(

α−
b1

b2

)

· C2(λ) − β(λ) · C1(λ)
!
= 0. (23)

As the only unknown parameter of this function is λ, it is
used to calculate the eigenvlaues of the spacial differential
operator Dz. Figure 3 shows a plot of (23). The zeros of
this function, and thus the eigenvalues of Dz, are calcu-
lated numerically. With having the eigenvalues calculated,
the solutions of the BVP (17) are given by the ansatz
function (19). From these solutions, the eigenfunctions of
Dz are calculated by normalisation:

ϕi(z, λi) =
1

||ψ(z, λi)||
[A cos(β(λi)z) + B sin(β(λi)z)] e

αz,

with A = 1 and B = (α−b1/b2)
β(λ) and

||ψ(z, λi)|| =
√

< ψ(z, λi), ψ(z, λi) >.

The first three eigenfunctions are shown in Figure 4. After
solving the BVP (17) and thus calculating the eigenvalues
and eigenfunctions of Dz, the PDE (15) can, by using (16)
and (17), be written as

∞∑

i=1

btȧi(t)ϕ(z) + λ

∞∑

i=1

ai(t)ϕ(z) = RS(wj , T ). (24)

Applying Fourier transformation and splitting up the N th

order ODE renders a set of first order ODEs having the
form:

btȧi(t) + λiai(t) =

L∫

0

RS(wj , T )ϕi(z)ρ(z)dz,

with i = 1, . . . , N , and ρ(z) as a normalisation function.
These ODEs describe the modal temporal behaviour of
the reactor temperature. The overall solution is obtained
by simulation of the ODEs and application of (16).
By applying this tranformation to all PDEs describing the
states of the reformer unit and to the PDEs describing the
behaviour of the shifting unit and the fuel cell, the whole
system is represented by a system of ODEs.

5. IDENTIFICATION

This section presents the identification of model param-
eters for the shifting unit. Due to space restrictions, the
equations describing the dynamical behaviour of the shift-
ing unit are not shown here. However, the identification of
model parameters is presented to give an overview of the
work going on at the moment. As the shifting unit model
is of similar structure as the reformer model, the modal
analysis presented in Section 4 is also applied to the set of
describing PDEs to reduce model complexity.
With respect to identification, there are three classes of
parameters.

• The first class contains the parameters which can be
measured directly, such as reactor diameter or mass
flux into the reactor

• The second class contains parameters which can be
retrieved from literature, e. g. heat capacities.

• The third parameter class contains all unknown pa-
rameters which are difficult to measure and cannot be
retrieved from literature exactly. Examples for these
parameters are heat transfer coefficients.

While scale or sign of third class parameters might be
known, they represent a certain degree of freedom to adapt
the model to measurements from experiments. Usually,
sophisticated statistic theories, such as least square fitting,
are applied to calculate parameters which ensure high
accuracy of the model with respect to measurements.
In the case of the shifting unit, the heat transfer coef-
ficients of the unit’s wall are unknown and have to be
identified. The first identification step is carried out by
measuring stationary values for the unit’s temperature
during experiments and adapting the heat transfer coeffi-
cients in order to reach a good estimate of the parameters
in a least square sense:

∑

t

(Tm − T (ti, wj , a1, a2, . . . , an))
2
→ min

am

(25)
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Fig. 5. Fuel cell-based power plant at ZSW Stuttgart,
Germany

Here, Tm is a set of measured temperatures at a various
point in the shifting unit, T (ti, wj , am) is the tempera-
ture at the corresponding point. The parameters am,m =
1, . . . , n are to be identified. In a second step, the transient
behaviour of the reactor temperature is considered and the
parameters are re-adapted.
Here, the identification results for heat transfer coef-
ficients of the shifting unit are shown. The identifica-
tion is carried out by using stationary measurements for
which experiments are conducted at a 4kWe plant at the
Zentrum für Sonnenenergie- und Wasserstoff-Forschung
(ZSW) Stuttgart, Germany. See Figure 5 for a picture
of the plant. Figure 6 and Figure 7 show the identifica-
tion of the shifting unit’s wall temperature and reformate
temperature, respectively. One can see that the simulation
produces very good results with respect to the stationary
measurements (marked by dots). While the simulation
differs from the measurements for some values of the
heat transfer coefficient, for certain values the results are
good. The results presented here have to be verified by
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Fig. 6. Wall temperature of the shifting unit

using transient measurements. This is ongoing work at the
moment.

6. CONTROL CONCEPTS

Various concepts for the control of fuel cells exist in liter-
ature. Vahidi et al. [2006] and Vahidi et al. [2007] aim at
the power management and control of a fuel cell based on
a linearised model. The feedforward trajectories are calcu-
lated via model predictive control (MPC) techniques. The
applicability of the resulting controller structure is shown
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Fig. 7. Temperature of the reformate in the shifting unit

in simulation studies using a nonlinear model. Tsoura-
pas et al. [2007] apply a control structure to the system
which aims at operating the fuel cell at an optimal steady
sate. The feedback controllers are designed by using linear
quadratic techniques. The control structure, including a
state observer, is applied to an experimental plant and its
applicability is shown. Pukrushpan and Peng [2002] show
a 2DOF controller structure for a PEM fuel cell. Linear
feedback controllers are designed which provide robustness
if the system is in steady-state. During transients, the
feedback controllers are supported by nonlinear feedfor-
ward controllers. The robusteness and applicability of the
proposed control structure is shown by simulations.
The goal of the control concepts discussed here, however,
reaches beyond the control of the fuel cell only, for the aim
is to develop control strategies which take the whole plant
into account. Only a control strategy which consideres the
couplings between the units of a fuell cell-based plant can
provide an efficient process operation.
While taking the dynamics of the whole power plant into
account, the final control concept has to make sure two
basic requirements are fulfilled:

• robustness with respect to to parameter uncertainties
and

• optimality with respect to a certain optimality con-
dition.

Robustness is important for the operation of the plant for
two reasons:

• not all parameters of the system are exactly known.
While certain parameters are measured directly, oth-
ers have to be identified by indirect measurements,
based on a simulation model. The accuracy of the
identification is directly related to the accuracy of the
model. Even though the model presented in Section
3 is highly accurate, uncertainties persist.

• some parameters change over time. Aging effects in
power plants are often a cause for loss of efficiency and
operation safety. By taking aging effects into account
in the modelling and the controller design, efficiency
and safety are preserved.

The latter condition, the optimality, is formulated by the
following optimisation formulation and ensures that the
plant operates at maximum efficiency:

J = max
C

tend∫

t0

(
Pout

Pin

)2

dt, (26)
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where Pin is the overall power input of the plant (e. g.
fuel, heat) and Pout is the overall power output of the
plant (i. e. electrical power). The maximisation argument
C represents the set of available control concepts.
In the context of the work discussed here, control strategies
are developed based on the model dynamics which are
based on the physical process. Therefore, the controllers
can be adapted to model modifications and can be trans-
ferred to other plants having a different scale. This leads
to a significant decrease in time and cost for the future
solution of such problems.
The development of system-wide control strategies is on-
going work at the moment. Figure 8, however, shows the
two degree of freedom (2DOF) controller layout for the
reformer unit which is similar to the one presented in
Hagenmeyer and Zeitz [2004]. The feedback controllers
are combined with feedforward controllers to optimise the
reformer’s behaviour and to guarantee robustness with
respect to model uncertainties and disturbances. Further-
more, an observer structure is used to reconstruct un-
known parameters and states of the system. The observer
is also used to identifiy parameter changes which are due
to deterioration effects. A challenge for the design of the

d

Σ∗ ΣΣR

ΣV

Σ̂

u y

x̂

y∗

Fig. 8. 2DOF controller structure with system Σ, observer
Σ̂, feedback controller ΣR, feedforward controller ΣV ,
signal generator Σ∗, disturbance d, input u, and
output y for tracking control y(t) → y∗(t).

controller elements is the fact that the dynamics of the
system are described by a system of nonlinear PDEs (cf.
Section 3) which are complex to handle. Various concepts
for the control of PDE systems are discussed in litera-
ture. A very powerful tool is provided by Smyshlyaev and
Krstic [2004] who present the method of backstepping.
The basic idea is to transform the system such that it can
be described as a system for which sophisticated control
techniques already exist. Another approach for the control
of parabolic PDEs is presented in Lynch and Rudolph
[2002]. Here, the system is represented based on a power
series and flatness-based control strategies are developed
for the resulting system of ODEs. Another general method
to control nonlinear systems is sliding mode control. For
this topic, the reader is referred to Hanczyc and Palazoglu
[1995] and Drakunov and Utkin [1992].

7. CONCLUSIONS

This contribution presents a framework for the simulation,
identification, and control of fuell cell-based power plants.
Due to space restrictions, only the model of the reformer
unit, which provides hydrogen for the fuel cell, is shown.
The distributed model is hard to handle and thus a modal
transformation is applied. This method allows the PDE to
be represented by a set of ODEs. The resulting model with
concentrated parameters is applied for the identification

of model parameters. Control concepts which allow for
a optimisation-based operation of the power plant are
proposed.
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