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Abstract: The present paper proposes an algorithm for finding the stability margins and cross
over frequencies for an uncertain fractional-order system using interval constraint propagation
technique. It is first shown that the problem of finding the stability margins and crossover
frequencies can be formulated as a interval constraint satisfaction problem and then solved
using branch and prune algorithm. The algorithm guarantees that the stability margins and the
crossover frequencies are computed to prescribed accuracy and that theses values are reliable
in the face of all kinds of computational errors. The other advantage of the method is that the
stability margins and crossover frequencies can be computed without the need of frequency
response plots or any kind of approximations. Two examples of uncertain fractional-order
systems are taken from the literature and their stability margins and crossover frequencies
are computed using the proposed algorithm.

Keywords: Constraint satisfaction problems, Control system analysis, Fractional-order
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1. INTRODUCTION

The gain and phase margins are popularly used as stability
specifications in classical methods of analysis and synthesis
of linear control systems. These specifications basically
relate to the maximum allowable variation in the open
loop gain or phase of the system to conserve closed
loop stability. Theses margins may be extracted from the
frequency response plots or computed directly.

For fractional order systems, available methods and tools
(such as those available in Grace et al. (2002)) cannot
be readily applied, owing to the non-rational nature of
these transfer functions. Further for uncertain fractional-
order systems, no methods are currently available in the
literature. In this paper, we therefore present an algorithm
to compute the stability margins and cross over frequen-
cies for uncertain fractional-order systems using interval
constraint propagation. The proposed method algorithm
determines the stability margins directly without the need
of the frequency response plots, nor does it involve any
approximations.

The proposed algorithm is applicable to a larger class of
uncertain fractional-order transfer functions, whose mag-
nitude and phase functions are bounded and continuous
in frequency. Subject to these assumptions, there is no re-
striction on the structure or form of the transfer function.
Thus, the proposed algorithm is applicable to quite general
nonlinear parametric dependencies, where the coefficients

and powers of the fractional-order systems can be nonlin-
ear functions of the uncertain parameters. The proposed
algorithm has several key features - the computed margins
and crossover frequencies are reliable and accurate (to a
user specified accuracy), multiple margins and crossover
frequencies can be detected, and no approximation of the
fractional-order transfer function is required.

The rest of the paper is organised as follows: Section-
2 deals with the background of fractional-order systems
and interval arithmetic, and interval constraint process-
ing. The methodology followed in proposed algorithm is
presented in the Section-3. In Section-4, we give the pro-
posed algorithm for the computation of stability margins
and crossover frequencies. Section-5 demonstrates the pro-
posed algorithm on two examples taken from the literature
and Section-6 gives the conclusions.

2. BACKGROUND

2.1 Fractional-order Systems

A fractional-order transfer function is of the form

P (s) =
bmsβm + ... + b1s

β1 + b0s
β0

ansαm + ... + a1sα1 + a0sα0

(1)

as given by Podlubny (1998), where αi, βj are positive
real numbers and ai, bj , i = 0, 1, ..., n, j = 0, 1, ...,m are
arbitrary real coefficients. In the time domain, this transfer
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function can be represented by a fractional-order differen-
tial equation. Several researchers have shown that certain
phenomena, especially those governed by non-integer or-
der physical laws, can be described more accurately by
fractional-order differential equations; for example trans-
mission lines given in Wang (1987), electrical noises given
in Mandelbrot (1967), and diffusion of heat into a semi-
infinite solid given in Petras (1999), etc.

For an uncertain fractional-order system the coefficients
and the powers in the transfer function need not be fixed
real numbers but are intervals of real numbers.

2.2 Interval Arithmetic

The key idea behind interval arithmetic as given by Moore
(1966) is the approximation of real numbers by intervals
to quantify the errors introduced with finite precision
arithmetic. In addition, interval computations provide an
appropriate framework to deal with uncertain data.

A closed interval x = [x, x], with x, x ∈ R can be
regarded as the set of real numbers {r|x ≤ r ≤ x}, or
as an approximation of some real numbers lying within
that set. Instead of using a single floating-point number
to approximate a real, interval arithmetic encloses the
real number within a closed interval having (in general)
floating-point bounds. An interval vector x = (x1, ...,xn)T

with components xk = [xk, xk] is called as a box x. I(x)
is the set of all boxes contained in x. The general results
of interval arithmetic like natural inclusion function, hull,
union, projection, width of an interval w(x) etc., can be
found in the book by Moore (1966).

2.3 Interval Constraint Processing

Numerical constraint satisfaction problems accept as input
only problems represented by exact numerical values and
correspondingly produce only crisp solutions as output.
This limitation can be removed by implementing gener-
alized constraint propagation schemes based on interval
arithmetic instead of conventional arithmetic. By using
intervals instead of exact values, we may express inexact
numerical constraints in a well-defined way and compute
necessary conditions for consistency in inconsistent situa-
tions.

An interval constraint satisfaction problem (ICSP) as
given by Hyvonen (1992) is composed of

1. A set of real valued variables, e.g., v = {v1, ..., vn};

2. A set of interval domains of the variables, e.g., x =
{x1, ...xn};

3. A set of constraints, e.g., c = {c1, ..., cm} over the given
set of variables.

The problem is to find in the initial box x1 × ... × xn all
the consistent values with respect to all constraints.

A variable vi ← xi is consistent if and only if each
interpretation vi ← x ∈ xi, can be satisfied with respect
to all constraints by some extension:

∀x ∈ xi ∃ {v1 ← x1 ∈ x1, ..., vi ← x, ..., vm ← xm ∈ xm} :
c1, ..., cm are satisfied.

The set of variables of the constraint ci is denoted by Vci

There are two steps in solving an ICSP, constraint prop-
agation and constraint branching. The basic idea of con-
straint propagation algorithms (also called filtering or nar-
rowing or consistency algorithms or narrowing operators)
consists of removing, from the domains associated to the
constraint variables, inconsistent values that can never be
part of the solution. This process reduces significantly the
search tree and possibly the computational effort to find
a solution if one exists or to demonstrate that there is no
solution. In general, the results are propagated through
the whole constraint set, and the process is repeated until
a stable set is obtained. Research in the area of solving
interval constraint satisfaction problems (see, for example,
Benhamou et al. (1999)) is devoted to finding correct and
(near) optimal interval propagation techniques that can be
efficiently implemented. A constraint narrowing algorithm
transforms the domains of those variables involved in it
into tighter intervals such that:

1. Resulting intervals are always included in the original
ones (contractance property).

2. All values in the original intervals verifying the associ-
ated constraint of the narrowing operator, belong to the
resulting intervals (soundness or correctness).

3. The subset interval relation is conserved by the trans-
formation (monotonicity).

Well known examples of constraint narrowing operators
are hull and box consistency (Benhamou et al. (1999))
and kBConsistency operators (Lhomme (1993)). In our
problem, we make use of efficient implementation of hull
consistency known as HC4 as the the narrowing operator.
This is described below.

HC4 filter: The HC4 filter was proposed by Benhamou
et al. (1999). Inputs to the HC4 filter are the constraint
in user form (i.e. without decomposing it in several equa-
tions) and the set of interval domains (box). The algorithm
efficiently computes an interval extension of the equation,
narrowing intervals of the variables involved. Inside the
HC4 filter the input equation is represented as an attribute
tree where the root node is a p-ary relation symbol, and
terms in the equation form sub-trees rooted at nodes
containing either a variable, a constant or an operation
symbol.

The HC4 filter works in two phases called forward evalu-
ation and backward propagation. The forward phase is a
tree traversal going from the leaves to the root, evaluating
at each node the natural interval extension of that sub-
term of the constraint. The backward phase traverses the
tree from the root to the leaves, projecting on each node
the effects of interval narrowing already performed on its
parent node. In the backward propagation phase, an inter-
val may become empty. When this happens the constraint
is inconsistent with respect to the initial domains.

Until now we have been dealing with the first step in
solving the ICSP, i.e., constraint propagation. Constraint
propagation algorithms alone are not sufficient for solving
an ICSP, that is to say, they do not eliminate all the non-
solution elements from the domains. As a consequence, it
is necessary to employ some additional strategy to solve
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it. One complementary method is the so-called constraint
branching that divides the variable domains to construct
new sub-problems, i.e., branches in the search tree on
which constraint propagation is reactivated. The process
is also called as splitting or sub-division process.

In the present paper, we address the problem of finding the
stability margins and crossover frequencies as an ICSP.

In the next section we describe the method used to finding
the stability margins and crossover frequencies.

3. METHODOLOGY

Consider a linear fractional-order system represented by
the transfer function p(s, q), where s is the Laplace variable
and q is the vector of system parameters. Let ω denote
the frequency. Define the magnitude (in decibels, dB) and
phase (in degrees) functions of p(s, q) as

fmag(ω, q) = 20log10|p(s = jω, q)|

fphase(ω, q) = ∠p(s = jω, q)

f(ω, q) = 180 + fphase(ω, q)

Suppose that there is parametric uncertainty in the system
such that the parameter vector q varies over a bounding
box q0 ∈ I(Rl). The parametric uncertainty gives rise to
an uncertain linear fractional-order system. Define the set
of Ωpcf of the phase cross over frequencies and the set GM
of gain margins as

Ωpcf = {ω : f(ω, q) = 0, q ∈ q0}

GM = {−fmag(ω, q) : q ∈ q0, ω ∈ Ωpcf}

As we know that the gain margin is evaluated at the phase
cross over frequency, i.e., it is function evaluation at the
phase crossover frequency. So we can have the expression
for phase crossover frequency as the only constraint and
evaluate the gain margin at the computed phase crossover
frequency. The other method is to pose expression for GM
as one more constraint with initial search domain for GM
as (−∞,+∞), where−∞ and +∞ are the smallest and the
largest machine representable numbers in IEEE standard
for binary floating-point arithmetic. The later is adopted
in the present work.

Further, define the set Ωgcf of gain crossover frequencies
and the set PM of phase margins as

Ωgcf = {ω : fmag(ω, q) = 0 dB, q ∈ q0}

PM = {f(ω, q) : q ∈ q0 ω ∈ Ωgcf}

As we know that the phase margin is evaluated at the gain
cross over frequency, i.e., it is function evaluation at the
gain crossover frequency. So we can have the expression
for gain crossover frequency as the only constraint and
evaluate the phase margin at the computed gain crossover
frequency. The other method is to pose expression for PM
as one more constraint with initial search domain for PM
as [−180,+180], The later is adopted in the present work.

The problem of finding the stability margins and crossover
frequencies is formulated as an ICSP. There are actually
two sub-problems :

1. Finding the Ωpcf and GM

2. Finding the Ωgcf and PM.

Each sub-problem is an ICSP in itself.

4. PROPOSED ALGORITHM

4.1 Gain margins and Phase Crossover frequencies

The algorithm for computation of gain margins and phase
crossover frequencies is as follows:

Inputs: Expression for the magnitude function, phase
function and phase crossover function, the parameter
vector q, the initial uncertain interval vector q0, and
accuracy tolerance parameter ǫ for the phase crossover
frequency and gain margin.

Output: The set GM of all gain margins along with the
set Ωpcf of all the phase crossover frequencies, computed
to the prescribed accuracy tolerance ǫ.

BEGIN Algorithm

Initialization part

(1) Form the variable set comprising v = {q,GM,Ω} for
the ICSP.

(2) Construct the initial search domain (box) from Ω0

that encloses the phase crossover frequency set Ωpcf ,

GM0 that encloses gain margin set GM and q0. So
the initial search domain or box x0 = (Ω0,GM0,q0)

(3) From the expression for the magnitude and phase
functions, construct the natural inclusion functions
for the phase crossover frequency and gain margin
which are the constraints c1 and c2 of the ICSP:
c← {c1, c2}

(4) Initialize the solution list Lsol ← {} and the working
list L ← x0

Iterative part

(5) WHILE L 6= {} DO

(6) Extract x from L

(7) s← c

(8) WHILE s 6= {} AND x 6= {}

(9) Extract ci from s

(10) Narrow the box x using HC4 filter explained

in the Section 2.3 to x
′

.

(11) IF x 6= x
′

THEN

(12) s← s ∪ {cj | ∃vk ∈ Vcj
∧ xk 6= x

′

k
}

(Add to the set s all the constraints
containing the variables whose search
domains are narrowed)

(13) x← x
′

(14) ELSE
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(15) s← s \ {ci}

(16) ENDIF

(17) ENDWHILE

(18) IF x 6= {} THEN

(19) IF w(x) ≤ ǫ THEN

(20) Lsol ← Lsol ∪ x

(21) L ← L \ {x}

(22) ELSE

(23) Subdivide the box x along the variable
whose width is the largest into x1 and x2.

(24) L ← L ∪ x1 ∪ x2

(25) ENDIF

(26) ENDIF

(27) ENDWHILE

Termination part

(28) Construct the sets

Ωpcf ←
⋃

Lsol

Ω(i); GM←
⋃

Lsol

GM(i)

Output the sets Ωpcf and GM and EXIT.

END Algorithm

The list Lsol contains the set of the gain margins GM and
the phase crossover frequencies Ωpcf in the given search
domain.

4.2 Theoretical properties

The properties of the algorithm concerning the reliability,
accuracy, enclosure of the actual results, ability to locate
multiple margins and crossover frequencies, etc., readily
follow from the basics of interval analysis as given in
Hansen and Walster (2005).

The maximum error in the computed crossover frequen-
cies or margins cannot be more than the accuracy toler-
ance ǫ. The procedure ensures that we do not miss out
any crossover frequency and helps in identifying multiple
crossover frequencies in the given search domain.

4.3 Phase margins

To compute the set PM of phase margins and set Ωgcf of
gain crossover frequencies, we can use the above proposed
algorithm with obvious changes. Then, all the results of
the previous subsection carry over to this case.

5. ILLUSTRATIVE EXAMPLES

We demonstrate the proposed method on two examples.
The examples are executed on an Intel(R) Core2 2.4GHz
computer with 2GB of RAM, running Linux Fedora Core-
7. The interval solver RealPaver developed by Granvilliers
and Benhamou (2006) is used to solve both the examples.
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Fig. 1. Bode Plots for the non-inductive cable system
in Example 3.1. From these plots, the margins and
crossover frequencies are extracted to verify the re-
sults of the proposed algorithm

Example 1. Consider the fractional-order model of a non-
inductive cable system described by Bonnet and Jonathan
(2000)

p(s) =
e−a

√
s

s
, a = 1

The range and domain accuracy tolerances are specified as
0.01.

The proposed algorithm finds the gain margin and phase
margin as

GM = [27.5000, 27.5000], Ωpcf = [4.9348, 4.9348]

in 0.25sec, and the phase margin and gain crossover
frequency as

PM = [58.7500, 58.7500], Ωgcf = [0.5828, 0.5828]

in less than 1ms.

The results of the proposed algorithm are compared with
those obtained from Bode plots shown in Fig 1. By
zooming into the Bode plots, we find the following:

GM = 27.5, Ωpcf = 4.95

PM = 58.75, Ωgcf = 0.58

which agree well with those of the proposed algorithm.

Example 2. Consider the fractional-order transfer func-
tion of the gas turbine model obtained through identifica-
tion given in Deshpande (2006) is

p(s) =
b1

a1sα1 + a2sα2 + 1

where, the coefficients and powers of s vary over the
following interval

b1 ∈ [103.9705, 110.9238]; a1 ∈ [0.00734, 0.0130]

a2 ∈ [0.1356, 0.1818]; α1 ∈ [1.6062, 1.6807]

α2 ∈ [0.7089, 0.8421]

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14275



10
−1

10
0

10
1

10
2

10
3

−40

−20

0

20

40

60

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

M
ag

n
it
u
d
e

(d
B

)

Frequency (rad/sec)

Frequency (rad/sec)

P
h
as

e
(d

eg
)

Fig. 2. Bode Plots for the uncertain fractional order gas
turbine plant. From these plots, the results of the
proposed algorithm can be verified.

The range and domain accuracy tolerances are specified as
0.01.

The proposed algorithm finds the gain margin and phase
margin as

PM = [32.59, 46.91], Ωgcf = [199.5262, 407.3803]

in 1024 seconds. As there are no phase crossover frequen-
cies in this example, the proposed algorithm returns an
empty solution set Ωpcf .

The results are cross-checked with the Bode plots obtained
using the gridding method based on 32 plants. The Bode
plots are shown in Fig 2. By zooming into the Bode plots,
we find that the values computed using the algorithm agree
with that of the Bode plot.

6. CONCLUSIONS

The proposed algorithm for stability margins and crossover
frequencies meets an important requirement in the area
of uncertain fractional-order control systems. The pro-
posed algorithm guarantees that the stability margins and
crossover frequencies are computed to a prescribed accu-
racy, and that these values are reliable in face of all kinds
of computational errors. The algorithm does not require
any approximation of fractional-order terms.

The algorithm is demonstrated on two examples. Besides
being accurate and reliable, the algorithm is also com-
putationally efficient in that it is able to generate in a
few minutes, results of required accuracy for up to five
uncertain variables. The results are verified with the Bode
plots of the both the example problems considered.
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