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Abstract:
This contribution is about the combination of a feedforward and a feedback controller
and a reduced state observer in order to stabilize the trajectories of a nonlinear plant.
Port-Hamiltonian systems provide some special mathematical properties and have turned
out beneficial for the stability analysis of nonlinear control systems. The combination of a
feedforward and feedback controller allows us to achieve good tracking and the rejection of
disturbances and parameter variations. In addition the extension of the nonlinear control scheme
with a state observer allows a reduction of the number of measured quantities. This approach
will be shown for the example Ball on the Wheel.
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1. INTRODUCTION

This contribution is about the tracking controller design
for nonlinear lumped-parameter systems. The goal of the
controller design is that the considered system output y
tracks a given, admissible trajectory. In order to achieve
this behavior we use a control scheme as sketched in Fig.
1, which consists of a feedforward controller and a state
feedback controller with an observer.
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Fig. 1. Structure of the control scheme with observer

The design of a feedforward controller for a system like

ẋ = f(x, u) y = h(x) x(t0) = x0 (1)

could be very tricky in the general case. During the late
80’s Fliess and his co-worker, see Fliess et al. [1995]
introduced the concept of flat systems. By means of a
so-called flat output one is able to calculate an openloop
control law udes(t) for (1) provided the reference curve
is sufficiently smooth. Here we assume that a flat output
exists for (1).
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In this contribution we combine the approach of passivity
based control with flatness. In detail we extend the IDA-
PBC-approach, see van der Schaft [2000], Ortega et al.
[2002] in order to include the feedforward control law udes
in the Hamiltonian framework. One advantage of the IDA-
PBC design is that it does not require the measurement
of the whole system state in general.

This paper is organized as follows. After an introduction
we give a short overview on Port-Hamiltonian systems
(PH-systems) and we derive a Port-Hamiltonian repre-
sentation for an Euler-Lagrange system. In section 3 we
investigate coordinate transformations, which preserve the
Hamiltonian structure. Section 4 is devoted to the IDA-
PBC design and the stability analysis for nonlinear time
variant PH-systems. The design of a reduced state observer
is shown in section 5 and we investigate the closed loop
stability for the state feedback controller and the state
observer. Finally we apply the proposed approach to the
nonlinear example Ball on the Wheel (BoW) and end
with a short conclusion.

2. EULER-LAGRANGE SYSTEMS AND
PORT-HAMILTONIAN REPRESENTATION

In this contribution we focus on nonlinear systems (1),
which admit a representation as Port-Hamiltonian system.
PH-systems are a generalization of the class of conservative
Hamilton systems, which are usually given in the form

q̇i = (∂pi
H) ṗi = − (∂qi

H) i = 1, . . . , ν . (2)

For the rest of the paper we write I for the identity matrix

and (∂qH) for the Jacobian (∂qH) =
[
∂H
∂q1

, . . . , ∂H
∂qn

]

of

the Hamiltonian function H ∈ C1(R2ν) with respect to
the coordinates q respectively p. The generalized coordi-
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nates q and momenta p of (2) are ν-dimensional vectors
q (t) , p (t) ∈ R

ν . If the Hamiltonian H > 0 is positive
definite (p.d.), then the system (2) is stable in the sense
of Lyapunov, because of a negative semidefinite (nsd.)

derivative Ḣ = 0. A generalization of (2) is given by

ẋ = (J (x) −R (x)) (∂xH)
T

+G (x)u

y = GT (x) (∂xH)
T

,
(3)

which is called a Port-Hamiltonian system, see van der
Schaft [2000], where J = −JT and R = RT ≥ 0 is met. In
(3) y is also called the collocated output and the assump-
tion x ∈ R

2ν can be dropped for (3). If H ≥ C0 is bounded
from below, then a PH-system is a passive system, because
the passivity inequality d

dtH (q (t) , p (t)) ≤ 〈y, u〉

Ḣ = (∂xH) J (∂xH)
T

︸ ︷︷ ︸

0

− (∂xH)R (∂xH)
T

︸ ︷︷ ︸

≥0

+(∂xH)G
︸ ︷︷ ︸

yT

u (4)

holds. The pairing 〈·〉 is given by the canonical product
〈w, v〉 =

∑n
i=1 wivi, w ∈ (Rn)

∗
, v ∈ R

n.

Now we consider Euler-Lagrange Systems (EL-systems).
We confine ourselves to EL-systems, where the Lagrangian
function L ∈ C1 (Rn) is of the form L = T (q, v) −
V (q) = 1

2v
TM (q) v + V (q). Together with a Rayleigh

function R ∈ C1 (Rn), (∂vR) v ≥ 0 the equation of motion
(EoM) take the form

d

dt
(∂vL)

T
− (∂qL)

T
+ (∂vR)

T
= MQe . (5)

with the generalized external forces Qe ∈ R
m. Based on

the EoM of the EL-system we derive a PH-representation
for (5), which uses the state variables q and v and the
Hamiltonian H = T + V

H =
1

2

∑

i,j

mij (q) vivj + V (q) i, j = 1, . . . , n . (6)

According to (3) we look for matrices Jij = −JTij , Rij =

RTij and Gij , i,j = 1,2, such that the EL-equations (5) take
the form
[
q̇
v̇

]

=

[
J11 −R11 J12 −R12

−JT12 −R12 J22 −R22

] [
(∂qH)

T

(∂vH)
T

]

+

[
G11

G22

]

Qe.

(7)
by means of q̇ = v the set of second order ode’s of
(5) becomes a set of 2n first order ode’s, which leads
immediately to the relation

q̇ = (J11 −R11) (∂qH)
T

+(J12 −R12) (∂vH)
T

+G11Qe
!
= v ,

(8)

for equivalence. It turns out, that for J11 = R11 = R12 =
G11 = 0 and J12 = M−1 (q) = M̄ (q) the expression (8)
holds. The calculations for the lower n-ode’s of (7) are
more involved. We consider the explicit form of the EL-
system given by (5)

v̇ = M̄
((

d
dtM (q)

)
v + (∂qL)

T
− (∂vR)

T
+ MQe

)

(9)

with (∂qL)
T

= (∂qT )
T
− (∂qV )

T
. If we plug in the result

of (8), then (9) should be equal to

v̇ = −M̄ (∂qT )
T

+ 2M̄ (∂qT )
T

︸ ︷︷ ︸

M̄(∂qT )T

− 2M̄ (∂qT )
T

−M̄ (∂qV )
T

+ (J22 −R22)Mv +G22Qe .

(10)

By comparison of coefficients for (10) we get 3 relations
for the equivalence:

i) M̄

(
d

dt
M (q)

)

v = −2M̄ (∂qT )
T

+ J22Mv

ii) M̄ (∂vR)
T

= R22Mv iii) M̄MQe = G22Qe ,

(11)

where iii) is easy to solve for G22 = M̄M. The inclusion of
a general Rayleigh dissipation R in the PH-representation
demands a solution for the expression ii). It has to be
checked separately, if a solution for ii) exists. Otherwise
this approach fails. If we consider a quadratic Rayleigh
function R = 1

2v
TF (q) v, then we get the simple result

R22 = M̄FM̄ . For the analysis of the left hand side of i)
we use an indexed notation

M̄

(
d

dt
M (q)

)

v = −M̄




∑

i,j

∂mij

∂qk
vi −

∑

i,j

∂mki

∂qj
vi



 vj .

(12)

If we add
∑

j

∂mkj

∂qi
vi −

∑

j

∂mkj

∂qi
vi = 0 to (12) and rewrite

the left hand side of i) of (11), then we end up with

−M̄




∑

i,j

∂mkj

∂qi
− 2cijk (q)



 vivj =
∑

i,j

J22ki
mijvj (13)

Obviously cijk (q) = 1
2

(
∂mkj

∂qi
+ ∂mki

∂qj
−

∂mij

∂qk

)

are nothing

else than the Christoffel symbols of the first kind. Eq.
(13) takes the compact form ṁkj − 2ckj , if we define
ckj =

∑

i cijk (q) vi. In order to fulfill i) of (11) J22 is equal

to J22 = −M̄
(

Ṁ − 2C
)

M̄ , where ckj are the components

of the matrix C (q, v). It is left to check if J22 is skew-
symmetric, but this is done by means of a short calculation
and the well-known result that Ṁ −2C is skewsymmetric.
To start with the definition of skewsymmetry J22+JT22 = 0
we get

−M̄
(

Ṁ − 2C
)

M̄ − M̄T
(

Ṁ − 2C
)T

M̄T =

−M̄

((

Ṁ − 2C
)

+
(

Ṁ − 2C
)T

)

︸ ︷︷ ︸

0

M̄ = 0 (14)

and
(

Ṁ − 2C
)

= −
(

Ṁ − 2C
)T

completes the proof.

Now one can write a Hamiltonian representation for the
EL-equation (5)

[
q̇
v̇

]

= (JEL −REL)

[
(∂qH)

T

(∂vH)
T

]

+

[
0

M̄M

]

Qe

with JEL =

[
0 M̄

−M̄ −M̄
(

Ṁ − 2C
)

M̄

]

,

(15)

REL = diag{0, R22}. Although the coordinates [q, p] have
many theoretical advantages for EL-systems the choice of
[q, v] fits directly with the measured quantities. This is
of interest for the observer design. Clearly the usage of
the (inverse) Legendre-transform for (5) leads to a similar
result as given in (15).

Example 1: As illustrative example we treat the Cart-
Pole system, see Fantoni and Lozano [2001]. We skip
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the modelling at all and deal with the Lagrangian L =
1
2v
TM (q) v − V (q), which reads in detail

qT = [ q1 q2 ] vT = [ v1 v2 ] xT =
[

qT vT
]

M = MT =

[
m1 m12 cos (q2)

m12 cos (q2) m2

]

> 0

V (q) = −m12g sin (q2) m1, m12, m2, g ∈ R
+

(16)

and the EoM are given by

M

[
v̇1
v̇2

]

+

[

−m12 sin (q2) v
2
2

m12g sin (q2)

]

−F

[
v1
v2

]

=

[
Fx
0

]

, (17)

where a viscous friction is included by means of the
Rayleigh function R = 1

2v
TFv, F = diag{r1, r2}. In order

to derive J22 we have to calculate Ṁ (q) and the Christoffel
symbols cijk (q). It turns out that all cijk (q) vanish except
c221 = −m12 sin (q2). Only c21 of C is non-zero and J22

becomes

J22 = M̄

[
0 0

−m12 sin (q2) 0

]

M̄ =

[
0 j̄12

−j̄12 0

]

(18)

for j̄12 = m12 det (M)
−1

sin (q2) v2. One can easy convince
himself, that the PH-representation of (15) is equivalent
to the EL-equations (5) by calculating (∂xH) for the
Hamiltonian H = T +V . For the sake of completeness the
introduction of the generalized momentum p = Mv via
the Legendre transform leads of course to the well-known
canonical PH-form.

3. TRANSFORMATIONS FOR PH-SYSTEMS

The concept of state and input transformations is well-
established in control theory and plays a key role for many
nonlinear control design methods. If one carries out a
change of coordinates, then it is an important question
which transformations are admissible for (3), such that
the transformed system preserves the Port-Hamiltonian
structure. The second question is how does the collocated
output y transform ?

3.1 Affine time invariant Transformations

PH-systems like (3) have an affine structure and it is of
interest to investigate affine transformations of the form

z = ϕ (x) ū = Λ(x)u+ δ (x) ΛΛ̄ = I . (19)

A short calculation leads to the PH-system written in new
coordinates

ż = (∂xϕ) (J −R) (∂xϕ)
T
◦ ϕ−1

(
∂z

(
H ◦ ϕ−1

))T

+
(
(∂xϕ)GΛ̄

)
◦ ϕ−1ū−

(
(∂xϕ)GΛ̄δ

)
◦ ϕ−1

ż =
(
J̄ − R̄

) (
∂zH̄

)T
+ Ḡū− Ḡδ ◦ ϕ−1 .

(20)

Eq. (20) includes an affine term Ḡδ, which comes from
the affine input δ and does not fit to the structure of a
PH-system. In many cases the structure matrix J fulfills
the Jacobi -identity and defines a Poisson structure. This
property should be preserved throughout the following
calculations. The system (20) can be rewritten in the
favoured affine form, if the linear pde

(
J̄ − R̄

) (
∂zH̄ϕ

)T
+ Ḡδ ◦ ϕ−1 = 0 resp.

(∂xϕ)
(

(J −R) (∂xHϕ)
T

+GΛ̄δ
)

︸ ︷︷ ︸

0

◦ ϕ−1 = 0 (21)

admits a solution. Due to the transformation rules (21)
can be solved in the original coordinates x and the so-
lution Hϕ (x) is mapped to the new coordinates H̄ϕ (z) =
Hϕ (x)◦ϕ−1. By means of a modified Hamiltonian function
one is able to rewrite (20) as PH-system

ż =
(
J̄ − R̄

) (
∂zH̄

)T
+ Ḡū+

(
J̄ − R̄

) (
∂zH̄ϕ

)T

︸ ︷︷ ︸

Ḡδ◦ϕ−1

ż =
(
J̄ − R̄

) (
∂z

(
H̄ + H̄ϕ

))T
+ Ḡū .

(22)

A modification of the Hamiltonian like Hz = (H +Hϕ) ◦
ϕ−1 provides a possibility to preserve the PH-structure
for the affine transformation (19). For instance it can be
checked by formal methods, if the up coming pde (21) has
a solution or not.

The collocated output y has to be transformed affine too,
as the following calculation shows

Ḣz = − (∂zHz) R̄ (∂zHz) +
(
∂z

(
H̄ + H̄ϕ

))
Ḡ

︸ ︷︷ ︸

ȳT

ū . (23)

A closer look to ȳ leads to

〈ȳ, ū〉 =
((
∂zH̄

)
Ḡ+

(
∂zH̄ϕ

)
Ḡ

)
ū

=
(
yT ◦ ϕ−1 + (∂xHϕ) (∂xϕ)G ◦ ϕ−1

)
Λ̄ū

(24)

and one concludes that ȳ has to be transformed in the way

ȳ =
(
Λ̄

)T
(

y +GT (∂xHϕ)
T
)

. (25)

The result of (25) demands some additional discussion.
In the case of an affine transformation the product 〈ȳ, ū〉
does not longer match with the original one 〈y, u〉 as we
see from

〈y, u〉 6= 〈ȳ, ū〉 = 〈y + δy, u+ δu〉 for δy, δu 6= 0

6= 〈y, u〉 + 〈y, δu〉 + 〈δy, u〉 + 〈δy, δu〉 .
(26)

This becomes clear, because of to the modification of the
Hamiltonian function the affine term 〈δy, δu〉 is already
covered by the system representation.

3.2 Time variant Transformations

Another important class of transformations are time vari-
ant transformations, which arise, if one deals with time
variant systems or one is interested in a description of a
time invariant system in a moving reference frame. Espe-
cially in the second case the transformation demands an
extension of the variables (x) → (x, t). Since t is also the
curve parameter we have to add the constraint ṫ = 1 and
we confine ourselves to transformations of the form

t̄ = t (t, z) = ψ (x, t) ū = Λ(x, t)u+ δ (x, t) , (27)

where the time coordinate t is not changed. This is a
reasonable assumption for physical models. A time variant
change of coordinates like (27) for (3) leads to

ż = ((∂xψ) ẋ+ (∂tψ)) ◦ ψ−1

ż = (∂tψ) ◦ ψ−1 +
(
J̄ − R̄

) (
∂z

(
H ◦ ψ−1

))T

+Ḡū− Ḡδ ◦ ψ−1

(28)

with a similar result to (20) J̄ = (∂xψ) J (∂xψ)
T
◦ ψ−1,

R̄ = (∂xψ)R (∂xψ)
T
◦ ψ−1 and Ḡ = (∂xψ)GΛ̄ ◦ ψ−1. In

addition one can easy convince himself that ˙̄t = ṫ = 1
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still holds. By means of the upper result we write the time
variant Hamiltonian system in the form

(ż − ∂tψ) ◦ ψ−1

︸ ︷︷ ︸

ẋ◦ψ−1

=
(
J̄ − R̄

) (
∂zH̄

)T
+Ḡū+Ḡδ◦ψ−1 . (29)

According to the previous subsection the inclusion of the
affine part Ḡδ is almost the same. Even if we consider an
input transformation with δ = 0 the resulting system (28)
includes an affine term ∂tψ, which comes from the time
dependency of the transformation. Roughly speaking this
terms coincides with the motion of the reference frame and
we see, that J̄ , R̄, Ḡ as well as the Hamilton H̄ become
time dependent in the general case.

Remark: The resulting Hamiltonian system (29) allows
two different interpretation. On the one hand we are
interested in the transformed value of ẋ◦ψ−1 from (3), then
the term ∂tψ has to appear on the left hand side. A more
intuitive interpretation makes this point clear. If we want
to describe the velocity ẋ in a moving reference frame, then
we have to subtract the velocity of the moving frame in
order to get the correct velocity. The second interpretation
is more useful for the stabilization of the trajectories. The
system (28) can be written as explicit time variant system
of the form

ż =
(
J̄ − R̄

) (
∂zH̄z

)T
+ Ḡū . (30)

if the affine terms can be included in the Hamiltonian
framework via a modified Hamiltonian H̄z = H ◦ψ−1+H̄ψ

and a solution of the pde
(
J̄ − R̄

) (
∂zH̄ψ

)T
−

(
∂tψ − Ḡδ

)
◦ ψ−1 = 0 (31)

exists.

4. TRACKING CONTROL FOR PH-SYSTEMS

For the design of a tracking controller for (30) we introduce
the so-called tracking error e via a special case of time
variant transformation like (27)

e = ψ (x, t) = x− xdes (t) u = udes + ū . (32)

The resulting PH-system becomes

ė = (Je −Re)
(
∂e

(
H̄z ◦ ψ

−1 + H̄ψ

))T
+Geū (33)

because of (∂xψ) = I. According to section 3 we assume
that the linear pde

(J −R)
(
∂xH̄ψ

)T
− Ḡudes + ẋdes (t) = 0 (34)

has a solution and in general (33) is a time variant system,
where the matrices Je (e, t), Re (e, t) and Ge (e, t) contain
continuous differentiable functions of the tracking error
e and the time t. Please note that transformation (32)
and the tracking controller design presented here is quite
different to the work of Fujimoto et al. [2001].

In order to follow the desired trajectory xdes a controller
has to stabilize the origin of (33). According to the IDA-
PBC approach the selection of the closed loop dynamics

ė = (Jd (e, t) −Rd (e, t)) (∂eHd (e, t))
T

(35)

with a p.d. Hamiltonian Hd > 0 leads to a set of
restrictions

(Je −Re) (∂eHe)
T

+Geū = (Jd −Rd) (∂eHd)
T

(36)

see also Ortega et al. [2002]. By means of a left hand
annihilator G⊥

e , G⊥
e Ge = 0, the restrictions of the IDA-

PBC

G⊥
e

(

(Jd −Rd) (∂eHd)
T
− (Je −Re) (∂eHe)

T
)

= 0 (37)

reduce to a set of n−m equations, which has to be fulfilled.
The control law is calculated from the restrictions (36)

ū =
(
GeGe

T
)−1

Ge
T

(

(Jd −Rd) (∂eHd)
T

− (Je −Re) (∂eHe)
T
)

,
(38)

because GeG
T
e has always an inverse provided that Ge has

a full column rank. An extension of the control law like

ũ = ū−Rdiy = ū−RdiG
T
e (∂eHd)

T
(39)

includes a feedback of the collocated output y and the psd.
matrix Rdi ≥ 0 leads to the closed loop dynamics

ė =
(
Jd −

(
Rd +GeRdiG

T
e

))
(∂eHd)

T
. (40)

This approach is known as Damping Injection and allows
a modification of the dissipative terms of the closed loop
provided that the collocated output is measurable. It is
left to check, if Ḣd is at least nsd.

Ḣd = − (∂eHd)
(
Rd +GeRdiG

T
e

)

︸ ︷︷ ︸

R̃d≥0

(∂eHd)
T

+ ∂tHd ≤ 0

(41)
along the trajectories of (40). It is clear that the term ∂tHd

requires an accurate investigation in order to guarantee a
nsd. derivative Ḣd.

5. NONLINEAR OBSERVER DESIGN

It is of practical interest to reduce the number of mea-
surements for the implementation of the control law, but
this leads directly to the observer design problem, which is
hard to solve in the nonlinear case. For instance a nonlinear
observer design based on a Lagrangian structure can be
found in Aghannan and Rouchon [2003]. In this work we
are interested in the derivation of a nonlinear velocity
observer for a special class of EL-systems. The system
dynamics is given in the form of (15) and we assume that
some preliminary assumptions are fulfilled:

Assumption A 1.1: The derivatives (∂qT ) = 0 of the ki-
netic energy T with respect to the generalized coordinates
q vanish. Roughly speaking the inertia matrix in sensor
coordinates xTs =

[

ηT µT
]

should be independent of the
state variables xs. Here we denote µ as the measurable
variables and the variables η have to be estimated for the
control law.

Assumption A 1.2: The control law u(µ, η) leads to an
asymptotically stable equilibrium point xs = 0 for the
closed loop system ẋs = f (0, t).

Assumption A 1.3: All the components of µ can be used
for the control law and the observer design.

The observer design can be carried out in the following
way. By means of assumption A 1.1 Ṁ −2C = 0 vanishes
for (15) and an extension of the reduced Luenberger-
observer is possible for the nonlinear case. According
to Luenberger [1979] an estimator for the generalized
velocities η = v of the PH-representation (15) works in
the following way. The introduction of the observer state
ζ = Mη +KOµ leads to a dynamic system
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ζ̇ = −M
(

M̄ (∂µV )
T

+ M̄FM̄
)

(Mη) + J22 (Mv)
︸ ︷︷ ︸

0

+MM̄
︸ ︷︷ ︸

I

MQe +KOM̄ (Mη) .
(42)

for the observer states, which can be rewritten as

ζ̇ = (−F +KO) M̄
︸ ︷︷ ︸

AO

ζ + (F −KO) M̄KOµ

− (∂µV )
T

+ MQe η̂ = M̄ (ζ −KOµ)

(43)

with the estimated values η̂ for the generalized velocities
v. The observation error eO = η − η̂ is exponentially
decreasing, if all eigenvalues λi of AO are placed in the
left half plane by means of the design parameter KO, such
that Re{λi} < 0 holds. A short calculation shows, that
the observer dynamics ėO = AOeO gets independent of
the state variables xs. This has an interesting consequence
for the combination of the control system (15) and the
observer dynamics (43). Due to the assumption A 1.2 a
replacement of η by the estimated states η̂ = M̄ (ζ −KOµ)
in the control law u(µ, η̂) and the introduction of the
observation error eO = η − M̄ζ + M̄KOµ leads to a
cascaded system for the closed loop

[
ẋ
ėO

]

=

[
f (µ, eO, t, u (µ, eO, t))

AOeO

]

, (44)

which has a locally asymptotically stable origin {x, eO} =
(0, 0) provided that f (x, t, eO) is locally Lipschitz on D ∈
R
n. A prove can be found in Isidori [1999]. In this case the

design of the observer is independent from the controller
design and the assumptions A 1.1 to A 1.3 provide some
kind of separation known from the linear case.

Example 2: In order to show the presented controller
design we deal with the nonlinear, unstable, underactuated
example Ball on the Wheel (BoW), which is sketched
in Fig. 2.

Jw

rb
Jb
mb

q3

q2

rw

q1 τm

g

Fig. 2. Euler-Lagrange system Ball on the Wheel

We skip the modeling and refer the interested reader to
the contribution of Fuchshumer et al. [2004]. The BoW is
a mechanical 2-degree-of-freedom system and if we assume
that the ball does not slip on the wheel. The roll condition
provides an algebraic restriction

rwq1 − (rw + rb) q2 − rbq3 = 0 (45)

which allows an elimination of q3 and to deal with the
state vector xT = [ q1 q2 v1 v2 ] for the BoW-system. All
the geometric parameters like rw, rb, the inertias Jw and
Jb, and mass of the ball mB are positive real values. As
given in Fuchshumer et al. [2004] the Lagrangian takes the
form

L =
1

2

(
m1v

2
1 −m12v1v2 +m2v

2
2

)
+ V (q2) ,

where m1 =
(

Jw + Jb
r2w
r2

b

)

, m12 = m21 = Jb
(rw+rb)rw

r2
b

,

m2 = (rw + rb)
2
(
Jb

r2
b

+mb

)

are introduced as the com-

ponents of the inertia matrix M for a short notation.
Finally the potential energy of the ball V (q2) is given by
V (q) = mr cos (q2), mr = mB (rw + rb) g. For the sake
of simplicity we assume that the torque of the DC-drive
serves directly as control input, such that MQe becomes
e01τm. Here e01 denotes the unit vector in 1-direction
eT01 = [ 1 0 ]. Additionally we include a viscous friction
term Qd = dwv1e01, dw > 0 for the bearings of the wheel.
According to (5) the EoM for the BoW become

Mv̇ − (∂qV )
T

+Qd = e01τm . (46)

One derives the equivalent PH-representation for the EL-
system as given in (15) as well as the canonical PH-form
with the Hamiltonian Hp = 1

2p
T M̄p+ V .

Here we are not interested in the control of the angle of the
wheel q1 and we deal with a reduced third order system

ẋr = (Jr −Rr) (∂xr
Hp)

T
+Grτm

Jr =

[
0 0 1
0 0 0
−1 0 0

]

Rr = diag{0, dw, 0}

Gr = eT02

(47)

for the BoW with the system state xTr = [ q2 p1 p2 ].
Any function yf = φ (p2) of the momentum of the ball
p2 is a flat output for the reduced BoW-system (47),
which allows a parametrization of the variables xr and
τm. A 3-times continuous differentiable function for the
evolution of the desired flat output yfdes

(t) provides an
useful feedforward control, which can to be included in
a Hamiltonian description for the tracking error. The
selection of ẋdes (t) = ẋr|xr=xrdes

(t) and τm = τmdes
(t) +

∆τm leads to a dynamic system, which describes the
evolution tracking error er = xr − xrdes

(t)

ėr = (Jr −Rr) (∂eHe)
T

+Gr∆τm . (48)

The Hamiltonian for (48)

He =
1

2
eTp M̄ep + Ve (e1, t) ep = [ e2 e3 ] (49)

follows from the calculations given in section 3 and 4.
In (49) Ve = κ (t)mr sin (e1)+m2ẏf (1 − cos (e1)) becomes
explicit time dependent and the control input τm consists
of the FB-openloop part τmdes

(t) and an arbitrary state

feedback ∆τm. Here κ (t) =

√

1 −
(
m22

mr
ẏfd

)2

> 0 is

positive and real for a bounded reference curve |ẏfd| <
mr

m22

. For the controller design we suggest a splitting of the

time variant system (48) like ė = σ (e, t,∆τm) + γ (e, t),
where γ = m22ẏf (1 − cos (e1)) e03 vanishes at the origin
lime→0 γ (e, t) = 0 and meets the Lipschitz condition

‖γ(e′, t) − γ(e′′, t)‖ ≤ L0 ‖e
′ − e′′‖ . (50)

By means of this assumption we derive a time variant
controller for ė = σ (e, t,∆τm) and check the stability of
the perturbed closed loop system ė = σ + γ afterwards.
A Hamiltonian Hσ for σ is given by Hσ = He − Hγ , if

(Jr −Rr) (∂eHγ)
T

= γ holds. The selection of the closed
loop matrices Jd and Rd for the IDA-PBC
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Jd =









0
κ

αβ

κ

α

−
κ

αβ
0 0

−
κ

α
0 0









Rd = diag{0, r22, 0} (51)

and the time depended closed loop Hamiltonian

Hd = αmr (1 − cos (e1)) + eTp Pd (t) ep

Pd =






αβ(βm11+m12)
κ det(M) +krβ

2 αβm11

κdet (M)
+krβ

αβm11

κdet (M)
+krβ kr






(52)

fulfill the IDB-PBC restrictions (37) and the control law
∆τm (e, t) follows from (38). The Hamiltonian (52) is a
Lyapunov function, if the parameters α, β, kr > 0 are
chosen such that Pd gets p.d. One finds a constant κ̄ ≤
κ (t), κ̄ ∈ R

+ and time invariant bounds for Hd

Hd|κ−1=1 ≤ Hd (e, t) ≤ Hd|κ−1=κ̄ (53)

such that 1 ≤ 1
κ
≤ 1

κ̄
holds. A short calculation leads to a

nsd. result for Ḣd = − (∂eHd)Rd (∂eHd)
T

+ (∂tHd)

Ḣd =≤ −
1

2
eTpQd (t) ep ≤ 0 (54)

and it is possible to find parameters α, β, kr, r22 > 0,
such that Qd (t) > 0 gets p.d. for a bounded curve |ÿfd| ≤
ÿfdmax. Due to (53) the closed loop system is uniformly
stable . It is left to check that the origin is asymptotically
stable and the perturbation γ is dominated. By means of
a Lyapunov function HLin = 1

2e
TPLe for the linearized

closed loop system one shows that the equilibrium e = 0
of is locally exponentially stable (les.) and we conclude
that a les. system dominates any perturbation γ, which
satisfies the Lipschitz condition (50) within a small ball
D ∈ R

n around the origin. The stability theorem as well
as the prove can be found in Khalil [2002].

The BoW-model fulfills the assumptions A 1.1 to A 1.3
for the observer design and one derives an estimator for
the velocities as presented in section 5. The calculations
are straight forward and will not be given here. The
result presented in Fig. 3 shows the behavior of the closed
loop system, where the controller includes a flatness-based
feedforward control τmdes

, a passivity-based state feedback
∆τm and a velocity observer for v̂. The result given in Fig
3 treats the following experiment. The desired trajectory
starts at a mechanical limiter xT0 = [ ϕ20 0 0 ], ϕ20 6= 0
and tracks to the upper equilibrium. At t = 2s the ball
starts following a smooth curve and the motion ends at
the upper equilibrium point at t = 2 + 2π. A rectangular
disturbance Fδ = 1

5 (σ (t− 4.5) − σ (t− 4.6)) acts on the
ball at t = 4.5. As we can see in Fig. (3) the initial error
is canceled by the controller.

6. CONCLUSION

The presented tracking controller takes care for flatness-
based feedforward part, which is derived without an inte-
gration of ode’s. We have introduced the tracking error e =
x−xdes (t) by means of a time variant transformation and
we end up with a time variant control system. The IDA-
PBC is used for the design of the stabilizing controller,
but due to the time dependency of the Hamiltonian, the
stability analysis is more involved. The approach based

on PH-systems provides an systematic way to derive a
tracking controller, but one has to overcome the lack of
the time dependency in the general case.
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Fig. 3. Output tracking using feedforward and feedback
control and a velocity observer
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