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Abstract: This paper addresses a multistage stochastic model for the optimal operation of wind farm, 
pumped storage and thermal power plants. The output of the wind farm and the electrical demand are 
considered as two independent stochastic processes. The evolution of these processes over time is modeled 
as a scenario tree. Considering all possible realizations of stochastic process, leads to a huge set of 
scenarios. These scenarios are reduced by a particle swarm optimization based scenario reduction 
algorithm. The scenario tree modeling transforms the cost model to a stochastic model. The stochastic 
model can be used to estimate the operation costs of the hybrid system under the influence of the 
uncertainties. The stochastic model is solved using adaptive particle swarm optimization. 

 

1. INTRODUCTION 

The drastic changes in environment and climate can be 
avoided by replacing fossil energy sources with clean and 
fuel free energy generation. The growing concern for 
environment has asked for rapid developments in wind power 
generation technology. Wind energy has a special importance 
in German energy planning. By 2020, 20% of the power 
consumed in Germany will be supplied by wind generation. 
Due to the stochastic nature of the wind, the output of the 
wind farm can not be predicted accurately. With the 
increased penetration of the wind energy, there will be huge 
fluctuation in the power generation. Therefore storage 
devices such as pumped storage are necessary. The pumped 
storage is used to level the mismatch between power 
generation and demand. They store the excess generation 
from wind farms and also the excess generation by the base 
load generation plants during off-peak periods for later use. 
This will enable efficient utilization of the base-load 
generation units and to smooth the peak loads. The pumped 
storage can also be used to provide reserve during off-peak 
period so that no other unit is committed just for providing 
the reserve. 

This paper presents a particle swarm optimization approach 
for the optimal operation of the thermal, wind and pumped 
storage units under stochastic load and wind generation for 
24 hours planning horizon. The objective is to utilize the total 
wind generation, smooth the peak loads and reduce the 
operation cost of the thermal power plants. Many researchers 
(Edgardo D; Castronuovo, 2004), (G.Caralis; A. Zervos, 
2007) have already estimated the operating costs of such a 
hybrid system. But they have all considered the electrical 
demand and wind generation as deterministic quantities 
which are in real, stochastic. These cost models ignore the 
influence of these stochastic parameters. A minor change of 
these stochastic parameters leads to huge changes in 
operating cost of the power system and may lead to huge 

losses for the utility company. Hence there is a risk involved 
in using such models for planning and operation of the power 
system. In (P. Giorsetto; K. F. Utsurogi ,1983 and R. 
Billinton, H. Chen; R. Chajar, 1996), probabilistic model for 
wind power generation uncertainties were discussed. These 
models develop a cumulative distribution function (CDF) for 
each wind turbine generator (WTG) and then convolute these 
individual CDFs to obtain the output CDF of the wind farm. 
The main disadvantage of these models is their dependency 
on the individual WTGs. This paper models the stochastic 
nature of the wind power generation by the wind farm using 
scenario tree analysis.  

The output power of the wind farm and the deviations of the 
electrical demand cannot be forecasted accurately. The error 
associated with the forecast of these parameters increases 
with time. Hence these parameters are considered as two 
independent random processes. The evolution of these 
random processes which represents the future realizations of 
the uncertainties is modeled as a suitable scenario tree (Kjetil 
Høyland; Stein W. Wallace, 2001). So this tree gives the 
complete information of the uncertainties prevailing in the 
cost model. The better the scenario tree, the better will be the 
stochastic solution for the cost model. A new method is 
proposed to improve the quality of the scenario tree, to 
reduce the modeling error and also to improve the stochastic 
solution. The scenario tree is then embedded into the cost 
model which transforms it into a multistage nonlinear 
stochastic cost model. The aim of this stochastic model is to 
minimize the average operating costs over this scenario tree. 

The main contributions of this paper include 1) significant 
improvements to the scenario reduction algorithm proposed 
in (V.S Pappala; I.Erlich, 2007), 2) model the stochastic 
nature of the wind power generation of the wind farm using 
the forecast error and the confidence interval, 3) evaluate the 
effects of wind power and electrical demand on the operation 
cost of the power system. 
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2. UNCERTAINTY MODELING 

In order to solve the cost model, the underlying stochastic 
electrical demand and wind generation have to be modeled in 
an appropriate form. The uncertainty is assumed to increase 
with time. The increase in uncertainty of electrical demand 
and wind generation are as shown  in  Fig. 1.  The bold  curve  
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Fig. 1. The evolution of electrical demand and wind 
generation uncertainty with time. 

in Fig. 1(a) represents the forecasted electrical demand and 
the shaded area shows the assumed 99% confidence interval. 
The confidence intervals widen as the forecast horizon 
increases. The wind power generation uncertainties also 
follow similar pattern as shown in Fig. 1(b). The confidence 
interval for the electrical demand increase from 0-5% of the 
forecast demand with time whereas the confidence interval 
for the wind generation is 0-15% of the forecast. In order to 
capture the complete stochastic nature of the uncertainties, 
they have to be analyzed at every 15 minutes of a 24 hour 
planning horizon. This leads to a multi-stage scenario tree 
with 96 branching stages. The stochasticity of the 
uncertainties at each time stage is approximated to five 
discrete samples (V.S Pappala; I. Erlich, 2007). This results 
to 596 realizations or scenarios. The cost model can not be 
solved with this huge number of scenarios. So these scenarios 
have to be reduced without losing the information carried by 
the initial scenarios. The currently available scenario 
reduction techniques (N. Gröwe-Kuska; H. Heitsch; W. 
Römisch, 2003 and Heike Brand; Eva Thorin; Christoph 
Weber; 2002) can not handle this problem because they start 
with the initial bulk tree with all possible realizations and 
then reduce the insignificant scenarios. Due to the 
requirement of the initial bulk tree, these methods put a 
restriction on the number of branching stages and the number 
of branches at each time stage of the scenario tree. Hence the 

uncertainty modeling can not capture the complete stochastic 
nature of the random processes. This poor modeling give rise 
to bad stochastic solution. In order to solve this problem a 
new method of scenario reduction technique is proposed. 
This method starts with a fixed number of scenarios and 
explores the entire search space until it finds the best set of 
scenarios. The reduction technique is formulated as an 
optimization problem and is solved using the particle swarm 
optimization method (PSO). 

3. SCENARIO REDUCTION ALGORITHM USING PSO 

PSO is a population based searching algorithm. It consists of 
group of particles called swarm which explore the entire 
search space until it finds the global solution. The particle 
represents a solution to a given problem. The particles fly in 
the entire search space with a certain velocity in search of an 
optimal solution. In the process they try to refine their 
performance by interacting with its neighbouring particles. 
The velocity of the particle is influenced by its previous 
velocity, its previous best performance and also by the 
performance of the best particle in the swarm. The particles 
trace the optimal solution by cooperation and competition 
among the particles. 

For scenario reduction technique, the objective of the 
optimization is not to find the global optimal solution but to 
find a solution that maximizes the fitness of each particle. 
Here each particle represents a scenario. For a scenario tree 
with 96 branching stages, the particle consists of 96 
dimension vector representing the random variable. For ND 
number of random variables, the dimension of the particle is 
96*ND. The process of scenario tree reduction using particle 
swarm optimization is as follows: 

Step1: Generation of initial swarm 
The particles position x and velocity v are randomly 
initialized within the allowable range. Each dimension 
of the position vector is then approximated to its 
corresponding discrete point. The vector representing 
the best performance of the particle (pbest) is 
initialized to the current position x.  

Step2: Evaluate the node probabilities 
Each node of the scenario tree has five successor 
nodes. If any of these successors are missing then the 
probability of the missing successor is added to its 
nearest neighbour. 

Step3: Evaluate the fitness 
The fitness of each particle is the minimum weighted 
Euclidean distance from the other particles in the 
swarm. 

2
1

1

1

2
,, )(

1min)(

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧
−

= ∑
∑

=

=

∈

D

T

p

N

i i

N

j

q
ji

m
ji

D
mNq

m

N

AA

N
particlefitness π   

               (1) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14964



 
 

 

Where Np is the total number of particles in the 
swarm, NT is the total number of branching stages, ND 
is the number of random variables, πm is the total 
Probability of particle “m”, Ni is the normalizing 
factor for the distance corresponding to random 
variable i and Ai,j

m is the wind power output and 
electrical demand corresponding to particle m at stage 
j for i=1 and 2 respectively. For instance, if the 
swarm has six particles of equal probability as in Fig. 
2, the fitness of particle 1 is the shortest distance with 
the remaining five particles in the swarm. Since 
particle 4 happens to be the nearest neighbor to 
particle 1, the fitness of particle 1 is d14. If the fitness 
value is better than pbest, then pbest is replaced with 
the current value. 

2

1 

4 

3 

6 

5 

d16 

d15 
d14 

d12 

d13 

 
Fig. 2. Euclidean distance of particle 1 with the other 
particles in the swarm 

Step4: Update the searching point of each particle 
The nearest neighbor gmin of each particle is 
identified. The particle’s new velocity and position 
are evaluated by using the update equations (2) and 
(3). The standard PSO update equations are slightly 
modified as in (2) so that the particles move apart 
from each other to increase their individual fitness. 
 

))min()()(()1( 2211 jkkjkjkjkjk xgrcxpbestrctwvtv −−−+=+ χ          (2) 
( ) ( ) ( )11 ++=+ tvtxtx jkjkjk            (3) 

 
The particle’s velocity is guided by its previous 
velocity (vjk), its previous best performance (pbestjk) 
and the performance of its nearest neighbor. The 
particle moves in a direction opposite to its nearest 
neighbor (gmink) so as to improve its fitness. If the 
distance from the nearest neighbor happens to be zero 
then the position of the particle is randomly 
initialized. The calculated velocity is then added to 
the current position to obtain the new position for the 
particle. 

Step5: Check for termination condition 
The termination criterion is usually the maximum 
iteration number. If the condition is satisfied then exit 
else go to step 2. 

During the optimization process the particles traverse 
the whole search space to obtain an optimal fitness 
value. Since the fitness value is the distance with the 
other particles, the particles fly so as to move farther 
away from each other. Towards the end of the 

process, the particles are scattered in the whole search 
space with significant distance from its neighbors. 
Since the particles represent the scenarios, we are left 
with only the distinct scenarios. The initial scenario 
tree with 596 scenarios is reduced to 10 scenarios as 
shown in Fig. 3. 
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Fig. 3. Scenario tree for stochastic wind power generation 
and electrical demand generated by PSO for 96 branching 
stages and 5 branches at each stage  

4. COST MODEL 

The hybrid system consists of thermal power plants, pump 
storage devices, nuclear power plant and a wind farm.  

4.1 Thermal Unit 

The fuel cost (Einar Stale Huse; Ivar Wangensteen; Hans 
H.Faanes, 1999) of unit i is a quadratic function of the 
generator output power: 

2
iiiiii pcpbaFC ++=           (4) 

Where ai, bi, ci represent the cost coefficients. The generator 
start-up cost depends on the time the unit has been off prior 
to start up. The start-up cost is given by the following 
exponential cost curve: 
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Where σi, δi are the hot and cold start-up costs, τi the unit 
cooling time constant and Toff,i is the time the unit has been 
off. 

The unit constraints include: 
- The minimum and maximum rated unit capacities  
- Ramp rates 
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- Minimum up/down time limits of the units  
- The initial states of the units must be taken into account 

4.1  Pump Storage 

The constraints for pump storage (Xiaohong Guan; Peter B. 
Luh; Houzhong Yan; Peter Rogan, 1994) are as follows: 

- Pond level dynamics 

(a) Generation mode 
 ( ) gmtPDtPLtPL η/*)()1( −=+           (6) 
(b) Pumping mode 
 ( ) pmtPDtPLtPL η**)()1( −=+           (7) 

- Pond level limits 
( ) maxmin PLtPLPL ≤≤            (8) 

- Initial and final pond level 
( ) 00 PLPL =              (9) 

( ) TPLTPL =            (10) 

- Generation and pumping level constraints 
( ) maxmin

gg PDtPDPD ≤≤          (11) 

( ) maxmin
pp PDtPDPD ≤≤          (12) 

where PL(t) and PL(t+1) are the pond level at the beginning 
and the end of interval t respectively, PD(t) is the power 
generated (positive value) or power used for pumping 
(negative value) by pumped storage unit at time t, ηp and ηg 
are the pumping and generation efficiencies respectively, 
PLmin and PLmax are the minimum and maximum pond level 
limits, PL0 and PLT are initial and final pond levels, PDg

min 
and PDg

max are the minimum and maximum generation levels 
of pump storage unit. 

The overall objective function is to minimize the operation 
cost (OC) of the thermal units. 
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Apart from the unit constraints the cost model is subjected to 
a set of system constraints as shown below: 

- System hourly power balance. Total power generation 
must equal the load demand, PD, in all time steps 

( ) ( ) ( )tPtWGtPDp D
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i
ti =++∑

=1
,         ∀t∈T                 (14) 

- Spinning reserve requirements R at each time step must 
be met. 
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Where ui,t is the commitment of unit i at time t, WG(t) is the 
wind power generation at time t and m is the time step 
duration.  

5. STOCHASTIC COST MODEL 

Once the uncertainties are modeled as a scenario tree, the cost 
model has to be transformed to a stochastic multistage model 
(Werner Römisch; Rüdiger Schultz; 2001). The scenario tree 
formulation of the objective function is as shown below: 
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Where n corresponds to a node of the scenario tree, πn is the 
node probability. The unit and system constraints are also 
transformed into a similar structure. The resulting stochastic 
model is solved using stochastic programming approach. The 
objective of the multistage stochastic optimization process is 
to minimize the expectation of the daily operating cost (OC) 
subjected to the unit and system constraints. An adaptive 
particle swarm optimization (APSO) algorithm (V.S Pappala; 
M.Wilch; S.N.Singh; I.Erlich, 2007) is used for solving the 
stochastic model. No parameter tuning is required for this 
algorithm. It can find the best parameters on its own and 
hence is independent of the problem. The swarm size is also 
adaptive. The optimal number of particles required to explore 
the search space is determined by the algorithm itself. Hence, 
few iterations are required for the optimization. The 
algorithm is therefore fast and robust. 

6. RESULTS OF THE OPTIMIZATION 

The cost model consists of four thermal power plants 
(2*1000MW+2*500MW), one nuclear power plant 
(5000MW) serving as the base load generation, wind farm 
(326 MW) and six pump storage (PS) units 
(pump:6*190MW, Generation:6*175MW) serving a mean 
load of 6523MW. The objective of the optimization problem 
is to determine the commitment, the start-up, shutdown times 
and the power output levels of all the units at each time step 
of 15 minutes, over a scheduling period of 24 hours, so that 
the total operating costs are minimized subjected to system 
and unit operating constraints.  The cost of nuclear power is 
assumed to be 0.4 cents/kWh. The cost model is solved using 
adaptive particle swarm optimization. The demand curves 
and wind power generation data is obtained from (web 
download center, EnBW Energie Baden-Württemberg, 
Germany). The reserve capacity is assumed to be 5% of the 
electrical demand. The cost coefficients for the 1000MW unit 
are ai=1500, bi=27.74, ci= 0.00712, σi=7500, δi=7500, τi=10 
and for 500MW unit are ai=750, bi=39.1, ci=0.0097, σi=5500, 
δi=5500, τi=5 .The pumping and generation efficiency of the 
pumped storage is assumed to be 0.8448 and 0.871 
respectively. 

The results of the deterministic optimization are shown in 
Fig. 4, 5 and Fig. 6. Fig. 4(a) shows the power generated by 
the wind farm. Fig. 4(b) shows the scheduling of the pump 
storage units. In Fig. 4(c) the peak electrical demand 
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observed to be from 10:00a.m. to 2:00p.m. amounts to a 
maximum of 7800MW. The use of pump storage reduces this 
peak demand. This is shown by the curve “electrical demand 
with PS”. The power used by the pump storage is added to 
the electrical demand to account for the net electrical demand 
of the power system. When the pump storage operates in 
generation mode, it is supplying a part of the demand 
whereas when it is in pumping mode, it adds an additional 
demand which has to be supplied by the conventional units. 
During the peak hours the pump storage operates in 
generation mode to reduce the peak demand which amount to 
a maximum of 7500MW. Fig. 4(d) depicts the power 
delivered  by  the  thermal and nuclear units.  The presence of  
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Fig. 4. Optimal schedule generated by APSO 

pump storage and wind farm in the power system reduces the 
net power during the peak hours to be supplied by the 
conventional units by nearly 8%. The pumping and 
generation modes of the pump storage are optimally 
controlled by APSO so as to reduce the peaks in the demand 
distribution. Usually, the power system operator has to switch 
on additional units to supply the peak demand for a few hours 
and then run these units in minimum generation levels to 
satisfy the minimum up time constraint. The use of pump 
storage eliminates this additional switching of the units and 

hence reduces the operation cost of the power system. In Fig. 
5 the reserve capacity and the contribution by the pump unit 
and thermal plant are shown. During the peak load period, no 
additional thermal unit is switched on only to supply the 
reserve. The pump storage unit also supports the system by 
supplying reserve power. This reduces the operating costs of 
the whole system. Fig. 6 shows the generation by the four 
thermal units. Unit1 (1000MW) is always “on” to supply the 
load whereas the other units are optimally scheduled to meet 
the demand and reserve constraints. Unit3 and unit4 each of 
500MW capacity have high fuel costs compared to the larger 
units. Hence these units have to be optimally utilized to 
reduce the overall operation costs. This ensures that unit3 to 
be “off” all the time and unit4 is used only for 14 hours. The 
overall operating cost amounts to 1,546,701euro. These 
results correspond to the deterministic cost model. The effect 
of uncertainties on the cost model can only be realized by 
using the stochastic model. Fifty scenarios are considered for 
solving the stochastic cost model. The operating costs of the 
stochastic model with a common unit commitment schedule 
for the whole set of scenarios amounts to 1,807,717 euro. The 
solution provided by the deterministic model is optimal only 
to a particular scenario and is not optimal for the scenario that  
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may actually occur. The solution obtained by the stochastic 
model is optimal over all the possible scenarios. The 
stochastic solution may not be a global optimal solution to 
the individual scenarios but it a robust solution over all the 
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scenarios. Hence the expectation of the operating costs 
corresponding to all these scenarios is high compared to the 
deterministic cost model. However the risk involved in using 
this model for the operation and planning is quite low and is 
therefore more preferred than the deterministic model. By 
defining a common unit commitment schedule for all 
possible realizations of the uncertainties will help the power 
system operator to decide the operation of the generators one 
day in advance irrespective of the evolution of the 
uncertainties. This enables better planning and operation of 
the power system. 

6. CONCLUSION 

This paper presented a solution for a day-ahead operation of a 
system with thermal, nuclear, wind and pump storage units 
considering the demand and wind generation uncertainties. A 
new method for modeling the uncertainties in the cost model 
has been successfully implemented using particle swarm 
optimization. The improved update equations will enhance 
PSO to generate better quality scenario trees. 

 The nonlinear mixed integer multistage stochastic cost 
model was solved using the adaptive particle swarm 
optimization. The robust solution provided by APSO will 
enable power system operator to plan the operation of the 
power system under the influence of demand and wind 
generation uncertainties. Although the costs involved with 
the resulting stochastic model happens to be high, this model 
provides low risk scheduling solution to the power system. 
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