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Abstract: In the landmark-based localization problem, movement and ambiguity of landmarks
and imperfect identification process make measurements of the landmarks completely different
from its true value. The incorrect measured data have degraded existing localization methods in
the practical applications. This paper proposes a framework to improve accuracy of the existing
landmark-based localization methods regardless of such incorrect measured data. The framework
is based on Maximum Likelihood Estimation Sample Consensus (MLESAC). It samples a set
of measured data randomly to estimate position and orientation, and the estimated pose is
evaluated through likelihood of whole measured data with respect to the result. Iterations
of sampling, estimation, and evaluation are performed to find the best result to maximize
the likelihood. Simulation results demonstrate that the proposed framework improved the the
existing localization methods. Analysis using a concept of loss functions also explains that the
framework is superior compared to previous researches such as Random Sample Consensus
(RANSAC).

1. INTRODUCTION

Localization is to identify a robot’s pose (position and
orientation) using measured data and prior knowledge
such as a map or the initial position. It is known as one of
the most important tasks of mobile robots because it is a
basic step to perform more complex tasks such as cleaning,
serving, and guidance.

Localization methods are typically categorized into lo-
cal methods and global methods. Local methods try to
estimate relative displacement from the initial position
while minimizing odometry error, so they need the initial
position as prior knowledge. They are also called as dead-
reckoning or incremental positioning. However, without
knowing the initial position, global methods can estimate
the absolute position using a map and measured data from
the environment. Therefore, they can overcome a serious
position error and a kidnapping problem.

Sources of data are useful to understand characteristics
of localization methods: a motion, an environment, and
colleagues (Fig. 1). Fox et al. [2000] also mentioned a
similar categorization. Motion data can be measured by an
encoder (for wheeled robots), footsteps (for legged robots),
and inertia sensors. Approaches to use only motion data
are typical local methods, which accumulate the data in
temporal axis. Environmental data are obtained through
a vision system, sonar sensor, or laser range finder. These
data originate from landmarks or appearance of the given
environment. Proximity to electrical tags or stations are
also used as the environmental data. Yet, the environmen-

tal data contain spatial clues on a robot’s position and
orientation in the environment. The approaches to use the
data can accomplish absolute positioning, which belong
to global methods. There are also another global meth-
ods that use motion and environmental data together,
which are called spatial-temporal localization. Generally,
Bayesian filters such as (extended) Kalman filter and par-
ticle filter are used to fuse two kinds of the measured
data. Because of their robustness, the spatial-temporal
methods have been used in many applications. In multi-
robot systems, cooperative localization methods have been
investigated, which employ not only measured data but
also received data from colleagues. Bayesian filters are use-
ful tools to integrate the measured data with the received
data as well. Since they use more data than a single robot,
they have shown higher accuracy and robustness than the
case of a single robot.

Many global localization methods are based on landmarks
because the landmarks describe the environment as a sim-
ple and clear manner such as a set of absolute positions of
landmarks. There are also many commercial localization
modules which use landmarks (e.g. GPS, NorthStar by
Evolution Robotics, and StarLITE by ETRI). Measure-
ment from landmark can be a distance from robot to the
landmark or a bearing from robot’s heading direction to
the landmark. These measurements have errors resulted
from noise and quantization, but they are near their true
values. The measurements of this class are referred as
inliers. However, measurements can be totally different
from their true values because of movement and ambiguity
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Fig. 1. Localization methods in the view of sources of data

of landmarks and imperfect identification process. The
measurements of this class are referred as outliers.

For applications in the real world, a landmark-based local-
ization method should overcome errors resulted from out-
liers. However, there are few researches related to a frame-
work which investigated outliers, and their approaches
were based on RANSAC or their own frameworks similar
with RANSAC (Jaulin et al. [2002], Se et al. [2004], and
Yuen and MacDonald [2005]). Even though RANSAC can
deal with outliers and make more accurate results than the
existing methods without it, it needs to adjust parameter
which is sensitive to the distribution of measured data.

In this paper, a novel robust framework is proposed to
improve the accuracy of existing landmark-based local-
ization methods through MLESAC. MLESAC is initially
suggested by Torr and Zisserman [2000] to estimate funda-
mental matrices and image homography in the computer
vision community. In MLESAC, random sampling picks
up a set of measured data to estimate a robot’s position
and orientation. Error of measurements with respect to
the estimation is modeled as a mixture of Gaussian and
uniform distribution, and likelihood of measurements is
derived from the error model. Iterations of sampling, es-
timation, and evaluation are performed to find the best
position and orientation to maximize the likelihood.

The remainder of this paper is organized as follows. Section
2 formulates the landmark-based localization problem and
examines the previous researches. Section 3 introduces the
robust landmark-based localization framework based on
MLESAC. Section 4 demonstrates experimental results
and the comparison to the existing methods. Analysis
using a concept of loss functions is included as well. Finally,
Section 5 contains discussion and further works.

2. REVIEW OF LANDMARK-BASED
LOCALIZATION

2.1 Problem Statements

Landmark-based localization problem is to estimate a
robot’s position and orientation, Θ = (p, θ)T , from a map,
M , and measured data of observed landmarks, D. The
map is described as a set of absolute positions of landmarks
in a given environment: M = (m1,m2, · · · ,mn)T , where
n is the number of landmarks. The measured data can
be a set of displacements (vector) or distances (scalar)
from robot to each landmark. Moreover, it can be a

set of bearings from robot’s heading direction to each
landmark or relative bearings between a landmark and its
adjacent landmark: D = (d1,d2, · · · ,dk)T , where k is the
number of observed landmarks. Some landmarks can be
unobservable due to occlusion or limited sensing range. In
other words, the number of measured data k is less than or
equal to the number of landmarks n. Among k measured
data, inliers are near their true value, and outliers are
completely irrelevant to their true value.

2.2 Landmark-based Localization Methods

Landmark can be an artificial patch or a conventional
object such as a door, television, and refrigerator. Wireless
station can be landmark because it can provide its distance
from the robot through signal strength. Local image fea-
ture such as Harris corner and SIFT can also be landmark.
As an example, Se et al. [2004] used huge amounts of SIFT
image features as landmarks.

Landmark-based localization methods can be classified by
the types of measurement: displacement, distance, bear-
ing, and relative bearing (Table. 1). A displacement of
landmark can be regarded as the combination of distance
and bearing of landmark. According to available mea-
surements, it is necessary to apply a suitable localization
method. Se et al. [2004] estimated a robot’s position and
orientation from two displacements measured through a
stereo-vision system. Calabrese and Indiveri [2005] utilized
two pairs of distances and bearings measured through
observed size of a landmark and omnidirectional vision
system. Thomas and Ros [2005] offered a trilateration
method which used three distance measurements to iden-
tify a robot’s position in three-dimensional space. They
analyzed three kinds of errors which caused inliers: sta-
tion location error, range measurement error, and numer-
ical error. Betke and Gurvits [1997] proposed a bearing-
based method, which represents a position of landmark as
complex number, and Shimshoni [2002] also suggested a
bearing-based algebraic method, which used Direct Lin-
ear Transformation (DLT). Briechle and Hanebeck [2004]
developed a recursive method, which used three relative
bearings and nonlinear filtering. They considered unknown
but bounded error which caused inliers. Note that there
were various works to investigate the landmark-based lo-
calization problem, but they did not take into account of
outliers except Se et al. [2004].

2.3 Previous Works

Se et al. [2004] tackled the outlier problem through Hough
transform and RANSAC, and showed the efficiency of
RANSAC when SIFT image features were used. RANSAC,
proposed by Fischler and Bolles [1981], is a popular model
fitting framework in the computer vision community. Its
procedure is iteration of generating of a hypothesis and its
verification (Fig. 2). It selects a hypothesis which maximize
the number of measured data within predefined tolerance,
δ. In other words, its result is to maximize the number
of data classified as inliers. Jaulin et al. [2002] solved the
outlier problem through their framework, Outlier Minimal
Number Estimator (OMNE). OMNE tries to find the posi-
tion and orientation to minimize the number of data classi-
fied as outliers, which is the same objective with RANSAC.
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Measurement Recent Works Results The Num. of Landmarks

Displacement Se et al. [2004], Calabrese and Indiveri [2005] Location, Direction 2

Distance Thomas and Ros [2005] Location 3

Bearing Betke and Gurvits [1997], Shimshoni [2002] Location, Direction 3 ∼ (Least Square Method)

Relative Bearing Briechle and Hanebeck [2004] Location 3

Table 1. Recent works for the landmark-based localization

Parameters

l The number of data to estimate a pose Θ
δ Error tolerance given by a user
t The number of trials
Procedure

1. Select l data randomly among whole data D.
2. Estimate a pose Θ using the existing method

and the selected data.
3. Calculate error ei (i = 1, 2, · · · , k) which repre-

sents how much data di has error with respect
to the pose Θ.

4. Count how many data di has error ei within the
bound δ.

5. If the number is the maximum ever, keep the
pose Θ as the candidate of the final result Θ̂.

6. Repeat from Step 1 to Step 5 t times.

Fig. 2. The RANSAC framework

Yuen and MacDonald [2005] used their proposed frame-
work, LTRC (Landmark matching, Triangulation, Recon-
struction, and Comparison), for their vision-based robot.
LTRC generates a number of possible hypotheses through
landmark matching and triangulation. Then it ranks the
hypotheses in reconstruction and comparison stage, and
finally selects the top-ranked hypothesis as the result. The
landmark matching and triangulation stage is similar with
step 2 of RANSAC, and the reconstruction and compar-
ison stage is similar with step 3, 4, and 5 of RANSAC
respectively (Fig. 2).

Even though there were few but meaningful works to try
solving the outlier problem, it is not enough to complete
the problem. RANSAC needs to adjust the parameter,
δ, which is sensitive to accuracy. OMNE has the similar
problem. Therefore, they are weak in a dynamically chang-
ing environment, which requires to adjust δ automatically.
LTRC is appropriate for a specific robot which uses an
omnidirectional vision system.

3. THE ROBUST LOCALIZATION FRAMEWORK

3.1 The Error Model and Maximum Likelihood Estimation

Torr and Zisserman [2000] proposed a probabilistic er-
ror model of inlier and outlier. They suggested the pdf
(probability distribution function) of error by an inlier as
unbiased Gaussian distribution and the pdf of error by
an outlier as uniform distribution, which is described as
follows:

pin(e) = (
1√
2πσ

)s exp(− e2

2σ2
) (1)

pout(e) =
1
ν
, (2)

Fig. 3. Likelihood with various inlier ratios (σ = 2.5, s = 2,
ν = 180)

where σ is the standard deviation of Gaussian distribution,
s is the dimension of measured data, and ν is the area of
the given environment. If the measurement is a displace-
ment and the size of environment is 10 × 18, then s is 2
and ν is 180.

Without knowledge whether a measurement is an inlier
or an outlier, but the ratio of inliers to whole data γ
and the standard deviation σ are known, likelihood of the
measurement d becomes a mixture of pin(e) and pout(e)
as follows:

p(d | Θ) = γ(
1√
2πσ

)s exp(− e2

2σ2
) + (1− γ)

1
ν
, (3)

where e is error between a measurement d and pose Θ.
Fig. 3 shows the likelihood with various inlier ratios.

Under an assumption that k measured data are indepen-
dent, a likelihood of whole data D is obtained as

p(D | Θ) =
k∏
i=1

p(di | Θ). (4)

Generally, the likelihood p(D | Θ) becomes a quite small
real value. For computational feasibility, the negative log
likelihood is used as follows:

NLL(Θ) = − log p(D | Θ)

= −
k∑
i=1

log p(di | θ).
(5)

The most probable Θ̂ is to maximize the likelihood or to
minimize the negative log likelihood. Maximum Likelihood
estimation is follows:

Θ̂ = arg min
Θ

NLL(Θ). (6)
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3.2 The Parameter Adaptation

The shape of error model are described by two parameters,
σ and γ. To calculate (5), two parameters should be avail-
able. In spite of the fact that σ needs to be tuned by hands,
Torr and Zisserman [2000] offered the method to adapt
γ through Expectation Maximization (EM) procedure. If
data class µ is 1 when the corresponding data is an inlier,
and 0 when the data is an outlier, then the inlier ratio γ
can be estimated as the mean of data class µ:

γ =
1
k

k∑
i=1

P (µi = 1 | γ) =
1
k

k∑
i=1

pi
pi + po

(7)

where

pi = γ(
1√
2πσ

)d exp(− e2i
2σ2

) (8)

po = (1− γ)
1
ν
. (9)

EM is an iterative procedure to find locally optimal value.
In this problem, EM tries to find locally optimal value of γ
through update equation. At first, guess the initial value of
γ as 0.5, then update γ through (7), and repeat this update
step until its convergence. Since five iterations are enough
for convergence experimentally, this paper uses this value
for adapting γ.

3.3 The Overall Procedure

Now, the localization problem is formulated as (6). To
search Θ̂, MLESAC utilizes the iterative probabilistic
sampling. Therefore, the overall procedure is an iteration
of three stages: selecting data, estimating Θ from the
selected data, and evaluating it using (5). It is described
in Fig. 4.

It is difficult to determine the number of iteration t by
hands. Fischler and Bolles [1981] offered the following
relationship,

Pfail =
(
1− γ̂l

)t
, (10)

where Pfail is the probability to fail in selecting l inliers
during t repetitions, and γ̂ is a guessed inlier ratio before
running an algorithm. From the above equation, t is
derived as follows:

t =
logPfail

log
(
1− γ̂l

) . (11)

4. SIMULATION RESULTS

4.1 Simulation Configurations

Simulation was performed in a space whose size was 1000×
1000 and contained 20 landmarks. The robot was placed
at p = (329, 82)T and its orientation is θ = 0.314 [rad].
Two parameters, α and β, control observation condition of
landmarks. α is a probability of being an outlier, that is, it
is the rate of outliers to whole landmarks. β is a magnitude
of observation noise. The simulator used additive Gaussian
noise N(0, β2) to generate the observation noise.

Four existing methods were employed for the experiment.
Betke97, Shimshoni02, Thomas05, and Se04(RANSAC)

Parameters

l The number of data to estimate a pose Θ
σ Standard deviation of Gaussian noise (1)
t The number of trials
Procedure

1. Select l data randomly among whole data D.
2. Estimate a pose Θ using the existing method

and the selected data.
3. Calculate error ei (i = 1, 2, · · · , k) which repre-

sents how much data di has error with respect
to the pose Θ.

4. Estimate γ through EM procedure (7).
5. Evaluate the pose Θ through NLL(Θ) (5).
6. If NLL(Θ) is the minimum ever, keep the pose

Θ as the candidate of the final result Θ̂.
7. Repeat from Step 1 to Step 6 t times.

Fig. 4. The robust landmark-based localization framework
using MLESAC

were the existing methods in Betke and Gurvits [1997],
Shimshoni [2002], Thomas and Ros [2005], and Se et al.
[2004]. Betke97+MLESAC, Shimshoni02+MLESAC, and
Thomas05+MLESAC were methods incorporated with MLE-
SAC, and Se04+MLESAC was a method fused with MLE-
SAC, not RANSAC. Table 1 shows their characteristics,
and Table 2 shows their error definitions and parameters
used in the simulation. In Table 2, mj is an absolute
position of a landmark matched with measurement di,
R(θ) is the clockwise rotation matrix, and AD is the
function to calculate the difference of two angles as follows:

AD(φ, ϕ) = min
(
|φ−ϕ−2π|,|φ−ϕ|,|φ−ϕ+2π|

)
. (12)

Two experiments aimed to examine accuracy with respect
to various situations. Experiment #1 was performed in a
set of various outlier ratios α, and Experiment #2 was
performed in a set of various magnitude of observation
noises β. For a statistically representative result, 1000 runs
were evaluated.

4.2 Results and Discussion

• Experiment #1 Fig. 5 shows that the proposed frame-
work made the existing methods more accurate in various
outlier rates. Below analysis explains why the methods
with MLESAC is more accurate than methods without
it. Se04+MLESAC shows slightly better accuracy in high
outlier ratios compared to Se04(RANSAC). Methods with
MLESAC were about 100 times more accurate than meth-
ods without MLESAC until α = 0.5. However, methods
with MLESAC showed significant degradation of accuracy
after α = 0.5. Since the experiment used the parameter
t using γ̂ = 0.5, the number of trial, t, is not sufficient
to overcome bigger outlier ratio than 0.5. When t was
increased (or γ̂ was decreased), the accuracy became better
but it needs more computation time. RANSAC also has
the same problem.

• Experiment #2 Fig. 6 shows that the proposed
framework improve the accuracy of existing methods.
Se04+MLESAC shows 30 ∼ 40% better accuracy than
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Methods Measurement ei = Err(di; Θ,mj) where Θ = (p, θ)T s l t (Refer (11)) σ or δ

Betke97+MLESAC Bearing Err(di; Θ,mj) = AD
(
atan2(mj − p)− θ, di

)
1 4 72 σ = 0.0175

Shimshoni02+MLESAC Bearing Err(di; Θ,mj) = AD
(
atan2(mj − p)− θ, di

)
1 4 72 σ = 0.0175

Thomas05+MLESAC Distance Err(di; Θ,mj) =| ‖mj − p ‖ −di | 1 3 35 σ = 4.566

Se05(RANSAC) Displacement Err(di; Θ,mj) =‖ R(θ)(mj − p)− di ‖ 2 2 17 δ = 11.086

Se05+MLESAC Displacement Err(di; Θ,mj) =‖ R(θ)(mj − p)− di ‖ 2 2 17 σ = 4.566

Table 2. Parameters used in the simulation (common parameters: Pfail = 0.01, γ̂ = 0.5)

(a) Position error - the outlier rates α (b) Orientation error - the outlier rates α

Fig. 5. The result of Experiment #1 (default: β = 4)

(a) Position error - the magnitude of observation noise β (b) Orientation error - the magnitude of observation noise β

Fig. 6. The result of Experiment #2 (default: α = 0.1)

Se04(RANSAC) in high noise magnitude. Below analysis ex-
plains why MLESAC had better accuracy than RANSAC.

• Analysis using a Concept of Loss Functions Betke97
and Shimshoni02 are Least Square Method (LSM), which
minimize the squared error. It is possible to formulate the
problem using a loss function L(ei) as follows:

Θ̂ = arg min
Θ

k∑
i=1

L(ei) (13)

L(ei) = e2i . (14)

The problem can be regarded as a problem to reduce
loss caused by error. Under the same formulation, a loss

function of RANSAC is defined as

L(ei) =
{

0 | ei |< δ

const otherwise
, (15)

and a loss function of MLESAC can be derived as

L(ei) = − log
(
γ( 1√

2πσ
)sexp(−

e2
i

2σ2 )+(1−γ) 1
ν

)
. (16)

Three loss functions are plotted in Fig. 7.

It is possible to understand why LSM does not overcome
outliers from Fig. 7. Serious error by an outlier causes big
loss enough to make the result of LSM wrong. In contrast,
RANSAC and MLESAC have a constant loss out of defined
range so they are more robust to outliers than LSM. The
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Fig. 7. Loss functions of LSM, RANSAC, and MLESAC
(ν = 180, s = 2, σ = 0.5, γ = 0.9, δ = 2, const = 8)

results of Experiment #1 and #2 could be verified using
this anlaysis.

RANAC and MLESAC have different shapes of loss func-
tions near zero error. RANSAC has a zero loss within
the defined range, but MLESAC has an increasing loss.
In other words, RANSAC does not take into account the
quality of an inlier, but MLESAC does. Therefore, MLE-
SAC had better results than RANSAC in high magnitude
of observation noise. The result of Experiment #2 could
be verified using this analysis.

5. CONCLUSION AND FURTHER WORKS

The paper proposed a novel landmark-based localiza-
tion framework using MLESAC. The experimental results
showed that it improved the accuracy of existing methods
which did not cope with outliers. The results also presented
that MLESAC approach can achieve higher accuracy than
RANSAC used in the previous works. In addition, it was
also verified by analysis using a concept of loss functions.

The proposed framework is not only for the landmark-
based methods. It can be applied to the spatial-temporal
localization methods such as Monte Carlo Localization
(Dellaert et al. [1999]) in their update phase as well.

In MLESAC, the standard deviation, σ, and the number
of trials, t (or γ̂), should be tuned by hands. Computation
time with MLESAC is about 20 to 100 times more than
without it. More researches are necessary in adapting
parameters and reducing time consumption.
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