
Possible Non-Integrability of Observable

Space for Discrete-Time Nonlinear Control

Systems ⋆
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1. INTRODUCTION

Observability is a fundamental property of control sys-
tems. For certain applications it will be useful to have
system representations in which the observable and un-
observable state variables can be clearly distinguished.
For a continuous-time nonlinear system the decomposition
into observable-unobservable subsystems has been carried
out both via differential geometric, see e.g. Nijmeijer and
van der Schaft [1990], Isidori [1995], and differential alge-
braic methods, see e.g. Conte et al. [2007].

In Conte et al. [2007] decomposition is carried out on the
bases of tangent linearized system. It has been proved that
in the case of continuous-time nonlinear control systems,
the observable subspace of one-forms is always generically
integrable, and therefore can be locally spanned by ex-
act one-forms whose integrals define the observable state
coordinates, see Conte et al. [2007]. As demonstrated by
the examples in Kotta [2005, 2000], in the discrete-time
case this is not necessarily so. The purpose of this paper
is to provide some explanation why things are different for
continuous- and discrete-time systems.

We show that the proof in Conte et al. [2007] cannot be
extended to the discrete-time case. Moreover, a general
subclass of discrete-time control systems is suggested for
which the observable subspace is nonintegrable. The draw-
back of nonintegrablility of observable space is that the
results on observable-unobservable decomposition of the
state equations do not carry over to the discrete-time do-
main, in general, since the observable space cannot always
be locally spanned by exact one-forms whose integrals
would define the observable state coordinates.

Of course, in case one drops the requirement that the
decomposed equations have to be in the form of the
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classical state equations and allows a generalized state
equations that besides inputs may depend also on forward
shifts of inputs, it becomes always possible to carry out
the decomposition, see Rieger et al. [2008].

The paper is organized as follows. Section 2 recalls the
algebraic formalism of differential one-forms. Secion 3
presents a motivating example. Section 4 shows how to
construct systems with nonintegrable observable space.
Finally, Section 5 demonstrates that one can always de-
compose system into observable-unobservable subsystems
if one drops the requirement that the decomposed system
has to be in the classical state space form.

2. ALGEBRAIC FORMALISM

Consider a discrete-time single-input single-output nonlin-
ear system Σ described by the equations

x(t+ 1) = f(x(t), u(t))
y(t) = h(x(t))

(1)

where u(t) ∈ U ⊂ IR is the input variable, y(t) ∈ Y ⊂ IR
is the output variable, x(t) ∈ X , an open subset of IRn, is
the state variable, f : X × U → X and h : X → Y are
the real analytic functions. In this paper we are, like in
Conte et al. [2007], interested in the generic observability
and realizability properties, i. e. in the properties that
hold almost everywhere, except on a set of measure zero.
That is, we look at dimensions (or ranks) over a field of
functions, not over IR. Thus there is not argument either
about the point where to evaluate dimensions or about
constant dimensionality of codistributions. Integrability
of codistributions is often characterized by conditions
which require that specific functions on system variables
vanish. Since there are smooth functions that are neither
generically zero nor generically different from zero, the
notion of generic property does not make sense, in general,
for systems defined by smooth functions. The situation is
different, if we restrict our attention to systems defined
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by means of analytic (or also meromorphic) functions and
this motivates our choice.

In order to use the mathematical tools from the algebraic
framework of differential one-forms, see Aranda-Bricaire
et al. [1996], we assume that the following assumption
holds for system (1).

Assumption 1. f(x, u) is generically a submersion, i. e.
generically

rank
∂f(x, u)

∂(x, u)
= n.

Let K denote the field of meromorphic functions in a finite
number of variables {x(0), u(t), t ≥ 0}. The forward-
shift operator δ : K → K is defined by δζ(x(t), u(t)) =
ζ(f(x(t), u(t)), u(t + 1)). Under Assumption 1, δ becomes
injective, i. e. if δ(a) = δ(b), then a = b for all a, b ∈
K, and the pair (K, δ) is a difference field; up to an
isomorphism, there exists a unique difference field (K∗, δ∗),
called the inversive closure of (K, δ), such that K ⊂ K∗,
δ∗ : K∗ → K∗ is an automorphism and the restriction of
δ∗ to K equals δ. Hereinafter we use the same symbol to
denote the difference field (K, δ) and its inversive closure.
Over the field K one can define a difference vector space
E := spK{dϕ | ϕ ∈ K}. The operator δ : K → K induces a
forward-shift operator δ : E → E by∑

i

aidϕi →
∑

i

δaid(δϕi), ai, ϕi ∈ K.

We will say that ω ∈ E is an exact one-form if ω = dF
for some F ∈ K. A one-form ν for which dν = 0 is said
to be closed. It is well-known that exact forms are closed,
whereas closed forms are only locally exact.

Theorem 1. (Frobenius). Let V = spK{ ω1, . . . , ωr} be a
subspace of E . V is closed if and only if

dωi ∧ ω1 ∧ . . . ∧ ωr = 0, for any i = 1, . . . , r. (2)

In (2) “∧” denotes the wedge product. Under conditions
(2) there exists locally a system of coordinates {ζ1, . . . , ζr}
such that V is generated by {dζ1, . . . ,dζr}. In this case V
is said to be completely integrable, see Choquet-Bruhat
et al. [1989].

Define the spaces Yk := spK{dy(t + j),0 ≤ j ≤ k},
Y := spK{dy(t + j),j ≥ 0}, U := spK{du(t + j), j ≥ 0},
X := spK{dx(t)} and introduce the chain of subspaces

0 ⊂ O0 ⊂ O1 ⊂ O2 . . . ⊂ Ok . . . (3)

where Ok := X ∩ (Yk + U) is called the observability
filtration.

Definition 1. The subspace X ∩ (Y + U) is called the
observable space of system (1).

The observable space can be computed as the limit of the
observability filtration (3). This limit will be denoted by
O∞ and obviously we have

O∞ = X ∩ (Y + U).

System (1) is said to be single-experiment observable
if O∞ = X , see Kotta [2005], or alternatively, if the
observability matrix has generically full rank, see Sontag
[1979],

rankK
∂(h(x), δh(x), . . . , δn−1h(x))

∂x
= n.

3. MOTIVATING EXAMPLE

We start with an example of a simple bilinear system.

Example 1. Consider system Σ, described by equations

x1(t+ 1) = x2(t)
x2(t+ 1) = x3(t) + x1(t)u(t)
x3(t+ 1) = u(t)

y(t) = x2(t)

(4)

The observable filtration for system (4) is as follows

O0 = spK{dx2(t)}
O1 = X ∩ (Y1 + U)

= X ∩ spK{dy(t), dy(t+ 1), du(t+ k), k ≥ 0}
= X ∩ spK{dx2(t), dx3(t) + u(t)dx1(t)

+x1(t)du(t), du(t+ k), k ≥ 0}
= X ∩ spK{dx2(t), dx3(t) + u(t)dx1(t), du(t+ k),
k ≥ 0}

= spK{dx2(t), dx3(t) + u(t)dx1(t)}
O2 = X ∩ (Y2 + U)

= X ∩ spK{dy(t), dy(t+ 1), dy(t+ 2), du(t+ k),
k ≥ 0}

= O1

since y(t+ 2) = u(t) + y(t)u(t+ 1). Therefore,

O1 = O∞ = spK{dx2(t), dx3(t) + u(t)dx1(t)}
:= spK{ω1, ω2}

Since dim O∞ = 2 < n = 3, system (4) is not observable.
By applying the Frobenius theorem, one can easily check
that O∞ is not integrable since

dω2 ∧ ω1 ∧ ω2 = du(t) ∧ dx1(t) ∧ dx2(t) ∧ dx3(t) 6≡ 0.

Next we will demonstrate on the bases of Example 1 that
the proof of integrability of the observable space (Theorem
4.13 in Conte et al. [2007]) does not carry over to the
discrete-time case. If we try to adapt the proof to the
discrete-time case, we have to compute y(t), y(t + 1) and
y(t+ 2) as polynomials in u(t) and u(t+ 1):

y(t) = x2(t)
y(t+ 1) = x3(t) + x1(t)u(t)
y(t+ 2) = u(t) + x2(t)u(t+ 1)

(5)

There should be, according to Conte et al. [2007], at most
n = 3 independent coefficients in these polynomials; in
this example these coefficients are c1(x) = x2, c2(x) = x3

and c3(x) = x1. The proof then states that the system of
equations (5) can be solved in c1(x), c2(x) and c3(x). This
is certainly not true in this example.

4. A SUBCLASS OF SYSTEMS WITH
NONINTEGRABLE OBSERVABLE SPACE

In this section we will show how to construct systems with
nonintegrable observable space. Decomposition plays an
important role, for example, in the realization problem. If
the realization algorithm in Kotta et al. [2001] is applied
to an input-output equation, the resulting state equations
are observable.

However, it is well-known, that a nonlinear input-output
(i/o) equation of order n has not in general a state space
realization of the same order, both in continuous- and
discrete-time cases, see Kotta and Mullari [2005], Kotta
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et al. [2001] and the references in Kotta and Mullari
[2005]. Moreover, it has been proven that it is possible to
construct a post-compensator in the form of the string of
pure forward shifts which will always result in a realizable
composite system, if the n-th order i/o difference equation
has no state space realization of order n, see Nomm et al.
[2004]. The order of the state equations corresponding to
the composite system is, of course, higher than n. We will
demonstrate that the state equations of the composite
system, accompanied by the original (and not the new
shifted) output, will always result in a non-observable
system with non-integrable observable subspace. Though
the composite system itself is observable, the states of the
realization cannot be recovered from the original outputs
only, but require information on past outputs. However,
in the continuous-time case, one cannot overcome non-
realizability of the i/o differential equation by using a post-
compensator, see Mullari et al. [2006]. Finally, note that
using the precompensator to guarantee the realizability
does not yield the nonintegrable observable space.

To present the results of the paper we also need to recall
the realizability conditions for higher order input-output
(i/o) difference equation

y(t+ n) = φ(y(t), . . . , y(t+ n− 1), u(t), . . . , u(t+ s)) (6)

where s < n and φ is a real analytic function defined on
IRn × IRs+1. These are formulated in terms of a sequence
of subspaces {Hk} of E , defined by

H1 = spK{dy(t), . . . ,dy(t+ n− 1), du(t), . . . ,du(t+ s)}
Hk+1 = {ω ∈ Hk | δω ∈ Hk}, k ≥ 1.

(7)

Theorem 2. Kotta et al. [2001] The nonlinear system,
described by the i/o equation (6) of order n has a nth
order state space realization iff for 1 ≤ k ≤ s + 2 the
subspaces Hk defined by (7) are completely integrable.

We now study again Example 1. The input-output (i/o)
equation, corresponding to the state equations (4) is

y(t+ 2) = u(t) + u(t+ 1)y(t). (8)

According to realizability conditions in Theorem 2, the
2nd order i/o equation (8) has no (minimal) state space
realization of order 2. Compute the sequence of subspaces

H1 = spK{dy(t), dy(t+ 1), du(t), du(t+ 1)}
H2 = spK{dy(t), dy(t+ 1), du(t)}
H3 = · · · ,

then it is easy to see that the subspace H3,

H3 = spK{dy(t), dy(t+ 1) − y(t− 1)du(t)} (9)

is not integrable. However, using the postcompensator ΣP ,
defined by

ỹ(t+ 1) = y(t),

one can make a composite system Σp ◦ Σ realizable, see
(Nomm et al. [2004]). Really, the i/o equation of the
composite system is

ỹ(t+ 3) = u(t) + u(t+ 1)ỹ(t+ 1) (10)

and for (10) the subspace

H3 = spK{dỹ(t), dỹ(t+ 1), d[ỹ(t+ 2) − u(t)ỹ(t)]}

is integrable, leading the state coordinates x1(t) = ỹ(t),
x2(t) = ỹ(t+ 1), x3(t) = ỹ(t+ 2)− u(t)ỹ(t), and the state
equations (4), except the different output function that is
now ỹ(t) = x1(t).

Note that the subspaces O∞ for system (4) and H3 for its
i/o equation are closely related. The subspace H3 given by
(9) can be rewritten as

H3 = spK{dx2(t), dx3(t) + u(t)dx1(t)}

since

dx3(t) = dỹ(t+ 2) − ỹ(t)du(t) − u(t)dỹ(t),

and
dỹ(t) = dx1(t) = dy(t− 1) .

That is, in terms of the x variables, the same as O∞.

We will show that the same applies to all non-realizable
input-output equations that can be made realizable by
using the postcompensator in the form of the string of pure
time shifts. The state equations of the composite system,
though observable themselves, yield a non-integrable O∞,
if the output function is chosen as the original output.

To make this paper self-sufficient we recall the algorithm
to build a post-compensator that results in a realizable
composition.

Algorithm

(1) q := 0. Define ΣP as ỹ(t+ q) = y(t).
(2) Calculate the subspaces for the composite system

ΣP ◦Σ until one finds the first non-integrable subspace
Hr.

(3) Find the elements which cause non-integrability.
(4) Find the number of forward shifts N , required to

overcome non-integrability of Hr. The value N is
determined by the highest order of negative shifts in
the basis elements of (non-integrable part of) Hr.

For example, if a basis contains a non-integrable
element dy(t+ k) − a(ζ)du(t+ j) where ζ represents
the variable with negative shifts then by adding to
this element u(t+ j)da(ζ) and adding dζ to the basis
will make the basis element integrable.

(5) q := q +N . Define ΣP as ỹ(t+ q) = y(t).
(6) Check realizability of ΣP ◦Σ. If it is realizable, STOP.

Otherwise return to Step 2.

Note that though the number of necessary shifts can
be found step by step using the algorithm above, the
alternative way is to examine only Hs+2. The latter may
be computationally much more involved, especially for
complex systems.

Theorem 3. Assume that the i/o equation Σ is non-
realizable and its first non-integrable subspace is Hr. The
observable subspace O∞ for the state equations of the re-
alizable composition ΣP ◦Σ, accompanied with the output
function of Σ, coincides with Hs+2 if the latter is rewritten
in terms of the state variables of ΣP ◦ Σ.

Proof. Follows directly from the algorithm. According
to point (4) of the algorithm, by making Hr, . . . ,Hs+2

integrable, we add new independent variables into the span
of Hr, . . . ,Hs+2, being the original outputs at negative
time instances x1(t) = y(t − q), . . . , xq(t) = y(t − 1).
Therefore, though the composite system ΣP ◦ Σ itself
is observable with O∞ = Hs+2, it’s states cannot be
recovered from outputs and their forward shifts only. �

Example 2. Consider the non-realizable i/o equation Σ

y(t+3) = y(t+2)u(t+1)+y(t+1)u(t)+u(t+2)y(t) (11)
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with non-integrable H3 and H4:

H3 = spK{dy(t), dy(t+ 1), dy(t+ 2)
−y(t− 1)du(t+ 1), du(t)}

H4 = spK{dy(t), dy(t+ 1) − y(t− 2)du(t),
dy(t+ 2) − y(t− 1)du(t+ 1)
−d[u(t)y(t+ 1)]}.

To make equations (11) realizable, one needs a second-
order postcompensator ΣP

ỹ(t+ 2) = y(t). (12)

The composition ΣP ◦ Σ is realizable and observable with
state equations

x1(t+ 1) = x2(t)
x2(t+ 1) = x3(t)
x3(t+ 1) = x4(t) + x1(t)u(t)
x4(t+ 1) = x5(t) + u(t)[x4(t) + x1(t)u(t)]
x5(t+ 1) = u(t)[x4(t) + x1(t)u(t)]

(13)

and output function

ỹ(t) = x1(t) (14)

However, computing the observable space for system (13)
with the original output function with y(t) = x3(t), one
gets

O0 = spK{dx3(t)}
O1 = spK{dx3(t), dx4(t) + u(t)dx1(t)}
O2 = O∞ = spK{dx3(t), dx4(t) + u(t)dx1(t),

dx5(t) + u(t+ 1)dx2(t)} .

Next, taking into account that by (13) and (12)

dx3(t) = dy(t)
dx4(t) + u(t)dx1(t) = dy(t+ 1) − y(t− 2)du(t)

dx5(t) + u(t+ 1)dx2(t) = dy(t+ 2)
−y(t− 1)du(t+ 1)
−d[u(t)y(t+ 1)]

we obtain exactly the basis elements of O∞.

One may argue that the construction of this subclass is
artificial and therefore of no value. Actually, if given this
type of system it looks like as a typical control system.
Moreover, it is possible to construct an infinite number of
systems with nonintegrable observable space. It is not the
case that we have just a few strange examples.

5. GENERALIZED STATE EQUATIONS

In several control problems it has become clear that it is
necessary to consider more general dynamics that contain
in addition to the input also a finite number of its time
shifts. One well-known example is the inverse system
that, in general, contains the shifts of its inputs. Another
example is the generalized controller canonical form, see
Fliess [1990b], and the extended observer canonical form,
introduced in Lilge [1998] where, in contrast to output
injection form, past measurements of the system output
are used that allows extension of the class of systems for
which an observer can be designed. A theoretical study
of discrete-time control systems depending explicitly on
input shifts was initiated by Fliess [1986, 1989, 1990a,
1992] and based on difference algebra.

In case we drop the requirement that the decomposed
system has to be in the form (1) and allow the generalized
state equations

z(t+ 1) = F (z(t), u(t), . . . , u(t+ α))
y(t) = h(z(t))

and generalized state transformations

z(t) = ψ(x(t), u(t), . . . , u(t+ α− 1))

like in Fliess [1992], both system (4) and (13) with y(t) =
x3(t) allow the decomposition into an observable and
unobservable subsystems, see Rieger et al. [2008].

Example 3. (Continuation of Example 1) Choosing the
(generalized) state coordinates as follows

z1(t) = x2(t)
z2(t) = x3(t) + u(t)x1(t)
z3(t) = x1(t)

yields the generalized state equations

z1(t+ 1) = z2(t)
z2(t+ 1) = u(t) + u(t+ 1)z1(t)
z3(t+ 1) = z1(t)

y(t) = z1(t)

Note that the first two equations define the observable sub-
system and the last equation the unobservable subsystem.

Example 4. (Continuation of Example 2) Choosing the
state coordinates as

z1(t) = x3(t)
z2(t) = x4(t) + x1(t)u(t)
z3(t) = x5(t) + x2(t)u(t+ 1)
z4(t) = x1(t)
z5(t) = x2(t)

yields the generalized state equations

z1(t+ 1) = z2(t)
z2(t+ 1) = z3(t) + z2(t)u(t)
z3(t+ 1) = z2(t)u(t) + z1(t)u(t+ 2)
z4(t+ 1) = z5(t)
z5(t+ 1) = z1(t)

y(t) = z1(t)

The first three equations define the observable subsystem
and the last two equations the unobservable subsystem.

6. CONCLUSIONS

The paper demonstrates that in the case of discrete-time
nonlinear control systems, the observable and unobserv-
able state variables cannot be always distinguished, unlike
in the case of continuous-time counterpart. A subclass,
containing an infinite number of systems is introduced for
which decomposition of state equations into observable-
unobservable parts is impossible. This difficulty does not
exist if one allows the decomposed system equations de-
pend on future inputs. To conclude, the results of the
paper point to the two aspects. First, that in the nonlin-
ear domain, there exists a number of situations in which
discrete- and continuous-time systems behave remarkably
differently. Second, that in the nonlinear domain, perhaps
the classical state equations are not the most natural
choice, since in the framework of the generalized state
equations, many difficulties cease to exist.
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