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Abstract: The grasping control problem for a hyperredundant arm is studied. Frist, dynamic model of the 
arm is analyzed. The control problems are divided in the subproblems: the position control in a desired 
reaching area, the control of the arm around the object-load and the force control of grasping. The 
difficulties determined by the complexity of the non-linear integral-differential equations are avoided by 
using a very basic energy relationship of this system. First, the dynamic control of the arm for a desired 
reaching area is inferred. Then, the position controland the force control for grasping are discussed. 
Numerical simulation are presented. 

 

1. INTRODUCTION 

The control of a hyperredundant manipulator is very complex 
and a great number of researchers have tried to offer 
solutions for this difficult problem. In (Hemami, 1984) it was 
analyzed the control by cables or tendons meant to transmit 
forces to the elements of the arm in order to closely 
approximate the arm as a truly continuous backbone. In 
(Gravagne and Walker, 2000), Gravagne analyzed the 
kinematical model of “hyper-redundant” robots, known as 
“continuum” robots. Important results were obtained by 
Chirikjian and Burdick (Chirikjian, 1993), (Chirikjian and 
Burdick, 1990, 1995), which laid the foundations for the 
kinematical theory of hyper-redundant robots. Mochiyama 
has also investigated the problem of controlling the shape of 
an HDOF rigid-link robot with two-degree-of-freedom joints 
using spatial curves (Mochiyama et al., 1998). In (Robinson 
and Davies, 1999, Suzumori, S. Iikura, 1991) it is presented 
the “state of art” of continuum robots, outline their areas of 
application and introduce some control issues. 

The difficulty of the dynamic control is determined by 
integral-partial-differential models with high nonlinearities 
that characterize the dynamic of these systems. In (Ivanescu, 
2002) the dynamic model for 3D space is inferred and a 
control law based on the energy of the system is analyzed. 

In this paper, the problem of a class of hyperredundant arms 
with continuum elements that performs the grasping function 
by coiling is discussed. The difficulties determined by the 
complexity of the non-linear integral-differential equations, 
that represent the dynamic model of the system, are avoided 
by using a very basic energy relationship of this system. 
Energy-based control laws are introduced for the position 
control problem. A force control method is also proposed. 

The paper is organized as follows: section 2 presents the 
basic principles of a hyperredundant structure with 
continuum elements; section 3 studies the dynamic model; 
section 4 discusses the both problem of grasping by coiling, 
the position control and force control; section 5 verifies by 
computer simulation the control laws. 

2. BACKGROUND 

2.1. Technological Model 

The paper studies a class of hyperredundant arms that can 
achieve any position and orientation in 3D space, and that can 
perform a coil function for the grasping. The arm is a high 
degree of freedom structure or a continuum structure.  
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 X
Figure 1. The force sensors distribution 

 

The general form of the arm is shown in Figure 1. It consists 
of a number (N) of elements, cylinders made of fiber-
reinforced rubber. There are four internal chambers in the 
cylinder, each of them containing the ER fluid with an 
individual control circuit. The deformation in each cylinder is 
controlled by an independent electrohydraulic pressure 
control system combined with the distributed control of the 
ER fluid (Figure 2).  
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The last m elements (  represent the grasping terminal. 
These elements contain a number of force sensors distributed 
on the surface of the cylinders. These sensors measure the 
contact with the load and ensure the distributed force control 
during the grasping.  

)Nm <

 
Figure 2. The cylinder structure 

2.2. Theoretical model 

The essence of the hyperredundant model is a 3-dimensional 
backbone curve C that is parametrically described by a vector 

 and an associated frame  whose 
columns create the frame bases (see Figure 3). 

( ) 3Rsr ∈ ( ) 33×∈ Rsφ

 
Figure 3. (a) The backbone structure; (b) The backbone 

parameters 
 

The independent parameter s is related to the arc-length from 

the origin of the curve C, [ ]Ls ,0∈ , where , 

where  represent the length of the elements i of the arm in 
the initial position. 

∑
=

=
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i
ilL
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The position vector on curve C is given by 

 
( ) ( ) ( ) ( )[ Ttsztsytsxtsr ,,,, = ]

]

   (1) 
 
where 
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s

sdtsqtsz
0
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For an element dm, kinetic and gravitational potential energy 
will be: 

 

( )222

2
1

zyx vvvdmdT ++= ,   (5) zgdmdV ⋅⋅=

 
where dsdm ρ= , and ρ  is the mass density. 
 
The elastic potential energy will be approximated by the 
bending of the element: 
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We will consider ( )tsF ,θ ,  the distributed forces on 
the length of the arm that determine motion and orientation in 
the 

( )tsFq ,

θ -plane, -plane. The mechanical work is: q

 

( ) ( ) ( ) ( )( )∫ ∫ +=
l t
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The energy-work relationship will be 

 
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ( ) ( )( )∫ ∫ +=
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l t
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00
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where ( )tT  and ( )0T , ( )tV ∗  and  are the total kinetic 
energy and total potential energy of the system at time t and 
0, respectively. 

( )0∗V

3. DYNAMIC MODEL 

In this paper, the manipulator model is considered a 
distributed parameter system defined on a variable spatial 
domain [ ]L,0=Ω  and the spatial coordinate s. 

From (5), (6), (7), the distributed parameter model becomes, 
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Figure 4. The cylinder driving 
 

The control forces have the distributed components along the 
arm, , ,  that are determined by the 
lumped torques, 

( )tsF ,θ ( )tsFq , [ Ls ,0∈ ]
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where δ  is Kronecker delta, , and llll N ==== K21

 
( ) ( ) 821 dSppt
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⋅−= θθθτ     (12) 

 
( ) ( ) 821 dSppt
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In (12), (13), , , ,  represent the fluid pressure 
in the two chamber pairs, 

1
i

pθ
2

i
pθ

1
iqp 2

iqp

θ ,  and S, d are section area and 
diameter of the cylinder, respectively (Fig.4). The pressure 
control of the chambers is described by the equations: 

q
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k
i
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a θ
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qi
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where ( )θkia , ( )qbki  are determined by the fluid parameters 
and the geometry of the chambers and 
 

( ) 00 >kia , ( ) 00 >kib     (16) 
 

4. CONTROL PROBLEM 

The control problem of a grasping function by coiling is 
constituted from two subproblems: the position control of the 
arm around the object-load and the force control of grasping. 

We consider that the initial state of the system is given by 

 
( ) [ ]Tqs 000 ,,0 θωω ==     (17) 

 
corresponding to the initial position of the arm defined by the 
curve  0C

 
( ) ( )( )sqsC 000 ,: θ , [ ]Ls ,0∈    (18) 

 E R F 
The desired point is represented by a desired position of the 
arm, the curve  that coils the load, dC

 
[ ]Tddd q,θω =      (19) 

 
( ) ( )( )sqsC ddd ,: θ , [ ]Ls ,0∈    (20) 

 

Figure 5. (a) The grasping position; (b) The grasping 
parameters 
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In a grasping function by coiling, only the last m elements 
( )Nm <  are used. Let  be the active grasping length, 

where . 
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We define by ( )te p  the position error 
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It is difficult to measure practically the angles θ ,  for all 
. These angles can be evaluated or measured at the 

terminal point of each element. In this case, the relation (21) 
becomes 

q
[ Ls ,0∈ ]

))

))

( ) ( )( ) ( )((∑
=

−+−=
N

mi
biibiip qtqtte θθ   (22) 

 
The error can also be expressed with respect to the global 
desired position  dC
 

( ) ( )( ) ( )((∑
=

−+−=
N

i
diidiip qtqtte

1

θθ   (23) 

 
The position control of the arm means the motion control 
from the initial position  to the desired position  in 
order to minimize the error. 

0C bC

4.1. Desired Area Reaching Control 

An area reaching control problem is discussed. The desired 
area is specified by the inequality function: 

 
( ) 0≤rf δ      (24) 

 
where f is a scalar function with continuous first partial 
derivates, 0rrr F −=δ ,  is a reference point of the 
desired area and  is the position vector (3) of the terminal 
point. 

3
0 Rr ∈

Fr

The potential energy function for the area reaching control 
has the form (Ceah and Wang, 2005): 
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Theorem 1. The closed-loop control system for the desired 
reaching area problem is stable if the control forces are 
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Proof. See Appendix. 

4.2. Fluid Pressure Control 

Theorem 2. The closed-loop control system of the position 
(9), (10), (14), (15) is stable if the fluid pressure control law 
in the chambers of the elements given by: 

 
( ) ( ) ( ) ( )( )tektekatu i

j
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j
ijiji θθθθθ θ &&& 21 +−=   (28) 
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where 2,1=j ; Ni ,,2,1 K= , with initial conditions: 
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and the coefficients k , , ,  are positive and 

verify the conditions 
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Figure 6. The grasping force 
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qiqi kk > N=   (35) 
 
Proof. See (Ivanescu et al., 2008). 

4.3. Force Control 

The grasping by coiling of the continuum terminal elements 
offers a very good solution in the fore of uncertainty on the 
geometry of the contact surface. The contact between an 
element and the load is presented in Figure 6. It is assumed 
that the grasping is determined by the chambers in θ -plane. 

si

∆

fi
kL

Grasping 
element 

Load 
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The relation between the fluid pressure and the grasping 
forces can be inferred for a steady state from (Gravagne and 
Walker, 2000), 
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∂
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where  is the orthogonal force on the curve , ( )sf bC ( )sf  is 

 in ( )sFθ θ -plane and  in q-plane, respectively. ( )sFq

For small variation iθ∆  around the desired position idθ , in 
θ -plane, the dynamic model (22) can be approximated by the 
following discrete model (Ivanescu et al., 2008), 
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where ∆= Smi ρ , . 1,,2,1 li K= ( did qH , )θ  is a nonlinear 
function defined on the desired position ( )did q,θ , 

( )diii qcc ,, θν= , , 0>ic ( )ΩΓ∈q,θ , where ν  is the 
viscosity of the fluid in the chambers. 

The equation (37) becomes: 
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The aim of explicit force control is to exert a desired force 

. If the contact with load is modelled as a linear spring 
with constant stiffness , the environment force can be 
modelled as 

idF

Lk

iLei kF θ∆= . 

The error of the force control may be introduced as 
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It may be easily shown that the equation (38) becomes 

 

idi
i

iifii
i

fi
L

i
fi

L

i Fd
k
h

fded
k
h

e
k
c

e
k
m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++ &&& (40) 

 
Theorem 3. The closed force control system is asymptotic 
stable if the control law is 

 

( ) ( )( idiLifiiiLi
iL

i Fdkhemdkh
dk

f −−++= 21 σ ) (41) 

 
σii mc >      (42) 

 

Proof. See (Ivanescu et al., 2008). 

5. SIMULATION 

A hyperredundant manipulator with eight elements is 
considered. The mechanical parameters are: linear density 

mkg2.2=ρ  and the length of one element is ml 05.0= . 
The control problem in the θ -plane will be analyzed. The 

initial position is the defined by ( ) ⎟
⎠
⎞

⎜
⎝
⎛ =

2
: 00

πθ sC . First, a 

reaching desired area control is introduced where the area is 
defined by the circle ( ) ( ) 22

0 Rrrr −−=δϕ , ( )2,30 =r , 1=R  
and the control law (20) is applied. The position error r∆  is 
computed and the phase error is presented in Figure 7. Then, 
the grasping function is performed for a circular load defined 

by ( ) ( ) ( )22
0

2
0: ∗∗∗∗∗ =−+− ryyxxCb , where ( )∗∗ yx ,  

represent the coordinates in θ -plane.  A discretisation for 
each element with an increment 3l=∆  is introduced. A 
control law (28) is used. The result is presented in Figure 8. 

 
Figure 7. The position error phase portrait 
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Figure 8. The position control 

A force control for the grasping terminals is simulated. The 
phase portrait of the force error is presented in Figure 9. First, 
the control (28), (29) is used and then, when the trajectory 
penetrates the switching line the viscosity is increased for a 
damping coefficient 15.1=ξ . 
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Figure 9. The force control phase portrait 

6. CONCLUSION 

The paper treats the control problem of a hyperredundant 
robot with continuum elements that performs the coli 
function for grasping. The structure of the arm is given by 
flexible composite materials in conjunction with active-
controllable electro-rheological fluids. The dynamic model of 
the system is inferred by using Lagrange equations developed 
for infinite dimensional systems. 

The grasping problem is divided in two subproblems: the 
position control and force control. The difficulties determined 
by the complexity of the non-linear integral-differential 
equations are avoided by using a very basic energy 
relationship of this system and energy-based control laws are 
introduced for the position control problem. Numerical 
simulations are presented. 
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APPENDIX 

We consider the following Lyapunov function: 
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where T, V represent the kinetic and potential energies of the 
system. ( )tW  is positive definite because the terms that 
represent the energy T and V are always , ( ) 0≥tT ( ) 0≥tV . 
By using (19), the derivative of this function will be: 
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For a constant desired position 

idθ , , from (20)-(21), the 
relation (A.2) can be rewritten as: 

idq

 

( ) ( 0
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i
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ii
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and, from (Ceah and Wang, 2005), the closed-loop system 
defined by (20) converges to the desired position 

idi θθ → , 

 and the terminal point  converges to the desired 

area 
idi qq → Fr

( ) 0≤rf δ  as ∞→t . 
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