
System-level Verification of Multi-Core

Embedded Systems using

Timed-Automata ⋆

Jan Madsen ∗ Michael R. Hansen ∗ Kristian S. Knudsen ∗

Jens E. Nielsen ∗ Aske W. Brekling ∗

∗ Informatics and Mathematical Modelling, Technical University of
Denmark, Richard Petersens Plads, DK-2800 Kgs. Lyngby (e-mail:

{jan,mrh,awb}@imm.dtu.dk).

Abstract: A key challenge of implementing an embedded systems application on a heteroge-
neous multi-core platform is to find the right mapping of the application onto the execution
platform. The right mapping is dependent on the characteristics of the platform, i.e. processors
and the network connecting them, as well as the application. As embedded systems are heavily
resource constrained and often safety-critical, there is a strong desire to be able to reason
about properties of the system at an early stage in the design process, i.e. at the system-
level. In this paper, we present a system-level modelling framework which allows for cross-
layer modelling and verification, covering the application layer, middelware layer (RTOS), and
hardware layer. The modelling framework allows the designer to verify the impact of execution
platform and application mapping on the schedulability (meeting hard real-time requirements),
power consumption and memory utilization, while taking communication into account. The
modelling framework is implemented using timed-automata in UPPAAL, Behrmann et al. [2004]
and the feasibility of the framework is illustrated through a case-study of a real-time multimedia
application consisting of 3 applications with a total of 103 tasks executing on a platform with
4 cores.

1. INTRODUCTION

Embedded computer systems are making their way into
more and more devices, from household appliances to
mobile phones, PDAs and cars. Many of these systems
have a limited amount of resources such as memory and
power, and must perform in a timely manner imposed by
their application domain.

As it becomes harder to improve computer performance
using sequential execution, the trend moves toward using
multi-core system designs, integrating multiple processing
units connected through a network. One or more appli-
cations are divided among these processing elements. As
these systems become more complex, the interaction be-
tween application and execution platform, becomes more
incomprehensible and problems such as memory overflow,
data loss and missed deadlines become more likely. In the
development phase it is not enough to simply look at the
different layers of the system independently, as a minor
change at one layer can greatly influence the functionality
of other layers. System-level verification of schedulability,
upper limits for memory usage and power consumption,
taking all layers into account, has therefore become a
central field of study, in designing real-time systems.

As many important design decisions are made early in
the design phase, it is imperative to support the system
designer at this level. This paper presents an abstract
⋆ This work was supported in part by ARTIST2 (IST-004527),
MoDES (Danish Research Council 2106-05-0022) and DaNES (Dan-
ish National Advanced Technology Foundation).

embedded system model which is able to capture a set of
applications executing on a multi-core execution platform.
This model has been formalized with timed-automata se-
mantics using UPPAAL, Behrmann et al. [2004]. The for-
mal semantics gives the ability to model-check properties
of timing, memory usage and power consumption.

In order to support designers of industrial applications,
the timed-automata model is hidden for the user, allowing
the designer to work directly with the system-level model.
The designer provides an application consisting of a task
graph (possible a set of), an execution platform consisting
of processing elements interconnected by busses and a
mapping of tasks to processing elements. The system
model is then translated into a timed-automata model
which enables schedulability analysis as well as being able
to verify that memory usage and power consumption are
within certain limits. In the case where a system is not
schedulable, the tool provides useful information, about
what caused the missed deadline. We do not propose
any particular methodology for design space exploration,
but provide a tool, MoVES where embedded systems
can be modelled and verified in the early stages in the
design process. A key aspect is to provide a framework
which allows system designers to explore alternatives in an
easy and efficient manner, i.e. making it easy to change,
update or even add new strategies and algorithms for task
scheduling and allocation, and to perform changes in the
execution platform by adding or removing components and
interconnects.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9302 10.3182/20080706-5-KR-1001.3370

The tool has been tested on a number of examples includ-
ing a smart phone example, showing the ability to handle
systems of realistic size.

2. RELATED WORK

Modelling and verification of embedded systems can be
divided into simulation-based approaches and formal ap-
proaches. The simulation-based approaches such as ARTS,
Madsen et al. [2004b], provide valuable feedback for the
system designer in terms of understanding the overall be-
havior. The simulation-based approaches do, however, not
give any guarantees and do not capture all critical cases
that must be covered, in order to guarantee the absence of
errors like missed deadlines and memory overflow.

Richter et al. [2003] propose a formal approach based on
event flow interfacing. Looking at the timing properties of
the input events of a subcomponent in the system, the
output event flow is calculated for this subcomponent.
This process is iterated along the data flow in the system.
The iterative process will eventually find out if the system
is schedulable or not.

Fersman et al. [2002] proposes a strategy for system level
scheduling. This strategy is used in the TIMES tool. The
tool is, however, limited to the single processor domain
and the combination of dynamic scheduling algorithms and
dependencies is not possible.

Medina et al. [2001] has constructed a tool, MAST, which
uses classic scheduling theory in order to cover many
scheduling problems and Thiele et al. [2000] provides
a real-time calculus for scheduling of preemptive tasks.
These approaches covers multiple processing elements but
are limited to static priority scheduling.

Pop et al. [2000] proposes an approach for schedulability
analysis of processes and message scheduling. This ap-
proach takes the administrative overhead of switching into
account and uses a clock driven scheduling for the bus,
while processing elements are scheduled according to fixed
priority preemptive scheduling.

Angelov et al. [2006] proposes in the framework COMDES-
II, which handles distributed embedded actors that com-
municate with each other by exchanging signals. Tasks
are executed in a preemptive priority-driven scheduling
environment, where tasks are released by a triggering
event, which could be a periodic timing event. The output
from the tasks are sent when the deadline arrives, which
means that the system will always behave in worst case.
The tasks interacts directly, without any knowledge of the
execution platform. Furthermore the verification is based
on schedulability analysis, which can not take the multi-
processor paradigm and shared resources into account.

None of the above approaches, capture the exact behavior
of an embedded system at a system-level in a formal way.

Describing the interaction of all sub-parts of the embedded
system model formally, allows for verification, that all
possible states of the system holds some property (e.g. no
missed deadlines) through model checking. This approach
has been used by Brekling [2006] where it is shown, that it
is possible to model an embedded system in a formal way,
using timed-automata in UPPAAL. The proposed model

used in this work has the same modular structure as the
one originally proposed by ARTS.

3. EMBEDDED SYSTEMS MODEL

A system-level model of an embedded system can be de-
scribed as a layered structure consisting of three different
parts. Figure 1 illustrate these layers for a very simple
example of an embedded system, which will be used to
explain aspects of the model throughout the paper.

• The application is described by a collection of commu-
nicating sequential tasks. Each task is characterized
by four timing properties, described later. The de-
pendencies between tasks are captured by an acyclic
directed graph, which might not be fully connected .

• The execution platform consists of several processing
elements of possibly different types and clock frequen-
cies. Each processing element will run its own real-
time operating system, scheduling tasks in a priority
driven manner (static or dynamic), according to their
priorities, dependencies and resource usage. When a
task needs to communicate with a task on another
processing element, it uses a network. The set up of
the network between processing elements must also
be specified, and is part of the platform.

• The mapping between the application and the execu-
tion platform (shown as dashed arrows in the figure)
is done by placing each task on a specific processing
element. In our model, this mapping is static, and
tasks can not migrate during run-time.

W1 W2 W3 W4

Application

Execution Platform

pe1

os1

m1

f1 pe2

os2

m2

f2

network

Mapping

066W3

466W4

066W2

044W1

ZGStask

4613W4

9

7

3

dm

312W3

1Wm

311W2

212W1

pwsmetask

PRI_INHPRI_INHallocation

EDFEDFscheduling

11f
1

pe
2

pe
1

a)

b)

c)
r1 r2

Fig. 1. System-level model of an embedded system. Char-
acterization of a) tasks, b) tasks on processing ele-
ments, and c) processing elements.

The top level of the embedded system consists of an
application mapped on to an execution platform. This
mapping is depicted in Figure 1 with dashed arrows. The
timing properties in the figure originates from Sun and Liu
[1996], while the memory and power figures are created for
the purpose of demonstrating parameters of an embedded
system.

3.1 Application Model

The application is modelled as a set of independent pro-
grams which are executed on the execution platform. Each

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9303

program is modelled as a task graph, i.e. a directed acyclic
graph of tasks where edges indicate causal dependencies.
A dependency from τ2 to τ3 means that τ2 must finish
before τ3 can start. Dependencies are shown with solid
arrows in Figure 1. A task is a piece of sequential code
and is considered to be an atomic unit for scheduling. A
task τj is periodic and characterized by a period (πj), a
deadline (δj), an offset (ωj), and a fixed priority (fpj) (used
when operating system uses fixed priority scheduling). The
properties of periodic tasks can be seen in Figure 1a) and
are all given in seconds.

3.2 Execution Platform Model

The execution platform is a heterogeneous system, in
which a number of processing elements (pe) are connected
through a network.

Processing Element Model: A processing element pei is
characterized by a clock frequency (fi), a local memory
(mi) with a bounded size, and a real-time operating system
(osi). The operating system handles synchronization of
tasks according to their dependencies using direct synchro-
nization, Sun and Liu [1996].

Access to a shared resource rm (such as a shared memory
or a bus) is handled using a resource allocation protocol,
which in the current version consist of one of the following
protocols: Preemptive Critical Section, Non-Preemptive
Critical Section or Priority Inheritance. The tasks are in
the current version scheduled using either Rate Monotonic,
Deadline Monotonic, Fixed Priority or Earliest Deadline
First scheduling, Liu [2000]. The properties of a processing
element can be seen in Figure 1c.

Network Model: Inter-processor communication takes
place when two tasks with a dependency are mapped to
different processing elements. In this case, the data to be
transferred is modelled as a message task τm. Message
tasks have to be transferred across the network between
the processing elements. A network is modelled in the
same way as a processing element. So far, only busses
have been implemented in our model, however, Madsen
et al. [2004a] have shown how more complicated inter-
communication structures such as a mesh or torus network
can be modelled. As a bus transfer is non-preemptable,
message tasks are modelled as run-to-completion. This is
achieved by having all message tasks running on the bus,
i.e. the processing elements emulating the bus, using the
same resource rm thereby preventing preemption of any
message task.

Intra-processor communication is assumed to be included
in the execution time of the two communicating tasks, and
is therefore modelled without the use of message tasks.

3.3 Mapping

A mapping is a static mapping of tasks to processing
elements of the execution platform. This is shown as the
dotted lines in Figure 1. The execution time (eij) measured
in cycles, memory footprint (static memory (smij) and
dynamic memory (dmij)) and power consumption (pwij)
of a task τj , depends on the characteristics of processing
element pei executing the task, and can be seen in Figure

1b. In particular, when selecting the operation frequency
(fj) of the processing element pei, the execution time in
seconds, ǫij of task τj can be calculated as, ǫij = eij ·

1

fi

To fully explore different mappings, each task has to be
characterized on all processing elements which can execute
it, i.e. it may be that a particular task can only be executed
on a subset of the processing elements.

3.4 Memory and Power Model

In order to be able to verify that memory and power
consumption stays within given bounds, the model keeps
track of the memory and power costs in each cycle.
Additional cost models can easily be added to the model
as long as the cost can be expressed in terms of cost of
being in a certain state.

W1

W2 W3

W4
sm(W1)

M
em

o
ry

u
sa

g
e

a)

b)

sm(W2)

sm(W3)

sm(W4)

pdm(W2) cdm(W2 �W3)
pdm(W3) pdm(W3) pdm(W3)

pdm(W4)
pdm(W1,)

W2 W1 W3 W4 W3

c)

W2 W1 W3 W4 W3P
o

w
er

 u
sa

g
e d)

Fig. 2. Memory and power profile for pe1 when all four
tasks in Figure 1 are mapped onto pe1. a) schedule
where τ3 is preempted by τ4. b) memory usage on pe1,
Static memory: sm, private data memory: pdm, and
communication data memory: cdm. c) power usage.
d) task graph from Figure 1

The memory model, includes both static memory alloca-
tion (sm), due to program memory, and dynamic memory
allocation (dm), due to data memory of the task. The
example in Figure 2a illustrates the memory model. It
shows the scheduling and resulting memory profile (split
into static and dynamic memory). The dynamic part is
split into private data memory (pdm) needed while exe-
cuting the task, and communication data memory (cdm)
needed to store data exchanged between tasks. The mem-
ory needed for data exchange between τ1 and τ3 must be
allocated until it has been read by τ3 at the start of τ3’s
execution. When τ3 becomes preempted, the private data
memory of the task is still allocated until the task finishes.

Currently, a very simple approach for the modelling of
power has been taken. When a task is running, it uses
power (pw). The power usage of a task is zero at all other
times. The possible different power usages of tasks can be
seen as the heights of the execution boxes in Figure 2c.

4. TIMED-AUTOMATA MODEL

The embedded system model has been formalized using
timed-automata semantics of UPPAAL. The structure of

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9304

the UPPAAL semantics resembles the structure of the
model described in the previous section. The UPPAAL
model consist of a number of timed automata, each repre-
senting a component of the embedded system model. The
composition can formally be described as follows:

System = ExecutionP latform ‖ Application

ExecutionP latform =‖ m

i=1
pei ‖

l

k=1
pek

pei = Controlleri ‖ Synchronizeri ‖ Allocatori ‖ Scheduleri

Application =‖ n

j=1
τj

where ‖ means parallel composition of timed automata in
UPPAAL, m is the number of processing elements, l is the
number of busses and n is the number of tasks.

Wx+1 Wx+2 Wx+z

Application

Processing Element

Synchronizer

Allocator

Scheduler

Controller

1

2

3

run!

preempt!

ready!

finish!

Fig. 3. Interaction of the z tasks τx+1 to τx+z with the
single processing element to which they are mapped.

4.1 Execution Platform

The formal description of the platform consists of parallel
composition of a number of processing elements. Each
of these consists of a Controller, Synchronizer, Allocator
and Scheduler. The Controller receives ready or finish
signals from the tasks of the application which are mapped
to the processing element (see 1 in Figure 3), activates
synchronization, allocation and scheduling to find the task
with highest priority (see 2 in Figure 3), and finally sends
run or preempt signals back to the tasks (see 3 in Figure
3).

The controller represents the operating system and its
timed automata model can be divided into three parts.
In the first part, input signals (ready and finish) are
received. In the middle part, the actual operating system
is run, synchronizing, allocating and scheduling. In the last
part, output signals (run and preempt) are issued. These
three parts correspond to the three steps in Figure 3.

4.2 Application and Tasks

The formal description of the application consists of a
parallel composition of tasks. Tasks are receiving run
or preempt signals from the operating system (i.e. the
controller) and are producing the ready or finish signals
to the operating system. Figure 4 shows a simplified
version of the automata for a periodic task. The states

DeadlineMissed

Running

cr>=0

ReadyIdle

cp<=period
preempt?

cr==0 &&
cp<=deadline

finish!
cp>deadline

cp>deadline

run?

cp==period
ready!
cp=0, cr=exetime

Fig. 4. Simplified task automata.

of a task moves between being ready, running, preempted
(same as ready), and idle waiting for a new period to start
or for an offset of the first task execution. The full task
model consist of additional 6 vertices and 11 transitions
which basically handles the task initialization (e.g. possible
offset) and to be able to start and stop the task execution
which requires discrete time intervals. The cp and cr in
Figure 4 are clocks used to determine how far into its
period the task is (cp) and how long the task has to run
before it has finished execution (cr).

5. USING THE MODEL

In order to make the model usable for system designers,
details of the timed-automata model is encapsulated in
a tool called MoVES , which is meant to assist in de-
signing, verifying and reconfiguring embedded systems in
an intelligent way. The system designer needs to have an
understanding of the embedded-system model, but not
necessarily of the timed-automata model. It is assumed
that tasks and their timing properties etc, are already de-
fined and therefore MoVES is only concerned with helping
the system designer to configuring the execution platform
and perform the mapping of tasks on it.

The timed-automata model is created from a textual de-
scription which resembles the embedded system model
presented in section 3. For easy prototyping, the tex-
tual description is currently embedded in Java (see Ap-
pendix A). MoVES uses UPPAAL as back-end to analyze
the user’s model and to verify properties of the embedded
system through model-checking. UPPAAL can produce a
diagnostic trace following verification. MoVES transforms
this trace into a task schedule shown as a gantt chart. Cur-
rently this schedule is shown as a textual representation.

5.1 Example

To illustrate the design and verification process, consider
the embedded system from Figure 1.

Through the UPPAAL verification MoVES is able to
present the results to the user. Results of verifying the
system from Figure 1 with both pe1 and pe2 using rate
monotonic scheduling can be seen below:

E<>missedDeadline: true

E<>allFinish(): false

E<>totalCostInSystem(Power) == 7:true

E<>totalCostInSystem(Power) > 7: false

E<>costOnPE[0][Memory] == 17: true

E<>costOnPE[0][Memory] > 17: false

E<>costOnPE[1][Memory] == 12: true

E<>costOnPE[1][Memory] > 12: false

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9305

The verification results show several properties of the
system. Firstly, the system cannot be scheduled in the
given form i.e. it misses a deadline. Secondly, at no point
does the system use more than 7 units of power, but at
some point before missing the deadline 7 units of power is
used. Finally, in regard to memory usage it is verified that
pe1 uses 17 units of memory at some point before missing
the deadline but not more, and pe2 uses 12 units but not
more.

The trace produced by verification of the system in
MoVES is shown here:

5 10

Task: 1 1100110011

Task: 2 0010001000

Task: 3 0000110011

Task: 4 ----001100X

Task: 5 0001000100

The notation of the schedule is: 0 for idle, 1 for running, -
for offset and X for missed deadline. It is shown that task
4 misses a deadline after 11 execution cycles. Note that
task 5 is the message task between task 2 and 3.

In order to examine what can be done to improve the
system, we attempt verification of the same system where
p2 uses earliest deadline first scheduling. The verification
results can be seen below:

E<>missedDeadline: false

E<>allFinish(): true

E<>totalCostInSystem(Power) == 7: true

E<>totalCostInSystem(Power) > 7: false

E<>costOnPE[0][Memory] == 11: true

E<>costOnPE[0][Memory] > 11: false

E<>costOnPE[1][Memory] == 12: true

E<>costOnPE[1][Memory] > 12: false

Again we can analyze the results. Firstly this system is
now schedulable, as can be seen by the E<>allFinish()
query being true. The system still has the same power
usage properties as with rate monotonic scheduling used
on pe2 but the verification shows that at no point will
the revised system - i.e. where pe2 uses earliest deadline
first - use more than 11 units of memory, recall that the
system where pe2 used rate monotonic scheduling already
before missing a deadline had at some point used 17 units
of memory.

The trace produced by verification of the revised system
in MoVES is shown here:

5 10 15 20 25 30

Task: 1 110011001100110011001100110011

Task: 2 001000100000001000100000001000

Task: 3 000011000110000011000110000011

Task: 4 ----00111001110000111001110000

Task: 5 000100010000000100010000000100

6. TOWARDS INDUSTRIAL APPLICATIONS

The MoVES tool has been evaluated using applications
that are part of a smart phone, in order to show that
the tool is applicable on a typical embedded system. The
smart phone includes the following applications: GSM-
encoder, GSM-decoder and MP3-decoder (103 tasks total),
as seen in Figure 5. These applications do not together
make up the complete functionality of a smart phone, but
are used as an example, where the number of tasks, their

Table 1. Application and pe characteristics

Application Tasks/ Deadline/
Edges Period (s)

GSM Encoder 53/80 0.020

GSM Decoder 34/55 0.020

MP3 Decoder 16/15 0.025

pe Frequency
(MHz)

GPP0 25

GPP1 10

GPP2 6.6

FPGA 2.5

ASIC 2.5

dependencies and their timing properties are realistic.
The applications and their properties in the smart phone
example, originates from experiments of executing C-code
on different processors done by M. Schmitz Schmitz et al.
[2004]. The timing properties, period and deadline, of the
tasks, are imposed by the application and can be seen in
Table 1. The smart phone example has been verified using
worst-case execution times only.

Fig. 5. Task graph for 3 applications from a smart phone
taken from Schmitz et al. [2004].

The execution cycles, memory usage and power consump-
tion of each task, depend on the processing element. These
properties of the tasks, have been measured, by simulating
the execution of each task on different kinds of processing
elements (GPP, FPGA, ASIC) as seen in Table 1. The
execution cycles range from 52 to 266687 and the periods
range from 0.02 to 0.025 seconds giving a total number of
504 tasks to be executed in the hyper period of the system.

The three applications have been mapped onto four gen-
eral purpose processing elements running at 25 MHz
(GPP0) connected by a bus. The parallelism of the MP3-
decoder has been used to split this application onto two
processing elements. The two other applications run on
their own processing element.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9306

Having defined the embedded system with the application,
execution platform and mapping described above, the
MoVES tool is used to verify schedulability, maximum
memory usage and power consumption. In this case the
system is schedulable and the maximum memory usage
and power consumption is 1500 bytes and 1000 mw. The
verification of the smart phone example takes roughly
3 hours on a 64bit Linux server with AMD dual core
processor with 2 GB of memory.

It is possible that better designs exist, e.g. where less power
is used. A general purpose processor could for example
run at lower frequency or be replaced by an FPGA or an
ASIC. This is however not the focus of this case study. The
output of our tool, can however be used as input for a tool
which can optimize execution platform and mapping. We
have shown that our tool is capable of verifying systems
of realistic size.

7. CONCLUSION

This paper has presented a tool for formal verification
of embedded multi-core systems, using model checking
of timed automata in UPPAAL. Using model checking,
properties such as schedulability, memory usage and power
consumption can be analyzed. We have emphasized the

Emphasis has been on explaining the general concepts
of the system-level embedded system model supporting
applications executing on a multi-core execution platform
and how to use the model for design exploration of
embedded systems design. Hence, the timed-automata
model has only been briefly outlined. In verification of the
smart phone example a key challenge has been dealing
with state space explosion. The successful verification is
an important milestone in being able to handle industrial
sized applications.

REFERENCES

Christo Angelov, Xu Ke, and Krzysztof Sierszecki. A component-
based framework for distributed control systems. In EUROMI-

CRO ’06: Proceedings of the 32nd EUROMICRO Conference on

Software Engineering and Advanced Applications, pages 20–27.
IEEE Computer Society, 2006.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on uppaal. In Marco Bernardo and Flavio Corradini, editors,
Formal Methods for the Design of Real-Time Systems: 4th Inter-

national School on Formal Methods for the Design of Computer,

Communication, and Software Systems, SFM-RT 2004, number
3185 in LNCS, pages 200–236. Springer–Verlag, September 2004.

A. Brekling. Modelling and verification of mpsoc. Master’s thesis,
Informatics and Mathematical Modelling, Technical University of
Denmark, DTU, 2006.

Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata
with asynchronous processes: Schedulability and decidability. In
Tools and Algorithms for Construction and Analysis of Systems,
pages 67–82, 2002.

Jane W. S. Liu. Real-Time Systems. Prentice Hall, 2000.
J. Madsen, S. Mahadevan, and K. Virk. Network-centric system-

level model for multiprocessor soc simulation. In J. Nurmi,
H. Tenhunen, J. Isoaho, and A. Jantsch, editors, Interconnect-

Centric Design for Advanced SoC and NoC, chapter 13, pages
341–365. Kluwer Academic Publishers / Springer Publishers, July
2004a.

J. Madsen, K. Virk, and M. J. Gonzalez. A systemc-based abstract
real-time operating system model for multiprocessor system-on-

chip. In Multiprocessor System-on-Chip. Morgan Kaufmann,
2004b.

Julio L. Medina, Michael Gonzlez Harbour, and Jos M. Drake. Mast
real-time view: A graphic uml tool for modeling object-oriented
real-time systems. pages 245–256, 2001.

Paul Pop, Petru Eles, and Zebo Peng. Bus access optimization for
distributed embedded systems based on schedulability analysis. In
DATE ’00: Proceedings of the conference on Design, automation

and test in Europe, pages 567–575. ACM Press, 2000.
Kai Richter, Marek Jersak, and Rolf Ernst. A formal approach to

mpsoc performance verification. Computer, 36(4):60–67, 2003.
Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. System-

Level Design Techniques for Energy-Efficient Embedded Systems.
Kluwer Academic Publishers, 2004.

Jun Sun and Jane W.-S. Liu. Synchronization protocols in dis-
tributed real-time systems. In International Conference on Dis-

tributed Computing Systems, pages 38–45, 1996.
L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus

for scheduling hard real-time systeme. In IEEE Internation

Conference on Circuits and Systems, 2000.

Appendix A. SOURCE CODE OF EXAMPLE

public class MPSoC {

public Application apps;

public Platform pl;

public MPSoC(int granularity) {

//Defines tasks(bcet,wcet,Deadline,offset,period,FP)

Task t1 = new Task(2, 2, 4, 0, 4, 1);

Task t2 = new Task(1, 1, 6, 0, 6, 2);

Task t3 = new Task(2, 2, 6, 0, 6, 3);

Task t4 = new Task(3, 3, 6, 4, 6, 4);

Task tm = new Task(1, 1, 6, 0, 6, 5);

//Defines processors

Processor p1 = new Processor(1, RM, PRI_INH);

Processor p2 = new Processor(1, RM, PRI_INH);

Processor pm = new Processor(1, RM, PRI_INH);

//Assigns tasks to processors

Task[][] tasks = {{t1,t2},{t3,t4},{tm}};

//Adds the processors to the system

Processor[] ps = {p1,p2,pm};

Resource bus = new Resource();

Cost memory = new Cost(tasks);

Cost power = new Cost(tasks);

Cost[] ca = {memory, power};

pl = new Platform(ps);

apps = new Application(tasks, ca, granularity);

apps.useResource(tm, bus);

memory.set(t1,1,0,0,3,3);

memory.set(t2,1,0,0,7,7);

memory.set(t3,1,0,0,9,9);

memory.set(t4,1,0,0,6,6);

power.set(t1,0,0,0,2,0);

power.set(t2,0,0,0,3,0);

power.set(t3,0,0,0,3,0);

power.set(t4,0,0,0,4,0);

memory.share(t2,t3,7);

//Adds dependencies to the system.

apps.addDep(t2,tm);

apps.addDep(tm,t3);

}

}

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9307

