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Abstract: Optimal control of a fed-batch bio-reactor using ant colony optimisation and bootstrap 
aggregated neural network models is presented in this paper. In order to overcome the difficulties in 
developing detailed mechanistic models and to improve the reliability of data based empirical models, 
bootstrap aggregated neural networks were used to model a fed-batch bio-reactor using process operational 
data. Bootstrap aggregated neural networks can not only improve model prediction accuracy but also 
provide prediction confidence bounds. In order to overcome the problem of local minima in the 
optimisation, ant colony optimisation (ACO) is used. A modified ACO algorithm is proposed for 
continuous variable optimisation. In the proposed technique, model prediction confidence bounds are 
incorporated in the optimisation objective function so as to enhance the reliability of the calculated 
“optimal” control actions.  

 

1. INTRODUCTION 

Batch processes are the dominant mode of operation in a 
wide range of industries, including food, pharmaceutical and 
bio-materials industries. Batch and fed-batch processes are 
routinely used for the manufacturing of high value added 
products, such as specialty polymers and fine chemicals 
(Bonvin, 1998). Optimal control of batch processes is very 
important because, in the face of growing competition and 
stringent environmental regulations, it represents a natural 
way for reducing production costs and improving product 
quality. 

Mechanistic models have been utilized for many years for 
optimal control studies (Park and Ramirez, 1988; Luus, 
1991). However, developing full phenomenological models 
for complex processes is usually very difficult and time 
consuming if feasible at all. The time and effort needed to 
develop mechanistic models has tended to limit the 
applications of mechanistic model based optimal control 
strategies. To circumvent these difficulties, black-box data-
based empirical model have been widely used. The most 
popular data-based nonlinear modelling technique is artificial 
neural networks. Neural network models gain their attraction 
from speed and ease of implementation, wide applicability 
and abundant knowledge and research that they have been 
receiving. Neural networks have been widely used in process 
modelling and control (Morris et al., 1994; Zhang et al., 
1998a; Zhang, 2005). 

However, the use of neural network model based optimal 
control strategy is faced with two major challenges. The first 
challenge is the non-robust performance of neural networks 
when they are applied to unseen data and the second 
challenge is the need for powerful global optimization 
method that can effectively overcome the conventional 

problem of falling into local minima. Neural network models 
are highly non-linear and thus are rich in sub-optimal traps 
that can lock in the traditional gradient-based optimization 
methods. Therefore, population-based optimization methods 
such as genetic algorithms (GA) and ant colony optimization 
(ACO) should be used to overcome this problem.  

2. A FED-BATCH BIO-REACTOR 

The process under study is a fed-batch reactor for the 
production of secreted protein using Baker’s yeast as the host 
organism and is taken from Park and Ramirez (1988). They 
studied the secretion of foreign protein bioreactor and 
developed a mechanistic model that describes its dynamics. 
The process dynamic behavior is described by the following 
set of differential equations: 
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In the above equations, PM is the amount of secreted protein 
on a unit culture volume basis, PT is the total protein amount 
on a unit culture volume basis, X is the culture cell density, S 
is the culture glucose concentration, V is the culture volume, 
q is the feed flow rate which is used as the control variable, m 
is the glucose concentration of the feed stream, Y is the yield 
of glucose per cell mass, Φ is the protein secretion rate of the 
host cell, and μx is the specific growth rate of the host cell 

The initial conditions of the state variables are PM(t0) =0.0, 
PT(t0) =0.0, X(t0) =1.0 g/L, S(t0)=0.5 g/L, V(t0)=1.0 L. The 
parameters of the model are m = 20.0 g/L and Y=7.3. The 
feed rate q is restricted in the range (0.0, 10.0) L/h and the 
final time is fixed at tf =15 h. 

The goal of the optimal control policy is to maximize the 
total secreted protein at the end of the batch by changing the 
feeding rate. In this study the control policy (feed rate profile) 
consists of n discrete control actions lasting for equal time 
intervals, i.e. U = [q1 q2 … qn]T. The optimization problem 
can be formulated as: 

)()(max ffMU
tVtPJ =   

      (9) 
s.t. 100 ≤≤ iq ,  i =1, 2, …, n . 

The process was studied by a number of researchers (Park 
and Ramirez 1988; Tian et al., 2002).  

 

3. ANT COLONY OPTIMISATION  

3.1  Ant Colony Optimization 

Ant colony optimization can be regarded as part of swarm 
intelligence (SI). SI systems are made up from a group of 
simple individuals that, through simple local interactions, 
have collective behavior and self-organization, without any 
form of central control over the swarm members (Bonabeau 
et al., 1999). SI optimization algorithms can be considered as 
a member of a larger family of metaheuristic or metaphoric 
algorithms. These algorithms are inspired by physical 
phenomena like autocatalytic processes in chemistry (such as 
simulated annealing) or evolutionary biological systems 
(such as GA). These optimization algorithms share some 
common features: 

• They draw inspiration from nature. 
• They are population-based. 
• They are stochastic in nature. 
• They do not require gradient information to perform 

their search. 

ACO is inspired by the behavior of real ants that are capable 
of finding the shortest path from a food source to the nest. It 
is well known that the medium of communication between 
ants is pheromone trails. A moving ant lays pheromone on 
the ground as it moves. The other ants can detect the 
previously laid trails and choose probabilistically either to 
follow it (reinforcing the existing solution) or to go to a new 
direction (exploration for a new solution). But how can 
almost blind ants find the shortest path to the food source? 
Following the illustrations in Fig. 1 (Dorigo and 
Gambardella, 1997), the following can be observed:  

A. Real ants follow a route between the nest and the 
food source. 

B. The route is obstructed by an obstacle: ants choose 
whether to turn left or right with equal probability 

C. Pheromone is deposited more quickly on the shorter 
route 

D. All ants chose the shorter path. 
 

 
Fig.1. The behaviour of real ants when an obstacle appears in 
the path (Dorigo and Gambardella, 1997) 

 
The basic mechanisms in ACO that took inspiration from real 
ant colonies are: 

• Pheromone Update, whereby the shortest routes are 
awarded more pheromone. 

• Pheromone Evaporation, whereby all the routes 
are decreased in pheromone amount in a process 
analogous to pheromone evaporation after food 
exhaustion. 

• Probabilistic decisions: ants will not always follow 
the routes rich in pheromone trail but will make a 
probabilistic decision whether to do so or not. This 
is important to avoid early convergence to local 
minima. 

3.2  ACO for Continuous and Mixed-Variable Domain 

The main idea of ACO for continuous and mixed-variable 
domain (ACOCM) (Socha, 2004) is that each ant generates a 
random number according to a certain probability density 
function (PDF), Pi(Xi), for each dimension i. The PDF are 
constructed from a weighted sum of several normal PDFs. 
The PDF of a normal (Gaussian) distribution is of the form: 
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where σ is the standard deviation and μ is the mean of the 
distribution. A weighted sum of a mixture of PDFs is denoted 
as  
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where wj is the weight of the PDF kernel j. The vectors w, μ 
and σ define the mixture of normal kernel PDFs Pi(xi) 
(hereinafter referred as the mixture) that is associated with 
one dimension. A mixture of normal PDFs might look like 
the one depicted in Fig. 2. 

 
Fig. 2. Example of five normal PDFs and their sum (the 
resulting mixture of normal kernels) in the interval (-5, 5) 

A solution is constructed by stochastically choosing a value 
for each dimension i from its mixture Pi(xi). The process of 
generating a random number according to a mixture is done 
in two stages. First, an ant selects a single normal kernel from 
the mixture with a probability pi

j proportional to wi
j : 
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Then the ant generates a number according to the selected 
normal kernel Pi

j using, for example, a normal random 
number generator. The idea of constructing the solution 
makes general layout of ACOCM algorithm very similar to 
the regular ACO (i.e. ACO for combinatorial problem). The 
structure of ACOCM is outlined below: 

1. Initialization: Create the mixtures of normal PDFs. 
2. Solution Construction: Each ant constructs one 

solution. 
3. Positive Update: Reward the distributions that 

contributed to good solutions. 
4. Negative Update: Analogous to pheromone 

evaporation. 
5. Looping: Repeat steps 2 through 4 until the 

termination criterion is met. 
There are various issues associated with each step of the 
algorithm. The description given below is only a brief of 
what is fully documented by Socha (2004). 

Initialization 

The mixtures are initiated with uniformly distributed means 
as follows: 
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Positive Update 
One way of accomplishing the positive update is by adding a 
normal PDF Pi(Xi

j) into the mixture Pi(Xi). The mean μi
j of 

the newly created distribution should be equal to the solution 
component Xi used for the update (the best found solution 
from last iteration). The values of wi

j and σi
j should be chosen 

based on the quality of the solution used for the update. One 
suggested option is updating σi

j according to the equation: 
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where c  is the current iteration and ε  is the targeted 
accuracy (or tolerance) of the solution. 
 
Negative Update 
Negative update can be achieved by many ways. The 
intuitive way is to do the opposite of the positive update, i.e., 
to remove an existing ‘bad’ kernel from each dimension. This 
method might be combined by a pheromone evaporation 
process, whereby the vector of weights wi for each dimension 
i is reduced (evaporated). A third option to accomplish the 
negative update might be through increasing the standard 
deviation σi

j of normal PDF Pi
j(Xi) for each dimension i. 

The parameters of ACOCM are the number of normal PDF, 
k, and the number of ants m. There are no specific rules for 
choosing the values of these parameters and they are only 
based on trial. However, a good heuristic guide to start with 
is to have m = 3n and k = 2n, where n is the number of 
dimensions, and increment until satisfaction.  

The algorithm was tested on some benchmark optimization 
problems (Mathur et al., 2000). The algorithm was run for 50 
times for each bench mark problem to consistently and 
statistically evaluate its performance. The results showed that 
the success rate for some problems is about 60-80%, 
especially for Rosenbrock problem, which implies the 
tendency of algorithm to fall into local minima. On 
investigating this problem, it was observed that at least for 
one variable, the mixture of kernels gets unified into one 
shape, i.e. all kernel PDFs converge into the same mean and 
standard deviation. When this happens, the algorithm keeps 
narrowing the search space for that particular dimension 
because the newly created kernels by Eq(14) are made with 
less standard deviation σ. If the optimal solution lies far from 
this region, then the algorithm is trapped in a local minimum.  

A modification to the original algorithm is introduced in this 
paper to avoid this premature convergence. The modification 
is made by monitoring the mean standard deviations of the 
kernels of each dimension. When their spans start to fall 
below a critical value, the newly created kernel is randomized 
and not created in the normal procedure expressed by Eq(14). 
This process is analogous to mutation in GA. With this new 
modification to the original algorithm, the success rates are 
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found to be 100% for all the test problems. Tables 1 and 2 
give, respectively, the performance of continuous ant colony 
optimization (CACO) and the modified ACOCM on some 
benchmark optimization problems (Mathur et al., 2000). In 
Tables 1 and 2, m is the number of ants, k is the number of 
normal PDFs for each n dimensions and ε is the required 
accuracy. The number of function evaluations is averaged 
over 50 runs of each test problem to allow for greater 
consistency in the results. The performance of the modified 
ACOCM (indicated by the average number of function 
evaluations) is highly promising and surpasses that of the 
CACO. 

Table 1. CACO performance on the benchmark problems 

Test function n  ε  Number of function 
evolutions 

Sphere Model  6 10-2 5880 

Goldstein and Price  2 10-4 4880 

Rosenbrock  4 10-2 10140 

Zakharov  2 10-4 5220 

Hartmann  3 10-4 4760 

 

Table 2. ACOCM parameters and results on the benchmark 
problems 

Test function n  m  k  ε  Number of 
function 
evaluations 

Sphere Model  6 20 12 10-2 3638 

Goldstein and 
Price  

2 6 4 10-4 1795 

Rosenbrock  4 15 8 10-2 4982 

Zakharov  2 8 4 10-4 1107 

Hartmann  3 9 6 10-4 1120 

 

4. MODELLING THE FED-BATCH PROCESS USING 
BOOTSTRAP AGGREGATED NEURAL NETWORKS  

Fig. 3 shows a bootstrap aggregated neural network where 
several networks are developed to model the same 
relationship and are combined together. Earlier studies show 
that an advantage of stacked neural networks is that they can 
not only give better generalisation performance than single 
neural networks, but also provide model prediction 
confidence measures (Zhang et al., 1998b). 

Since the ultimate interest is in the total secreted protein at 
the end of the batch (hereinafter termed as process output), it 
is intuitive to try to relate the control actions to the process 
output. Therefore the neural network model will predict the 
output (PM(tf)V(tf)) using the set of n control actions as model 

inputs. Mathematically, Y = f(U), where Y = PM(tf)V(tf) and U 
= [q1 q2 … qn]. For ease of implementation, we take the 
number of regions that constitutes the feeding profile to be n 
= 10. Restricting the control profile to 10 equal stages was 
found not to degrade the maximum achievable output.  

X Y

 
 
Fig. 3. A bootstrap aggregated neural network 

 Bootstrap re-sampling with replacement (Efron, 1982) was 
used to generate 30 replications of the 50 training (and 
validation) batches. For each replication, a neural network 
model is built and trained using 40 bathes as the training data 
set and 10 batches as the validation data set. Predictions from 
the individual neural networks are combined to give the final 
model predictions. Every individual network has a single 
hidden layer with 3 neurons and was trained using 
Levenberg-Marquardt algorithm with early stopping. 

A comparison between a single neural network and a 
bootstrap aggregated neural network is given in Fig. 4. As 
can be seen from the figure, the performance of the 
aggregated network is better than that of a single network on 
unseen testing data (batches 51 to 60). Table 3 gives the 
mean squared errors (MSE) of the single network and the 
aggregated network. It can be seen from Table 3 that the 
aggregated network performs much better than the single 
network, especially on the unseen testing data. This illustrates 
the superiority of an aggregated network over a single 
network to predict unseen data. 

 

Table 3. MSE of an aggregated network and a single network 

 Single 
network 

Aggregated 
network 

Training and validation data 0.6570 0.5990 

Unseen testing data 14.5509 2.9952 

 

5. RELIABLE OPTIMAL CONTROL BASED ON 
BOOTSTRAP AGGREGATED NEURAL NETWORKS  

It is known that data-based modeling technique work well for 
the range of data that it is trained with. Neural network is not 
any better and it only learns from the examples that it is 
trained with and it might perform very poorly if it is used to 
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predict out of its “familiarity” regime. We only trained our 
network in the region around the nominal optimal control 
profile. Thus when it is used to predict far from this region, it 
will highly probably give misleading results or, put in another 
way, there will probably be a high degree of model-plant 
mismatch. Ant Colony Metaheuristic used for the 
optimization of our model finds the global optimum by 
searching the entire problem domain including regions where 
the neural network model is not very reliable. The end result 
might be obtaining a feeding policy that is “optimal on the 
model” but not “optimal on the process”. This problem can 
be solved using bootstrap aggregated neural networks by 
incorporating model prediction confidence in the 
optimization objective (Zhang, 2004). 
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Fig. 4. Comparison between a single network and an 
aggregated network 

The standard error of ith predicted batch (or sample) is 
estimated as (Zhang, 2004):   
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and );( b
i Wxy  is ith predicted value using bth network and 

B is the number of member networks. The objective function 
is modified by adding an additional term to penalize the 
prediction error. These two objectives can be incorporated by 
weighted sum as follows: 

λσ+−= )()(min ffMU
tVtPJ   (17) 

where λ is constant that indicates the relative scale and 
importance of prediction error to the output. If λ is chosen 
properly, this strategy can ensure that the optimum control 
policy is forced to have large output with high reliability. 

 

6. RESULTS AND DISCUSSIONS 

Now we can use ACO to maximize the output of the neural 
network. Although we based our control strategy on 
aggregated neural networks, we will start by using a single 
neural network and demonstrate its limitations. It, hence, 
becomes clearer why using bootstrap aggregated networks is 
significantly more advantageous. 

Using a single neural network to model the fed-batch reactor 
and using ACOCM to maximize the output, the following 
results were obtained: 

q = (1.9382    0.0133    0.3444    2.8155    0.0705    2.8851
   0.0244 0.2994     2.9437    2.9813) 
PM(tf)V(tf) = 30.0246 
However, when this control policy (i.e. q) was implemented 
on the mechanistic model, the resulting amount of product is 
PM(tf)V(tf)=4.8823, which is very different from the neural 
network prediction. This confirms the earlier statement that 
neural networks perform badly outside its training regime. It 
can be concluded that using a single feed forward neural 
network to model the process is very far from being 
acceptable. In general, implementing a single neural network 
in an optimal control study may well degrade the obtained 
optimal control policy and might cause serious consequences 
if applied in practice. 

Much better results are obtained when using the control 
strategy based on: 

• Aggregated network that intrinsically has better 
generalization ability, i.e. more accurate predictions 
of unseen data. 

• Incorporating the standard error of prediction σ in 
the objective function to ensure that the obtained 
control policy is obtained with high reliability. 

It is important to choose a proper value for λ. Too large value 
might bias the search towards minimizing the standard error 
with minor consideration to whether that will maximize the 
output or not.  Too small value will suppress the penalization 
of ‘bad’ predictions and might result in a control policy that 
is “optimal on the model” but not “optimal on the process”. 

In order to put forward a value for λ, we make use of the 
relative scale of the obtained outputs and the standard 
prediction error. The distribution of output of 60 batches 
(Fig. 5a) has a mean of around 27 while the distribution of σ 
over these batches (Fig. 5b) has mean of approximately 1.4. 
The ratio of the two means is about 20. This suggests using a 
weighting of λ =20 in order to give them equal importance in 
the objective function. Therefore λ is selected as 20. 

The optimization problem given by Eq(17) is solved  using 
the modified ACOCM. The results of optimization are: 

q = (0.3925    0.2897    0.3834    0.5946    0.6557     
 2.5098    0.2942    0.5923     0.8095    0.9089) 
PM(tf)V(tf) = 29.5634 
 

Using this control policy (i.e. q) on the mechanistic model we 
get PM(tf)V(tf)= 30.7590, which is very close to the optimum 
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output using the mechanistic model, 31.7379. This result 
proves the effectiveness and reliability of using the control 
strategy based on aggregated neural networks. The two 
control policies, the one obtained by neural network model 
and that obtained using the mechanistic model, are shown in 
Fig. 6. It can be seen that they are quite close.  
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Fig. 5. Distribution of the output and standard prediction 
error of 60 batches 

0 50 100 150
0

0.5

1

1.5

2

2.5

3

C
on

tro
l P

ol
ic

y 
(q

)

sample

 

 
Using mechanistic model
Using control strategy based on stacked network

 
Fig. 6. Comparison between the optimal control policy using 
mechanistic model and neural network model 

7. CONCLUSIONS 

A reliable on-line re-optimisation control strategy for batch 
processes based on bootstrap aggregated neural network 
models is proposed. In addition to process operation 
objectives, model prediction reliability offered by bootstrap 
aggregated neural networks is incorporated as additional 
optimisation objectives. The proposed batch process optimal 
control approach based on bootstrap aggregated neural 
networks and ant colony optimization is very effective and 
reliable. This was demonstrated on protein secretion reactor, 
which is a typical batch process. The maximum obtained 
output matches that obtained using a strategy based on the 
mechanistic model with an error of only 1%. The main 
motive for this study is the practical difficulties in building 
mechanistic models for complex processes, which prohibits 
the development of optimal control strategies. The presented 

strategy provides an effective and fast solution, which is most 
useful when a full mechanistic model is very costly or 
infeasible. Two versions of ACO for continuous domain were 
studied: ACOCM and CACO. The performance of ACOCM 
was found to be faster than that of CACO. The original 
ACOCM was found to fall into local minima when applied to 
high dimensional problems. This problem was successfully 
remedied by introducing a mechanism similar to mutation in 
GAs. 

REFERENCES 

Bonabeau, E., M. Dorigo, and G. Theraulaz, (1999). Swarm 
Intelligence: From Natural to Artificial Systems. New 
York: Oxford University Press. 

Bonvin, D. (1998). Optimal operation of batch reactors--a 
personal view. Journal of Process Control, 8(5-6), 355-
368. 

Dorigo, M. and L. M. Gambardella (1997). Ant colonies for 
the travelling salesman problem. BioSystems, 43, 73-81. 

Efron, B. (1982). The Jacknife, the Bootstrap and Other 
Resampling Plans. Philadelphia: Society for Industrial 
and Applied Mathematics. 

Luus, R. (1991). Effect of the choices of the final time in 
optimal control of non-linear systems. Can. J. Chem. 
Eng. Res., 30, 1525-1530. 

Mathur, M., S. B. Karale, S. Priye, V. K. Jayaraman, and B. 
D. Kulkarni. (2000). Ant colony approach to continuous 
function optimisation. Ind. Eng. Chem. Res., 39, 3814-
3822.  

Morris, A. J., G. A. Montague, and M. J. Willis (1994). 
Artificial neural networks: studies in process modelling 
and control. Trans. IChemE, 72, 3-19. 

Park, S. and W. F. Ramirez (1988). Optimal production of 
secreted protein in fed-batch reactors. AIChE J., 34, 
1550-1558. 

Socha, K. ACO for continuous and mixed-variable 
optimization. in Workshop on Ant Colony Optimization 
and Swarm Intelligence. 2004. Springer, Berlin, 
Germany: Lecture Notes in Computer Science. 

Tian, Y., J. Zhang, and J. Morris (2002). Optimal control of a 
fed-batch bioreactor based upon an augmented recurrent 
neural network model. Neurocomputing, 48(1-4), 919-
936. 

Zhang, J., A. J. Morris, and E. B. Martin (1998a). Long-term  
prediction models based on mixed order locally recurrent 
neural networks. Comput. Chem. Eng., 22, 1051-1063. 

Zhang, J., A. J. Morris, and E. B. Martin (1998b). Prediction 
of polymer quality in batch polymerisation reactors using 
robust neural networks. Chem. Eng. J., 69, 135-143. 

Zhang, J. (2004). A reliable neural network model based 
optimal control strategy for a batch polymerization 
reactor. Ind. Eng. Chem. Res., 43(4), 1030-1038. 

Zhang, J. (2005). Modelling and optimal control of batch 
processes using recurrent neuro-fuzzy networks. IEEE 
Transactions on Fuzzy Systems, 13(4), 417-427. 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8412


