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Abstract: We obtain an efficient parametrization that ensures stability of switched linear
systems under arbitrary switching. Apart from stability analysis, our results are useful for
addressing several important system theoretic problems, e.g. designing controllers that ensure
robustness against arbitrary combinations of sensor or actuator failure. We illustrate our results
by considering control of a distillation column.

1. INTRODUCTION

In this paper we address the problem of stability analysis of
switched linear systems described by high order differential
algebraic equations. Switched linear systems are a special
class of Hybrid systems. Hybrid systems have gained
widespread importance in the recent years, since these
provide a conceptually appealing framework for modelling
of physical systems [13].

Switched linear systems, as the name suggests, are those
in which every component system is linear. These systems
have been extensively investigated, see e.g. [2, 4, 16] for a
survey. Systems that switch among a finite number of sta-
ble linear systems may still exhibit instability. Therefore
it is of interest to characterize those stable linear systems
that preserve stability under switching. We consider the
case of arbitrary switching. This case is practically relevant
when a switching sequence is a’priori unknown, or too com-
plicated to enable a detailed specific analysis or simulation.
Most results available on stability analysis of switched
systems are of a numerical nature. The few theoretical
results that are available are mostly sufficient conditions
and only consider first order state space systems having
a special structure. We show that there are practically
important problems where numerical approaches fail, and
therefore there exists a strong case for a deeper investiga-
tion of stability theory for switched systems. We develop
a detailed theory for stability analysis which succeeds in
relaxing some of the assumptions commonly made in this
area. Our results are not only theoretically appealing but
also practically relevant and useful: we use them to also
address some important system theoretic problems related
to stability under switching conditions.

This paper is organized as follows: In Section 2 we sum-
marize the notation used throughout the paper. This is
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followed by a concise problem statement and literature
overview in Section 3. In Section 4 we introduce a practical
stability analysis problem for a trickling filter for which
commonly available numerical algorithms fail. Section 5
introduces some of the tools and concepts necessary for
the analytical treatment presented in this paper. Section
6 is the main section of the paper. We revisit the trick-
ling filter in Section 7 and show how our results help us
obtain an insight into the nature of the problem. Section
8 discusses further applications of our results – especially,
designing controllers that ensure stability under arbitrary
combinations of sensor / actuator failure where we also
address a control problem for a distillation column. Due to
limitations of space, we are forced to omit all proofs of our
results. These however are included in [10], and available
on request.

2. NOTATION

We denote the field of real numbers by R, and that of
complex numbers by C. Rm denotes the set of column
vectors over R having m rows. Im and 0m denote the m × m
Identity, and Zero matrices, respectively. Rq×m denotes the
set of q × m matrices over R. Rq×m[D] denotes the set of
q × m polynomial matrices over R in the indeterminate
D and Rq×p[ζ, η] denotes the set of q × p polynomial
matrices in the indeterminates ζ and η. Rq×•[ζ, η] denotes
the set of polynomial matrices in ζ, η having q rows and
an unspecified number of columns. Given Q ∈ Rq×m[D] :=∑d

i=0 QiD
i, Qi ∈ Rq×m, with Qd a nonzero matrix, d is called

the degree of Q and is denoted by deg Q. Further, if Qd

is nonsingular, Q is called a regular polynomial matrix. If
Qd = I, Q is called monic. If all roots of detQ = 0 lie in the
open left half complex plane, Q is called Hurwitz. Given
two vector spaces V1,V2 and a linear operatorK : V1 → V2,
KerK denotes the kernel of K while ImK denotes the
image of K.
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3. PROBLEM STATEMENT AND LITERATURE
REVIEW

Consider a linear MIMO system defined by a proper
rational matrix G = PQ−1, where P and Q are polynomial
matrices, with deg Q − deg P = d. Consider a set K, of
polynomial differential operators of degree at most d, and
define:

QK :=
{
QK = Q + KP

∣∣K ∈ K
}

(1)
The dynamical system

ΣQK := Q(t)(
d

dt
)w = 0, Q(t) ∈ QK

is called a switched linear system. Q(t) can be thought
of as a map from the set of non-negative real numbers
R+ to the space of polynomial matrices having degree
deg Q. The points of discontinuity of Q(t) are called the
“switching instances” and systems QK( d

dt )w = 0 with
QK ∈ QK are called component systems of ΣQK

. Note
that singularities of Q + KP are precisely the closed
loop poles of G with a negative feedback K. Thus, the
problem statement implicitly also includes a multivariable
output feedback controller design problem, especially in
cases when K is assumed to be constant.

The central problem that we address in this paper is:
“Obtain a parametrization for K such that the equilibrium
state 0 in the switched system ΣQK , remains asymptoti-
cally stable under arbitrary switching”. With some abuse
of notation we say that ΣQK is asymptotically stable if the
equilibrium state 0 is asymptotically stable. Note that it
is of course necessary for the stability of ΣQK that every
component system is stable. Stability of every component
system is however not sufficient to guarantee that the
equilibrium in ΣQK is stable under arbitrary switching.

Notice that when every matrix Q ∈ QK is a regular
first order polynomial, ΣQK defines a switched state space
system of the type:

ΣA : ẋ(t) = A(t)x(t), A(t) ∈ A = {AQK
} (2)

where AQK
defines a state space representation for

QK( d
dt )w = 0, QK ∈ QK obtained from the same state-

map. In the last decade many conditions have been de-
rived that guarantee the existence of a common Lyapunov
function for a set of LTI systems [5, 16]. The majority
of such conditions consider the existence of a common
quadratic Lyapunov function (CQLF) V (x) = xT Lx with
L = LT > 0 such that the linear matrix inequalities
(LMIs) AT

QL + LAQ < 0 ∀ Q ∈ QK. Convex optimization
tools can be used to check the feasibility of such a set of
LMIs. However, this numerical approach fails to give much
insight into the stability or instability mechanisms of the
system and does not supply any guidelines for designing
stable switched systems. Further, as we shall show in this
paper, there are problems of practical importance where
this LMI test fails to establish both the existence, or
inexistence of a CQLF, and is therefore useless in such
situations.

A number of analytic conditions for the existence of a
CQLF for several sub-classes of switched systems have
been derived in the recent past. [15, 14]. All these results
suffer from the shortcoming that the structural assump-
tions made on the system matrices only hold for a small

class of systems. Also, these assumptions are seldom robust
against numerical perturbations.

The contributions of this paper are twofold: first, and
foremost, we provide an algorithmic method to construct
a family of differential algebraic systems that share a
quadratic Lyapunov function. Results here build on our
earlier results [9] where we obtained a characterization
for a cone of matrices that have a CQLF. This parame-
trization was obtained as a sufficient condition in terms
of certain constant matrices. We extend these results here
and enlarge the parametrized set by also allowing a certain
type of polynomial matrices. The second contribution of
our paper is an investigation of several important system
theoretic problems that can be formulated as stability
problems for switched systems. Specifically we consider
design of controllers that ensure stability against arbi-
trary sensor/actuator failure, and a design procedure for
switched controllers. Our results are not only theoretically
powerful, but also suitable for numerical computation. We
show that the characterization can be used in practice by
solving an associated LMI.

4. MOTIVATING EXAMPLE – NITRIFYING
TRICKLING FILTER

The most generally applicable methods to analyze the
quadratic stability of switched systems have been derived
from a computational point of view e.g. [3]. Many sta-
bility criteria are formulated as LMIs that can be solved
efficiently, thanks to recent developments in convex opti-
mization. However, there are examples of practical concern
where purely numerical approaches do not work, and hence
an analytical investigation becomes imperative. The fol-
lowing example demonstrates that LMI based conditions
for checking existence of CQLFs can fail even in apparently
simple situations.

We consider a model for a nitrifying trickling filter (NTF)
proposed by Wik and Breitholtz [21] . This filter oxidizes
ammonium in wastewater into nitrate. The transfer func-
tion from inlet to outlet nitrate concentrations is given by

G1(s) =
(

0.435
1 + 1.0796s

+
0.548

1 + 0.3124s
+ 0.016

)10

Feedback control schemes are used in order to achieve a
desired nitrate concentration at the outlet. To keep things
simple, we consider a unity feedback and define

G2(s) =
G1

1 + G1

and investigate whether the autonomous dynamics asso-
ciated with G1 and G2 remain stable under arbitrary
switching. This is a practically relevant scenario since it
investigates whether the control loop remains stable under
intermittant or permanent sensor and/or actuator fail-
ure. Thus, the problem of stability analysis under sensor
failure is reduced to one of stability analysis of switched
autonomous dynamical systems.

Let ẋ = A1x and ẋ = A2x be state space descriptions for
the autonomous dynamics of G1 and G2. Both A1 and A2

are Hurwitz. We search for a CQLF for the two systems.
It is known from convex optimization theory that exactly
one of the following must hold [1]
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(1) There exists L = LT > 0 such that AT
i L + LAi < 0,

i = 1, 2
(2) There exist Ri = RT

i > 0 such that
∑2

i=1 AiRi +
RiA

T
i > 0.

That is, if (1) holds, we know there exists a CQLF, and if
(2) holds we know there does not exist a CQLF. However,
it is seen that the commonly available LMI solver [8] is
unable to solve either of the two LMIs, and therefore the
LMI condition fails to answer the question whether there
exists a CQLF for the two system, or there doesn’t.

Thus there is a case for analytical results for answering
the question of existence or inexistence of CQLFs. In the
remaining sections of the paper, we develop analytical re-
sults that establish sufficient conditions for a finite number
of autonomous linear systems to have an asymptotically
stable equilibrium under arbitrary switching. We then use
our results to re-address the example considered above
and show how our method yields insights into analysis of
switched systems.

5. BEHAVIORAL THEORY

In recent years, the behavioral theory of dynamical systems
has emerged as an alternative to input-output (transfer
function or state-space) based system analysis. Details of
the behavioral approach can be found in [11].

5.1 Linear Differential Systems

A behavior is, broadly speaking, a collection of trajec-
tories in a pre-defined function space (e.g. the space of
locally integrable functions), characterized by certain laws.
If these laws are linear and time-invariant, the correspond-
ing behavior is called Linear, Time-invariant (LTI). A
linear differential behavior is one in which the behavior
can be characterized as the solution set of a family of
linear Ordinary Differential Equations (ODEs). The image
representation plays an important role in the behavioral
framework: an LTI system Σ with external variables (“in-
puts” and “outputs”) (u, y) is controllable if and only if
it can be represented as the image of a linear differential
operator acting on free variables in an appropriate space:[

u
y

]
=

 Q(
d

dt
)

P (
d

dt
)

 ` (3)

where Q ∈ Rq×q[D], and P ∈ Rp×q[D] are polynomial
differential operators. The indeterminate “D” denotes
symbolic differentiation. The free variable `, also called a
latent variable, is assumed to lie in Lloc

1 (R, Rq), the space
of locally integrable functions from R to Rq. Since ` is free,
one can assume Q and P to be right coprime without loss
of generality. The partition of the system variables as (u, y)
in Equation (3) is called an input-output partition, with
inputs u and outputs y if Q is square and nonsingular, and
the rational function PQ−1 is proper.

A system can be given by several representations, in
terms of inputs, outputs and internal variables. Internal
variables that satisfy an “axiom of state”[12] are called
“states”, and system representations in terms of these
variables are called state representations. A representation

is a state representation if and only if it is first-order in
terms of states, and zeroth order in terms of inputs and
outputs. Given a controllable system, having behavior B
as defined in Equation (3), one can construct a polynomial
differential operator X( d

dt ) such that variables x defined
as

x = X(
d

dt
)
[

u
y

]
, (u, y) ∈ B (4)

are state variables. The operator X( d
dt ) is called a state

map. With (u, y) an input-output partition of a behavior
defined by (3), Q ∈ Rq×q[D], the span of rows of the
polynomial matrix X(D) (over R) is precisely the span
of rows ri (over R) such that riQ

−1 is strictly proper. In
particular if Q(D) =

∑d
i=0 QiD

i is regular, X( d
dt ) can be

defined by the polynomial differential operator

X(
d

dt
) =

[
I I

d

dt
· · · I

dd−1

dtd−1

]T

(5)

It is easy to see that the above state map transforms
the system with image representation (3) into a “block-
companion” form, and further this state representation
is minimal in terms of the number of states among all
possible state representations.

5.2 Dissipative Systems

We first introduce the concept of Quadratic Differential
Forms (QDFs) that are central to the discussion in this
section. In Lyapunov theory, optimal control etc., we often
encounter quadratic functionals of variables and their
derivatives (e.g. Lyapunov function, the cost functional,
the Lagrangian etc.). In [20] a two variable polynomial
matrix was used to represent such quadratic functionals.
Consider w ∈ Lloc

1 (R, Rw). Consider Φ ∈ Rw×w[ζ, η] given
by

Φ(ζ, η) =
∑
k,l

Φk,lζ
kηl (6)

where Φk,l ∈ Rw×w and the sum ranges over non-negative
integers k, l. This sum is assumed finite (i.e. only a finite
number of Φkl are nonzero). Such a Φ induces a quadratic
differential form (QDF) defined by

(QΦ(w))(t) =
∑
k,l

(
dkw(t)

dtk
)T Φkl(

dlw(t)
dtl

). (7)

where the derivative is in the sense of locally integrable
functions. Due to the quadratic nature of QΦ, differen-
tiability requirements may impose additional structural
restrictions on Φ in order to ensure that QΦ(w) is also
locally integrable.

We review basic properties of dissipative systems in this
section. The abstract theory of dissipative systems was
introduced by Willems, who in 1972 wrote two seminal
papers on the subject [19]. The ideas in these papers have
been singularly successful in tieing together concepts from
network theory, mechanical systems, thermodynamics, and
feedback control theory. The dissipation hypothesis which
distinguishes dissipative systems from general dynamical
systems results in a fundamental constraint on their dy-
namical behavior. Consider the system (3) having behavior
B, with Q ∈ Rq×q[D], P ∈ Rp×q[D]. Define m := q + p.
Consider Φ ∈ Rm×m[ζ, η]. B is called Φ-dissipative if
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∫ ∞

−∞
QΦ(u, y)dt ≥ 0 ∀(u, y) ∈ B ∩ D(R, Rm). (8)

In the above inequality D(R, Rm) denotes the space of
compactly supported locally integrable functions from R
to Rm. The system (3) is Φ-dissipative if and only if[

QT (−iω)PT (−iω)
]
Φ(−iω, iω)

[
Q(iω)
P (iω)

]
≥ 0, ∀ ω ∈ R

The function QΦ is called a “supply function” and is a
measure of the generalized power supplied. Also associated
with a dissipative system is a function QΨ, called a
“storage function”, that satisfies the so called “dissipation
inequality”:

d

dt
QΨ(u, y) ≤ QΦ(u, y)

Note that there may exist nonzero trajectories along
which d

dtQΨ(u, y) exactly equals the supply QΦ. This
is undesirable in some problems, especially in stability
analysis. Therefore, we define a set of “strictly” dissipative
systems:
Definition 1. Let G = PQ−1 with P ∈ Rp×q[D], Q ∈
Rq×q[D] regular. With m = p + q, consider Φ ∈ Rm×m[ζ, η].
The behavior B defined by the image representation (3)
is called strictly Φ-dissipative if ∃ε > 0 such that B is
(Φ− εIm)-dissipative.

Note that along every nonzero trajectory in a strictly
Φ-dissipative system, there exists QΨ such that d

dtQΨ is
strictly less than QΦ.

In the sequel, we consider supply functions QΦ, that have
the following structure:

Φ =
[

Θ11 ΘT
12(η)

Θ12(ζ) 0p

]
(9)

Θ11 ∈ Rq×q > 0q , and Θ12(D) ∈ Rp×q[D]. The choice of
this structure is motivated by the stability problem con-
sidered in this paper. Note in particular that QΦ(0, y) = 0
for all y ∈ Rp. In order to ensure that QΦ is well defined
along a behavior, we only consider those behaviors asso-
ciated with the proper rational function PQ−1 such that
deg Θ12 ≤ deg Q − deg P . This is a standing assumption
we make throughout the paper, unless otherwise stated.

The following theorem investigates under what conditions
do there exist positive definite storage functions for strictly
Φ-dissipative systems.
Theorem 2. Let B defined by (3) with PQ−1 proper be
strictly Φ-dissipative, where Φ ∈ Rm×m[ζ, η] as in (9). If all
roots of det Q = 0 lie in the open left half complex plane,
every storage function of B with respect to QΦ is a positive
definite state function.

6. SWITCHED AUTONOMOUS SYSTEMS

We now address the problem of constructing switched
linear systems (2) whose component systems have a CQLF.
We characterize the component systems in terms of an
image representation of an associated strictly dissipative
system. This approach, as we shall show, has many advan-
tages. We shall present some preliminary results in order
to obtain the characterization mentioned above.

Lemma 3. Let Φ ∈ Rm×m[ζ, η] be given as in (9) and
consider a strictly Φ-dissipative behavior B defined by (3),

Q regular and Hurwitz, with deg Θ12 ≤ deg Q − deg P .
Let Ph be the highest degree coefficients of P and Θ12h be
the coefficient of the term ζdeg Q−deg P in Θ12(ζ) (possibly
zero). Then, Θ11 + ΘT

12hPh + PT
h Θ12h > 0.

Given a supply function QΦ, the following Lemma provides
for the construction of another associated supply function
that will be used in the sequel:
Lemma 4. Let Φ1 be of the form (9) and S(D) =[

Iq K(D)
0 Ip

]
with K(D) ∈ Rq×p[D] such that there exists

a polynomial matrix R(D) ∈ Rp×•[D] satisfying[
KT (ζ) Ip

] [
−Θ11 ΘT

12(η)
Θ12(ζ) 0p

] [
K(η)

Ip

]
= RT (ζ)R(η).

Define Φ2 = S−T (ζ)Φ1S
−1(η). Then QΦ2(0, y) ≤ 0 for all

y ∈ Rp.

The following lemma gives bounds on the degree of K(D)
in lemma 4
Lemma 5. Consider K(D) as defined in Lemma 4. Then,
deg K ≤ deg Θ12.

Consider a supply function QΦ1 and a Φ1-dissipative
behavior B1. Using the construction of the supply function
QΦ2 in Lemma 4, we construct a Φ2-dissipative behavior
having the same storage functions as B1 with respect to
QΦ1 :
Theorem 6. Let Φ1 and Φ2 be such that they satisfy the

conditions in Lemma 4. Let B1 =

 Q1(
d

dt
)

P1(
d

dt
)

 `, with

Q1 regular and Hurwitz, P1Q
−1
1 proper, be strictly Φ1-

dissipative. Define B2 =

 Q2(
d

dt
)

P2(
d

dt
)

 ` where

[
Q2(D)
P2(D)

]
= S ·

[
Q1(D)
P1(D)

]
Then, B2 has the following properties:

(1) Q2 is regular and deg Q2 = deg Q1.
(2) Q2, P2 are right coprime.
(3) B2 is strictly Φ2-dissipative.
(4) Every storage function (on states) of B2 with respect

to QΦ2 is also a storage function (on states) of B1

with respect to QΦ1 .

Having established the existence of a common storage
function we now present the following central stability
result of this paper:
Theorem 7. Consider a strictly Φ-dissipative behavior B
defined by (3) with Q regular and Hurwitz. Define

QK(D) = [ Iq K(D) ]
[

Q(D)
P (D)

]
where K satisfies[

KT (ζ) Ip
] [

−Θ11 ΘT
12(η)

Θ12(ζ) 0p

] [
K(η)
Ip

]
= RT (ζ)R(η).

for some R(D) ∈ Rp×•[D]. Define ΣQ := Q d
dt (t)w = 0

with Q(D) ∈ {QK}. Then, the equilibrium state 0 in
ΣQK is uniformly exponentially stable under arbitrary
switching.
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Remark 8. Theorem 7 not only gives a characterization of
stabilizing feedback controllers but also suggests a com-
putationally feasible scheme to compute these controllers.

Consider Φ =
[

Θ11 ΘT
12

Θ12 0p

]
∈ Rq+p×q+p. The inequality

[
KT Ip

] [
−Θ11 ΘT

12
Θ12 0p

] [
K
Ip

]
> 0 (10)

is quadratic in K. However, using the Schur complement
we can re-write (10) as a linear inequality in K. Indeed,
(10) holds if and only if[

Θ−1
11 K

KT KT ΘT
12 + Θ12K

]
> 0 (11)

Inequality (11) can be solved as an LMI to determine a
feasible K. Further constraints may be imposed on K as
required.

7. EXAMPLE – NITRIFYING TRICKLING FILTER
REVISITED

We now reconsider the example in Section 4 and use results
obtained so far to address the problem of designing output
feedback controllers that are robust against arbitrary
switching, caused by sensor or actuator failure. First, we
identify a supply function for the system defined by G1.
In the SISO case, the Nyquist Plot of G1 can be used to
obtain a supply function

Φ =
[

1 1
1 0

]
From Theorem 7 we observe that with

[ k 1 ]
[
−1 1
1 0

] [
k
1

]
≥ 0

the autonomous dynamics associated with G1 and G1
1+kG1

remain stable under arbitrary switching. Thus, k ∈ [0, 2]
stabilizes G1 and also ensures that the closed loop remains
stable under sensor/actuator failure. Hence, the unity
feedback scheme considered in Section 4 satisfies the
property that the open and closed loop systems remain
stable under arbitrary switching.

8. FURTHER APPLICATIONS

In this section we list further applications of Theorem 7.
These applications serve to demonstrate the flexibility of
our approach.

8.1 Sensor/Actuator Failure

Evaluation of controller robustness against sensor/actuator
failure is of immense interest. Instability could result be-
cause of not only high feedforward gain, but also because of
switching among nominally stable systems, corresponding
to each failure scenario. Thus the problem of analysing
stability of a closed loop system under sensor/actuator
failure can be formulated as one of analysing stability of a
switched system with several components.

As already demonstrated in Sections 4 and 7, an im-
mediate application of Theorem 7 is that it guarantees
stability under loop disruptions caused by sensor failure.
Note that Theorem 7 also holds for K = 0. Thus, the

open loop system and the closed loop system remain stable
under arbitrary switching provided K satisfies conditions
in Theorem 7.

Stronger results may be obtained when special structure
is imposed on the feedback controllers. Let the open loop
plant (3) with P,Q ∈ Rq×q[D] be (strictly) dissipative with
respect to

Φ =
[

Γ Iq
Iq 0q

]
(12)

with Γ = diag(γ1, . . . , γq). It can be shown for every PQ−1

proper, there exists a Γ such that B is Φ-dissipative.

Application of Theorem 7 results in the following condition
that a feedbacks K must satisfy in order that Ker Q( d

dt )
and Ker (Q( d

dt ) + KP ( d
dt )) remain stable under arbitrary

switching:
−KT ΓK + K + KT ≥ 0 (13)

Consider a nominal K = diag[α1, . . . , αq] that satisfies
(13), i.e. αi ∈ [0, 2/γi], i = 1, . . . , q. Under these condi-
tions, the closed loop remains stable under arbitrary com-
binations of sensor or actuator failure since the condition
(13) still holds true when some of the αis are replaced by
0. Thus we have obtained bounds on the feedback gains
αi which ensures that the autonomous dynamics remains
stable under arbitrary sensor or actuator failure.

In the special case when some γi = 0, there is no upper
bound on αis, i.e. arbitrary negative feedback between
the ith output and input still ensures that the switched
system remains asymptotically stable under actuator or
sensor failures.

Analysing the problem of stability under sensor/actuator
failure by solving a family of LMIs for a CQLF is quite
inefficient. Clearly, with K = diag(α1, . . . , αq) there exist
2q failure scenarios, and hence also 2q LMIs which need be
solved simultaneously. This is a computationally difficult
problem for large q.

8.2 Switched Controller Design

The problem of controller design is as follows: one desires
controllers Ki, i = 1, . . . N that satisfy certain specifica-
tions and ensure stability under arbitrary switching. In
order to obtain such controllers, we first obtain a supply
function QΦ such that the open loop plant defined by
G is strictly Φ-dissipative. It is shown in (11) that Kis
may be determined by solving an LMIs. The interesting
aspect of this condition is that structural conditions that
are difficult to handle analytically may now be imposed on
K. For example, one can search for a diagonal K which
satisfies the conditions in Theorem 7. In the light of Section
8.1, one may also want to design controllers that render
the open loop plant dissipative with respect to “special”
supply functions, for instance (12). Such designs ensure
robustness against arbitrary combinations of sensor and
actuator failure. We demonstrate this application in the
simple example below. In [17], Page 93, a simplified model
for a distillation column is proposed:

G(s) =
1

75s + 1

[
87.8 −86.4
108.2 −109.6

]
We design a output feedback controller in order to have
a certain desired pole location. We would in addition like
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this controller to ensure stability against actuator failure.

With Q = diag(1+75s, 1+75s) and P =
[

87.8 −86.4
108.2 −109.6

]
,

it can be seen that the behavior B associated with y = Gu
is dissipative with respect to QΦ with

Φ(ζ, η) =

 5 0 0 1
0 5 −1 −η
0 −1 0 0
1 −ζ 0 0


We note that K(D) =

[
0 0.4

−0.4 −0.4D

]
meets the con-

ditions in Theorem 7 with R = 02. Indeed it can be
verified that with an output feedback defined by K( d

dt ),
the closed loop poles move from {−0.0133,−0.0133} to
{−0.005,−0.67}.
Note that the output feedback represented by K0 = 02,

K1 =
[

0 0
−0.4 −0.4D

]
and K2 =

[
0 0.4
0 0

]
represent

possible actuator failure scenarios. Under these conditions,
Ki(D), i = 0 . . . , 2 still satisfy the condition in Theorem 7.
Therefore the autonomous dynamics KerQ( d

dt ),Ker(Q +
K1P )( d

dt ), Ker(Q + K2P )( d
dt ) and Ker(Q + KP )( d

dt )
remain stable under arbitrary switching. LMI tests in fact
show that there also exists a CQLF, as already predicted
in Theorem 7:

L =
[

0.4657 −0.4543
−0.4543 0.5342

]
is a CQLF for KerQ( d

dt ),Ker(Q + K1P )( d
dt ), Ker(Q +

K2P )( d
dt ) and Ker(Q + KP )( d

dt ). Thus, the closed loop
system with output feedback defined by K( d

dt ) not only
ensures closed loop stability, but also ensures robustness
against arbitrary actuator failure.

9. CONCLUSION

We propose a parametrization for a set of autonomous dif-
ferential algebraic systems that have a Common Quadratic
Lyapunov Function (CQLF). Switched systems, with com-
ponents from this set remain stable under arbitrary switch-
ing. The parametrizations can be efficiently computed by
solving an LMI. Our results can be used even where com-
monly available numerical approaches apparently fail, as
demonstrated by the Trickling Nitrifying Filter example.
We also address related problems of stability under arbi-
trary sensor/actuator failure and controller design which
we use for a simplified distillation column control.
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