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Abstract: This paper is concerned with feedforward control and active rejection of vibrations
of a single mast stacker crane used for the automatic storage or retrieval of load carries in
high bay racks. Based on an infinite dimensional mathematical model the trajectory planning
and tracking problems are discussed. It turns out that the theory of differential flatness in
combination with a finite dimensional approximation of the system is a suitable tool to obtain
an open loop control law and to derive time optimal trajectories. The application of backstepping
to the infinite dimensional model leads to a passivity based controller for the stabilization of
the tracking error. Finally, measurement results show the feasibility of this approach.
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1. INTRODUCTION

In industry a lot of applications are represented by flexible
structures, for example stacker cranes operating in a
high bay warehouse. The flexibility in such devices arises
because of light weight constructions which are preferably
used to satisfy the economic objective to increase the
efficiency of the storage system. However, this may cause
some vibration problems which must be investigated,
because they affect storage access time considerably.

This contribution deals with a flexible mechanical system
as depicted in Fig. 1, representing a single mast stacker
crane. Basically, it consists of a driving unit mw which can
move only in the X3 direction. A vertical beam carrying
a moving mass mh, in the following also referred to as
lifting unit, is attached to this unit. Furthermore, a tip
mass mk is fixed at the free end of the beam. The task is
to move the mass mh from a starting point into a desired
goal equilibrium point inside the (X1,X3) plane as fast
as possible. To achieve this specification a flatness based
feedforward and a passivity based feedback control concept
is proposed, see e.g. Macchelli and Melchiorri [2005], Thull
et al. [2005].

This paper is organized as follows. In Section 2 an infinite
dimensional model of the system is derived. Based on
this model trajectory planning is discussed in Section 3.
Here we will use the theory of differential flatness applied
to a finite dimensional approximation of the nonlinear
system to derive an open loop control. A passivity based
control law to stabilize the tracking error is proposed next.
This will be the main focus of Section 4. Section 5 is
concerned with the problem of time optimal trajectory
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Fig. 1. Mathematical model.

generation. The property of differential flatness will help us
to formulate a nonlinear parametric optimization program
which must be solved to obtain the optimal trajectories.
Finally, some measurement results show the feasibility of
this approach and complete the contribution.
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2. THE MATHEMATICAL MODEL

Let us consider the mechanical system shown in Fig. 1. The
driving unit is modeled as a rigid body mw with position
x1. The displacement of the beam centerline is denoted
by w and we will assume that the beam satisfies the
Euler-Bernoulli hypothesis, having length L, uniform mass
density ρ, uniform cross section surface A and uniform
flexural rigidity EI. The center of gravity of mh moves
along the beam center line. As depicted in Fig. 1, the
two masses mk and mh can move in the (X1,X3) plane
with positions x2, x3 and x4. The rotary inertia of the
beam and of the masses mh and mk are not taken into
account. In addition the geometric relations are linearized.
The forces F1 and F2 acting on the driving and the lifting
unit respectively serve as control inputs.

Concerning mathematical notation we will use the short-
cuts ∂t = ∂/∂t and ∂x = ∂/∂X1 as well as ∂k

t = ∂k/∂tk

and ∂k
x = ∂k/∂(X1)k, k = 2, . . . , n. When dealing with

functions u = u(t) we will write u̇ = ∂tu and ü = ∂2
t u for

derivatives with respect to the parameter t.

Taking into account the assumptions presented above we
are able to determine the kinetic energy

Ekin =
1

2
mw(ẋ1)2 +

1

2
mh((ẋ3)2 + (ẋ2)2) +

+
1

2
mk(ẋ4)2 +

∫ X1

X2

1

2
(∂tw)

2
ρAdX1

and the potential and stored elastic energy

Epot = mhgx2 +

∫ X1

X2

1

2
EI(∂2

xw)2dX1.

The contribution of the external forces can be expressed
as

Eext = x1F1 + x2F2.

Hence, the Lagrangian reads as L = Ekin − Epot + Eext

and we are able to define the action functional

L =

∫ t2

t1

(

L̄(x, ẋ)+

∫ X1

X2

l(∂tw, ∂2
xw)dX1

)

︸ ︷︷ ︸

L

dt

whereas L is separated into the function L̄(x, ẋ) and
the Lagrangian density l. It still remains to include the
restrictions Θ1 = x3 − w(x2, t) = 0 and Θ2 = x4 −
w(L, t) = 0 into the problem formulation. One possibility
is to extend the functional L by using the techniques of
Lagrange multipliers λ as

L̄ = L+

∫ t2

t1

λi(t)Θ
idt . (1)

Here and in the following the Einstein convention for sums
is used to keep the formulas short and readable.

To derive the equations of motion we apply Hamilton’s
principle and get the partial differential equation

ρA∂2
t w + EI∂4

xw = 0 (2)

and the ordinary differential equations

mwẍ1 + EI∂3
xw(0, t) = F1,

mhẍ2 + mhg + mhẍ3∂xw(x2, t) = F2,

EI(∂3
xw(x2

−
, t) − ∂3

xw(x2
+, t)) = mhẍ3,

EI∂3
xw(L, t) = mkẍ4.

(3)

Furthermore, the relations

w(0, t) = x1,

∂xw(0, t) = 0,

EI(∂2
xw(x2

−
, t) − ∂2

xw(x2
+, t)) = 0,

EI∂2
xw(L, t) = 0

(4)

must be fulfilled. It is worth mentioning that (2) is valid
for the domains Ω1 = [0, x2] and Ω2 = [x2, L] respectively
and that (3) correspond to the law of conservation of linear
momentum concerning the masses mw, mh and mk. The
clamping and the strain conditions at X1 = 0, X1 = x2

and X1 = L are summarized in (4). The values x2
+ and x2

−

denote the right-hand and the left-hand limit of x2.

3. FLATNESS BASED OPEN LOOP CONTROL

Next, the theory of differential flatness, well known and
established for finite dimensional nonlinear systems and
generalized for a special class of linear infinite dimensional
systems, see e.g. Fliess et al. [1995], Rudolph [2003], is used
in order to design the feedforward part of the control law.
This will be done by means of a finite dimensional system
approximation. Therefore, we apply the Ritz ansatz

w(X1, t) = x1(t) + Φ1(X
1)q̄1(t) (5)

for the displacement w with a function in space

Φ(X1) = 6
(
X1/L

)2
− 3

(
X1/L

)3
+

1

2

(
X1/L

)4

and the new generalized coordinate q̄1. The function Φ
fulfills the equations (4) but it does not incorporate the
shear force condition at X1 = x2 and X1 = L. This sim-
plification has been justified by numerical investigations
with a higher order ansatz that fulfills this requirement.
The substitution of the ansatz into (1) together with
Hamilton’s principle leads to the equations of motion

Mij(q)q̈
j + Ci(q, q̇)q̇ + gi = Gk

i uk (6)

with i, j = 1, . . . , 3 , k = 1, 2 , q = (x1, q̄1, x2) and
u = (F1, F2). We get a nonlinear mechanical system un-
deractuated by one control. The elements of the symmetric
inertia matrix M and those of the vector C are

M11 = m11, M12 = m12 + mhΦ(x2),

M22 = m22 + mhΦ(x2)2, M13 = mhq̄1 ∂Φ(x2)

∂x2
,

M33 = m33(q̄
1, x2), M23 = mhq̄1Φ(x2)

∂Φ(x2)

∂x2
,

C1 = mh

(

2ẋ2 ˙̄q1 ∂Φ(x2)

∂x2
+ ẋ2q̄1 ∂2Φ(x2)

∂(x2)2

)

,

C2 = Φ(x2)C1 + k1q̄
1 + k2

˙̄q1,

C3 = q̄1 ∂Φ(x2)

∂x2
C1

with constants m11,m22,m12, k1 and k2. The vectors Gk

read as G1 = (1, 0, 0) and G2 = (0, 0, 1). The problem
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is now to find a set of flat outputs (y1
f , y2

f ) for system

(6). It is worth mentioning that the explicit state space
representation of (6) is not state feedback equivalent to a
linear time-invariant system, nevertheless it might be flat.
The crucial point is now that the first two rows of (6) can
be rewritten as

Mij(x
2)q̈j + C1

i (x2, ẋ2, ẍ2)q̄1 + C2
i (x2, ẋ2) ˙̄q1 = G1

i u1

with i, j = 1, or in explicit first order form as

żi = Ai
j(x

2, ẋ2, ẍ2)zj + bi(x2)ū (7)

with i, j = 1, . . . , 4, state vector z = (x1, ẋ1, q̄1, ˙̄q1) and
the remaining input ū = F1. Assuming that y2

f = x2 we

know the trajectory x2
d(t) = y2

f (t) and its time derivatives

and thus, we can treat system (7) as a linear time-varying
system

żi = Ai
j(x

2
d, ẋ

2
d, ẍ

2
d)z

j + bi(x2
d)ū . (8)

Hence, the construction of a flat output is now straight-
forward, for example by transformation into time-varying
controllability normal form, see e.g. Rothfuß [1997]. A flat
output for (8) is given by ȳf = hi(x

2
d, ẋ

2
d, ẍ

2
d)z

i. Because of
their complexity the expressions hi are not presented here.

Summarizing these observations we propose the differen-
tial independent functions

yf = (hi(x
2, ẋ2, ẍ2)zi, x2) (9)

as flat outputs for the original system (6). To show this we
succeed in expressing all system variables q and u by yf

and its time derivatives which ensures by definition that
(9) are indeed flat outputs of the original system (6).

Once the flat outputs are found, we are able to calculate
an open-loop control by defining a sufficient smooth trajec-
tory yf (t) = yf,d(t). To assure continuous state and input
trajectories the function y1

f must be at least four times, the

function y2
f at least six times continuously differentiable.

To verify this statement it is remarkable that system (6)
is linearizable by static state feedback after adding four
integrators at input u2.

4. CONTROLLER DESIGN

The aim of this section is to derive a control concept for our
elastic structure which provides good tracking behavior
and at the same time achieves good disturbance rejection.
A frequently used approach is to design the controller
for a finite dimensional system approximation. This often
leads to undesirable spillover effects in particular when
collocation between input and output is not given. To
ensure collocation between in- and output we will apply
a passivity based approach directly to the infinite dimen-
sional system.

4.1 Stabilization of an equilibrium point

Because we are interested in the behavior of the error
dynamics we consider the change of coordinates and inputs

zi
e = Ψi(z) = zi − zi

d , uζ
e = uζ − uζ

d (10)

with z = [xi, w], u = [F1, F2] and restrict ourself to
equilibrium points with constant trajectories for zd and
ud.

With this transformation the error system reads as

ρA∂2
t we + EI∂4

xwe = 0 (11)

together with

mwẍ1
e + EI∂3

xwe(0, t) = F1,e,

mhẍ2
e + mhẍ3

e∂xwe(x
2, t) = F2,e,

EI(∂3
xwe(x

2
−

, t) − ∂3
xwe(x

2
+, t)) = mhẍ3

e,

EI∂3
xwe(L, t) = mkẍ4

e

(12)

and
we(0, t) = x1

e,

∂xwe(0, t) = 0,

EI(∂2
xwe(x

2
−

, t) − ∂2
xwe(x

2
+, t)) = 0,

EI∂2
xwe(L, t) = 0.

(13)

According to the total stored energy H = Ekin + Epot a
suitable energy functional for the error system is now given
by

He =
1

2
mw(ẋ1

e)
2 +

1

2
mh((ẋ3

e)
2 + (ẋ2

e)
2) +

1

2
mk(ẋ4

e)
2

+
1

2

∫ L

0

(ρA(∂twe)
2 +

1

2
EI(∂2

xwe)
2)dX1 . (14)

The calculation of the time derivative of (14) along a
solution of (11) to (13) yields

d

dt
He = ẋ1

eF1,e + ẋ2
eF2,e .

Hence, the energy ports of our error system are given
by the collocated pairs (F1,e, ẋ

1
e) and (F2,e, ẋ

2
e) and the

control law

F1,e = −α1ẋ
1
e, F2,e = −α2ẋ

2
e (15)

with α1, α2 > 0 might be applied to provide

d

dt
He = −α1(ẋ

1
e)

2 − α2(ẋ
2
e)

2 ≤ 0 .

It is worth mentioning that here only damping injection is
considered. For practical use, in case of unfavorable mass
relationships or very strong friction effects at the driving
unit, this control law provides a very week disturbance
rejection. To avoid this disadvantage we use the method of
backstepping to construct a new energy functional which
provides an improved control law. This approach was
already successfully applied in e.g. d’Andreá Novel and
Coron [2000], Thull et al. [2005] for some well known heavy
chain systems.

First we start with the splitting of our system as shown in
Fig. 2. We obtain the subsystem beam and lifting unit Σ1

F1

ẋ1

Σ2

ẋ1

Q

Σ1

ẋ2

F2

Fig. 2. Energy based system splitting.

and the subsystem driving unit Σ2 with the coupling force
Q = EI∂3

xw(0, t) which represents the shear force at the
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clamping of the beam. The energy functional of the error
subsystem beam and lifting unit is now given by

HΣ1
=

1

2
mh((ẋ3

e)
2 + (ẋ2

e)
2) +

1

2
mk(ẋ4

e)
2 +

+
1

2

∫ L

0

(ρA(∂twe)
2 +

1

2
EI(∂2

xwe)
2)dX1. (16)

Again, taking the time derivative of (16) along a solution
of (11) to (13) we obtain

d

dt
HΣ1

= ẋ1
eQe + ẋ2

eF2,e .

Furthermore, we can state that the energy exchange be-
tween the two subsystems is done via the port (ẋ1

e, Qe).
To establish stabilization of the positions x1 and x2, which
was not taken into account yet, (16) is extended with the
energy of two nonlinear springs, namely

V̄e = α1HΣ1
+

∫ x1

e

0

c1(ξ)dξ +

∫ x2

e

0

c2(ξ)dξ , (17)

whereas the conditions ci(ξ)ξ > 0 for ξ 6= 0 and ci(0) = 0
must be met. The time derivative of (17) along a solution
of the error system yields

d

dt
V̄e = ẋ1

e(α1Qe + c1(x
1
e)) +

+ẋ2
e(α1F2,e + c2(x

2
e)) .

Let us consider ẋ1
e as fictive control input of Σ1, then the

control law

ẋ1
e =−α1Qe + c1(x

1
e) ,

F2,e =−
1

α1

c2(x
2
e) −

α2

α1

ẋ2
e

with α1, α2 > 0 would yield d

dt
V̄e ≤ 0. To include the

real control input F1,e, analogously to the backstepping
approach for nonlinear finite dimensional systems, the new
functional

Ve = V̄e +
1

2
(ẋ1

e + α1Qe + c1(x
1
e))

2 (18)

is introduced. Once again differentiating (18) with respect
to time along a solution of (11) to (13) yields

d

dt
Ve =−(α1Qe + c1(x

1
e))

2 + (ẋ1
e + α1Qe +

+c1(x
1
e))(

1

mw

(F1,e − Qe) + α1Q̇e +

+
dc1

dx1
e

ẋ1
e) + ẋ2

e(α1F̄2,e + c2(x
2
e)) . (19)

where the shortcut Q̇e = EI∂3
xẇe(0, t) is used. Now it is

easy to show by substituting in (19), that the control law

F1,e =−mw((α2 + 1) c1(x
1
e) + (α2 +

dc1

dx1
e

)ẋ1
e

+(α1 + α1α2 −
1

mw

)Qe + α1Q̇e) (20)

F2,e =−
1

α1

c2(x
2
e) −

α3

α1

ẋ2
e

with α1, α2, α3 > 0 implies

d

dt
Ve =−(α1Qe + c1(x

1
e))

2 − α3(ẋ
2
e)

2 −

−α2(ẋ
1
e + α1Qe + c1(x

1
e))

2 (21)

which provides the desired result

d

dt
Ve ≤ 0 .

Now, in contrast to (15), the positions x1, x2, the shear
force Q and their time derivatives appear in the control
law. This means an additional measurement but it will
improve the disturbance rejection considerably.

In contrast to the finite dimensional case to show stability
of an infinite dimensional system in the sense of Lyapunov
the conditions Ve > 0 and V̇e ≤ 0 are only necessary and
therefore, further investigations must be done.

4.2 Trajectory tracking

The trajectory tracking problem is more challenging be-
cause in this case the transformation (10) and conse-
quently the error system become time variant and there-
fore time variant theory must be taken into account. The
derivation of a tracking controller based on the time vari-
ant error system is part of future efforts.

In this paper we will assume that |ẏd| is sufficiently small
and use the control law (20) as tracking controller. The
desired trajectories zi

d in (10) are replaced by those of
section 3. The feasibility of this assumption is shown by
simulation and confirmed with measurement results in
section 6.

5. TIME OPTIMAL MOTION PLANNING

The previous system analysis tells us that the finite di-
mensional system representation is differential flat with
outputs yf . Hence, we are confronted with the problem
of generating trajectories yf,d which must comply with
constraints and sometimes it is desirable to have trajecto-
ries that provide optimal performance according to some
criteria.

In our particular case we ask for time optimal trajectories
to move the system from an initial into a desired goal
equilibrium point as fast as possible but within the system
constraints. These constraints are once velocity vi

max,
acceleration ai

max and jerk constraints ri
max of the driving

and the lifting unit respectively. Moreover, we have to
constrain the bending moment Mb of the beam at the
clamping area because here the highest bending stress
occurs. For example, this can be necessary to guarantee
fatigue resistance. The limits of the input forces are not
taken into account because they are not violated in this
setup.

5.1 Problem Formulation

At first the outputs are parameterized in terms of B-spline
functions. B-splines are frequently used basis functions
because of some significant properties, e.g. their ease
of enforcing continuity across knot points and ease of
computing their derivatives, they are defined locally, etc. A
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detailed discussion of B-splines and their implementation
can be found in de Boor [1978]. We get

yf,1 = Bi1,n1
(t)pi1

1 , yf,2 = Bi2,n2
(t)pi2

2 ,

i1 = 1, . . . , N1, i2 = 1, . . . , N2, whereas Bi,n(t) denotes
the B-spline basis function of the i-th knot with order n
and p1, p2 the vectors of parameters to be calculated. As a
consequence of this parameterization and the fact yf,1 and
yf,2 are flat outputs, the system variables z = [xi, Fi,Mb]
are determined by p1 and p2, namely

z = z(yf,i, ∂
k
t yf,i) = z(p1, p2, t)

with k = 1, . . . , 4. Next, Nc points are chosen uniformly
over the time interval [0, Tend], the constraints will be
evaluated at these points. Moreover, we will not directly
minimize the end time Tend but instead we will solve a
sequence of subproblems each with fixed Tend.

The subproblem can now be stated as the following non-
linear programming form:

min
p

‖F1(p, tk)‖
∞

x1(p, 0) = x1
0

x2(p, 0) = x2
0

x1(p, Tend) = x1
end

x2(p, Tend) = x2
end

∣
∣∂tx

i(p, tk)
∣
∣ ≤ vi

max∣
∣∂2

t xi(p, tk)
∣
∣ ≤ ai

max∣
∣∂3

t xi(p, tk)
∣
∣ ≤ ri

max

|Mb(p, tk)| ≤ Mb,max

with i = 1, 2, k = 1, . . . , Nc, parameters p = [p1, p2] and
tk ∈ [0, Tend]. Each subproblem is solved for a fixed Tend.
If a solution is found Tend is appropriately reduced and
the optimization problem is solved again. This procedure
is repeated as long as in the next step no possible solution
is found. This iteration determines min(Tend) and finally
the time optimization problem is solved.

5.2 Implementation and Results

The presented algorithm was implemented using C++ pro-
gramming language. The nonlinear programming solver
is chosen out of the NAG C library and is based on
the SNOPT package described in Gill et al. [2002]. It
uses a sequential quadratic programming (SQP) method
and is designed for large-scale constrained optimization
problems.

Fig. 3 shows the time optimal trajectories for the position
of the lifting unit in the X1-X3 plane. Thereby, starting
from position A the positions B, C and D were passed
through successively. For example, the optimization for
run A-B was done with the parameters N1 = 60, N2 = 40
and Nc = 599. In addition to Section 3 we want to
constrain the jerk r as well and so the values n1 = 5 and
n2 = 7 were chosen. Hence, the number of optimization
parameters is 109 and the number of constraints is 2001.
The CPU-time to solve one subproblem was about 2s
and it took five iterations to find min(Tend). More details
to the several trajectories and their constraints will be
presented, together with some measurement results, in the
next section.

Roughly speaking time optimal trajectories are described
by the characteristic that during the acceleration phases
the lifting unit is at the lowest possible beam position.
Consequently a higher acceleration of the driving unit can
be achieved within the same maximal bending moment.

- 0 . 1 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 80

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

x 1  [ m ]

x2
 [m

]

A

BC

D

Fig. 3. Time optimal trajectories in the X1-X3 plane.

Therefore, if possible every time the lifting unit moves
downwards and just at the last feasible moment it moves
upwards again to reach the desired goal position.

6. MEASUREMENT RESULTS

The time optimal feed forward part together with the
control law (20) were implemented at the laboratory
experiment. Some setup data of interest are mw = 13.1kg,
mh = 0.86kg, L = 0.54m, EI = 15.1Nm and ρA =
2.1kg/m. The constraints are fixed to v1

max = 0.8m/s,

v2
max = 0.4m/s, a1

max = 4m/s
2
, a2

max = 6m/s
2
, r1

max =

2m/s
3
, r2

max = 6m/s
3

and Mb,max = 0.75Nm. The bending
moment is measured via strain gage attached near the
clamping of the beam. The shear force which is necessary
in the control law could be measured directly by the
help of a force sensor. Here it is approximated using the
relationship between Mb and Q given by the first order
ansatz (5), namely Q̂ = Mb(∂

3
xΦ(0, t)/∂2

xΦ(0, t)).

Fig. 4 shows the desired and the measured trajectories of
run A-B depicted in Figure 3. The optimal trajectories are
calculated in such a way, that despite the motion of the
lifting unit, the flexible structure moves from point A to
B along the defined constraints. The lifting unit remains
at the lowest beam position as long as possible and finally
moves upwards with v2

max. Furthermore, it can be observed
that the trajectories of the driving unit are adapted to the
position of mh as well. Here the acceleration is higher and
therefore, the duration of this phase is shorter than the
braking phase which is much softer.

Although the feedback part of the control law is designed
for stabilizing an equilibrium point, it turns out that it acts
also perfectly together with the feedforward part. The high
frequent vibrations that arise in the measured bending
moment signal, occur because of mechanical vibrations
caused by some friction effects between lifting unit and
beam. But it shows the robustness of the proposed control
law that in spite of these uncertainties the closed loop is
stable.
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Fig. 4. Trajectory tracking performance of the proposed control law.

7. CONCLUSION

We have shown that the combination of flatness based
feedforward and passivity based feedback control is an
appropriate tool to achieve trajectory planning and track-
ing for a single mast stacker crane as shown in Fig. 1. In
particular it is pointed out that the derivation of the open
loop control by a finite dimensional system approximation
assures good results. To improve disturbance rejection the
method of backstepping is used to design a new Lyapunov
function and as a consequence of this a new control law,
where we successfully integrated the shear force Q. In
addition, the property of differential flatness helped us
to formulate a nonlinear optimization problem to finally
obtain the time optimal trajectories. The measurement
results in Fig. 4 show the feasibility of this approach.
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