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Abstract: In this paper we study H∞ tracking problems with preview by output feedback
for linear systems with impulsive effects and the sampled-observation on the finite and infinite
time interval. We consider the problems that the reference signals are previewed in a fixed time
interval and known a priori over a whole time interval, and present feedback control laws for
the H∞ tracking problems. Our theory can be also applied into the sampled-control system with
the control input realized through a zero-order hold and the sampled-observation.

1. INTRODUCTION

It is well known that, for the design of tracking control
systems, the preview information of reference signals is
very useful for improving the performance of the closed-
loop systems, and recently much work has been done for
preview control systems. Considering the effect of mod-
elling uncertainties or disturbance is also very important
on preview control theory. U. Shaked et al. have stud-
ied the H∞ tracking theory with preview for continuous-
and discrete-time systems by the game theoretic approach
([1][2][3][4][8][9]).

Control theory for linear systems with impulsive effects (or
linear jump systems), which contain linear continuous and
discrete time systems, can be widely applied, for example,
to mechanical systems, ecosystems, chemical processes,
finantial engineering and so on. It has been reseached in
detail by A. Ichikawa and H. Katayama ([6]). Their theory
can be also applied into the sampled-data control systems
with the control input realized through a zero-order hold
and the sampled-observation ([5]).

In this paper we study the H∞ tracking problems with
preview by output feedback for linear systems with im-
pulsive effects (or linear jump systems). Our systems are
described by the ordinary differential equations with im-
pulsive effects and the sampled-observation. We consider
two different tracking problems according to the preview
lengths and give the control strategies for them respec-
tively. Our theory can be applied into the control systems
with the control input realized through a zero-order hold
and the sampled-observation. Our theory can be also easily
reduced to the case that only the preview information of
discrete reference signals are available.

2. PROBLEM FORMULATION

Consider the following linear system with impulsive effects.

ẋ(t) = A(t)x(t) + B1(t)w(t) + B3(t)rc(t), t �= kτ,

x(0) = x0

x(kτ+) = Ad(k)x(kτ) + B2d(k)u(k) + B3d(k)rd(k)

zc(t) = C1(t)x(t) + D13(t)rc(t), t �= kτ (1)

zd(k) = C1d(k)x(kτ) + D12d(k)u(k) + D13d(k)rd(k)

y(k) = C2(k)x(kτ) + D21(k)wd(k) + v(k)

where x ∈ Rn is the state, w ∈ Rp and wd ∈ Rpd are
the exogenous disturbances, v ∈ Rk is the measurement
noise, u ∈ Rm is the control input, y ∈ Rk is the
measured output, zc ∈ Rkc and zd ∈ Rkd are the
controlled outputs, rc(t) ∈ Rrc and rd(k) ∈ Rrd are
known or mesurable reference signals, x0 is an unknown
initial state. We assume that all matrices are of compatible
dimensions. Throughout this paper the dependence of the
system matrices on t or k will be omitted for the sake of
notation simplification.

The H∞ tracking problems we address in this paper for
the system (1) are to design control law u(·)∈l2[0, N ]
over the finite horizon [0, T ], Nτ < T < (N + 1)τ
using the information available on the known parts of the
reference signals rc(t) and rd(k) and minimizing the sum
of the energy of zc(t) and zd(k), for the worst case of the

initial condition x0, the disturbances w(t)∈L̃2([0, T ];Rp)

and wd(k)∈l̃2([0, N ];Rpd). We denote by L̃2([0, T ];Rk)

and l̃2([0, N ];Rkd) the space of nonanticipative signals.
Considering the average of the performance indices over
the statistics of the unknown parts of rc and rd, we define
the following two performance indices.

JT (x0, u, w, rc, rd) = −γ2x′

0R
−1x0

+











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











ER̄s
{‖zc(s)‖

2}ds

+

N
∑

k=0

ER̄k
{‖zd(k)‖2} − γ2‖w‖2

2 (2)

and

JvT (x0, u, w,wd, v, rc, rd)
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:= JT (x0, u, w, rc, rd) − γ2
[

‖wd‖
2
2 + ‖v‖2

2

]

(3)

where Nτ < T < (N + 1)τ , R = R′ > O is a given
weighting matrix for the initial state, ER̄s

and ER̄k
mean

expectations over R̄s+hτ and R̄k+h, h is the preview length
of rc(t) and rd(k), and R̄s and R̄j denote the future
information on rc and rd at time s and jτ respectively,
i.e., R̄s := {rc(l); s < l ≤ T } and R̄j := {ri; j < i ≤ N}.

We consider two different tracking problems according to
the information structures (preview lengths) of rc and rd

as follows.
Case a) H∞ Fixed-Preview Tracking:
In this case, it is assumed that at the current time t (kτ+ ≤
t ≤ (k +1)τ), rc(s) is known for s ≤ min(T, s+hτ) and at
the time kτ , rd(i) is known for i ≤ min(N, k + h), where
h is the preview length.
Case b) H∞ Tracking of Noncausal {rc(t) and rd(k)}:
In this case, the signals {rc(t)} and {rd(k)} are assumed to
be known a priori for the whole time intervals t ∈ [0+, T ]
and k ∈ [0, N ].

In order to solve these problems, we formulate the fol-
lowing differential game problems for the system (1), the
performance indices (2) and (3).
The H∞ Tracking Problem by State Feedback:
Find {u∗}, {w∗} and x∗

0 satisfying the following (saddle
point) condition:

JT (x0, u
∗, w, rc, rd)

≤ JT (x∗

0, u
∗, w∗, rc, rd)

≤ JT (x∗

0, u, w∗, rc, rd)

where the control strategies u∗(k), 0 ≤ k ≤ N , are based
on the current state x(k) and the information Rs+hτ :=
{rc(l); 0 < l ≤ s + hτ} and Rk+h := {rd(i); 0 < i ≤ k + h}
(0 ≤ h ≤ N).

The H∞ Tracking Problem by Output Feedback:
Find {u∗}, {w∗}, {w∗

d}, {v
∗} and x∗

0 satisfying the follow-
ing (saddle point) condition:

JvT (x0, u
∗, w,wd, v, rc, rd)

≤ JvT (x∗

0, u
∗, w∗, w∗

d, v∗, rc, rd)

≤ JvT (x∗

0, u, w∗, w∗

d, v∗, rc, rd)

where the control strategies u∗(k), 0 ≤ k ≤ N , are based
on the observable output y(k) and the information Rs+hτ

and Rk+h with 0 ≤ h ≤ N .

3. H∞ TRACKING CONTROLLERS BY STATE
FEEDBACK

In this section we present the theory of H∞ tracking with
preview by state feedback. We consider the system (1) and
assume the following standard conditions.

A1: D′

12dD12d > O, D′

12dC1d = O, D′

12dD13d = O

Now we consider the following Riccati equation with jump
parts.

Ẋ + A′X + XA + C′

1C1

+
1

γ2
XB1B

′

1X = O, t �= kτ (4)

X(kτ−) − [A′

dX(kτ)Ad + C′

1dC1d − A′

dX(kτ)Bd

×T−1
2 (k)B′

dX(kτ)Ad] = O, k = 0, 1, · · · (5)

where T2(k) = D′

12dD12d + B′

dX(kτ)Bd.

We obtain the following saddle point strategy for our game
problem.

Proposition 3.1. ([7]) Consider the system (1) and the
performance index (2), and suppose A1. Then the H∞

Tracking Problem is solvable by State Feedback if
and only if there exists a matrix X(t) > O satisfying the
conditions X(0−) < γ2R−1 and X(T ) = O such that the
Riccati equation (4)(5) holds over [0, T ]. A saddle point
strategy is given by

x∗

0 = [γ2R−1 − X(0−)]−1θ(0)

w∗ =
1

γ2
B′

1(Xx + θ)

u∗(k) = −T−1
2 (k)B′

d

×[X(kτ)(Adx(kτ) + B3drd(k)) + θc(kτ+)].

θ(t), t ∈ [0, T ], satisfies







θ̇(t) = −Ā′(t)θ(t) + B̄(t)rc(t), t �= kτ

θ(kτ) = Ā′

d(k)θ(kτ+) + B̄d(k)rd(k)
θ(T ) = 0

(6)

where

Ā = A +
1

γ2
B1B

′

1X,

B̄ = −(XB3 + C′

1D13),

Ād(k) = [In − BdT
−1
2 (k)B′

dX(kτ)]Ad,

B̄d(k) = A′

dX(kτ)[In − BdT
−1
2 (k)B′

dX(kτ)]B3d

+C ′

1dD13d,

and θc(t) is the ’causal’ part of θ(·) at time t. This θc is
the expected value of θ over R̄s and R̄k and given by



















θ̇c(s) = −Ā′(s)θc(s) + B̄(s)rc(s), s �= kτ
t ≤ s ≤ tf

θc(jτ) = Ā′

d(j)θc(jτ
+) + B̄d(j)rd(j),

k < j ≤ kf (kf τ < tf < (kf + 1)τ)
θc(tf ) = 0

(7)

where, for kτ+ ≤ t ≤ (k + 1)τ ,

{

tf = t + hτ and kf = k + h if (k + h)τ < T
tf = T and kf = N if (k + h)τ ≥ T.

Moreover, the value of the game is

JT (x∗

0, u
∗, w∗, rc, rd)

=

N
∑

k=0

ER̄k
{‖T−1

2 (k)B′

dθ1(kτ+)‖2
T2(k)}

+J̄c(rc) + J̄d(rd) (8)

where θ1(t) = θ(t) − θc(t), t ∈ [0, T ],

J̄c(rc) =











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











RR̄s
{‖D3rc‖

2

+γ−2‖B′

1θ‖
2 + 2θ′B3rc}ds, (9)
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J̄d(rd) = γ2ER̄0
{‖θ(0−)‖2

P0
}

+

N
∑

k=0

ER̄k
{−‖T−1

2 (k)B′

dθ(kτ+)‖2
T2(k) + ‖D13drd(k)‖2

+r′d(k)B′

3dX(kτ)[In − BdT
−1
2 (k)B′

dX(kτ)]B3drd(k)

+2θ′(kτ+)[In − T−1
2 (k)B′

dX(kτ)]B3drd(k)} (10)

and P0 = [R−1 − γ−2X(0−)]−1.

4. H∞ TRACKING WITH PREVIEW BY OUTPUT
FEEDBACK

In this section, utilizing the result in the previous section,
we present the solution of the H∞ tracking problems by
output feedback for the system (1) and the design method
of output feedback controllers for these problems. For the
system (1), we assume the following standard condition in
addition to A1.

A2: B′

dD21 = O

Introducing

ū(k) = u(k) + T−1
2 (k)B′

d[X(kτ)B3drd(k) + θ(kτ+)]

and

w̄ = w − γ−2B′

1(Xx + θ),

and using the Riccati equation (4) with the jump parts (5)
and the terminal condition X(T ) = O, the performance
index JvT can be rewrite as

JvT (x0, ū, w̄, wd, v, rc, rd)

=











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











ER̄s
{−γ2‖w̄‖2}ds

+

N
∑

k=0

ER̄k
{‖ū(k) + T−1

2 (k)B′

dX(kτ)Adx(kτ)‖2
T2(k)}

+J̄c(rc) + J̄d(rd) − γ2
[

‖wd‖
2
2 + ‖v‖2

2

]

−γ2ER̄0
{‖x0 − x̂0‖

2
P−1

0

} (11)

where P0 = [R−1 − γ−2X(0−)]−1 and x̂0 = γ−2P0θ(0).
Therefore, our output feedback problem can be reduced
the problem to find the maximizing x0, w̄, wd and v, and
the minimizing ū(k) for the performance index (11). Using
the above ū(k) and w̄, we can rewrite the system dynamics
as follows.

ẋ = ¯̄Ax + B1w̄ + r̄c, t �= kτ, x(0) = x0

x(kτ+) = Adx(kτ) + Bdū(k) + r̄d

where ¯̄A = A+ 1
γ2 B1B

′

1X , r̄c = B3rc + 1
γ2 B1B

′

1θ and r̄d =

B3drd(k)−BdT
−1
2 (k)B′

d[X(kτ)B3drd(k)+θ(kτ+)]. For this
system, we consider the following type of controller.

˙̂x = ¯̄Ax̂ + r̄c, t �= kτ, x̂(0) = x̂0

x̂(kτ+) = Adx̂(kτ) + Bdū∗(k) + r̄d (12)

+L1[y(k) − C2x̂], x̂(0) = x∗

0

ū∗(k) = −T−1
2 (k)B′

dX(kτ)Adx̂(kτ)

+L2[y(k) − C2x̂(kτ)]

where L1 and L2 are the controller gains to decide later,
using the solutions of the Riccati equations.

Let e := x − x̂, we get the error system

ė = ¯̄Ae + B1w̄, t �= kτ, e(0) = x0 − x̂0

e(kτ+) = (Ad − L1C2)e(kτ) (13)

+[−L1D21 − L1]

[

wd

v

]

.

Now we define the estimated output as follows.

f(k) := T
1
2

2 (k){ū∗(k) + T−1
2 (k)B′

dX(kτ)Adx(kτ)}

= T
1
2

2 (k){(T−1
2 (k)B′

dX(kτ)Ad

+L2C2)e(kτ) + [L2D21 L2]

[

wd

v

]

}

For the error system (13) with the estimated output
f(k), we consider the problem to find x0, w̄, v and wd

maximizing the performance index

JvT (x0, ū∗, w̄, wd, v, rc, rd)

=











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











ER̄s
{−γ2‖w̄‖2}ds

+

N
∑

k=0

ER̄k
{‖f (k)‖2} − γ2ER̄0

{‖x0 − x̂0‖
2
P−1

0

}

+J̄c(rc) + J̄d(rd) − γ2
[

‖wd‖
2
2 + ‖v‖2

2

]

. (14)

Note that this problem is equivalent to the problem to give
x0, w̄ and wde maximizing











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











ER̄s
{−γ2‖w̄‖2}ds − γ2‖wde‖

2
2

+
N

∑

k=0

ER̄k
{‖z̄(k)‖2} − γ2ER̄0

{‖x0 − x̂0‖
2
P−1

0

}

for the system

ė = ¯̄Ae + B1w̄, t �= kτ, e(0) = x0 − x̂0

e(kτ+) = Âde(kτ) + B̂dwde

z̄(k) = Ĉe(kτ) + D̂wde,

Âd = Ad − L1C2, B̂d = [−L1D21 − L1],

Ĉ = T
1
2

2 (k)(T−1
2 (k)B′

dX(kτ)Ad + L2C2),

D̂ = T
1
2

2 (k)[L2D21 L2], wde =

[

wd

v

]

.

Namely our problem can be reduced to the so called output
estimation (OE) problem on the standard H∞ disturbance
attenuation theory. In order to solve this problem, we
consider the following Riccati equation with the jump
parts and the initial condition for it.

Q̇ + ¯̄A
′

Q + Q ¯̄A +
1

γ2
QB1B

′

1Q = O, t �= kτ (15)
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Q(kτ−) = Â′

dQ(kτ)Âd + Ĉ′Ĉ (16)

+R̂′

d(k)T̂−1
d (k)R̂d(k), Q(0−) = γ2P−1

0

where R̂d(k) = B̂′

dQ(kτ)Âd + D̂′Ĉ

and T̂d(k) = γ2Ipd+k−D̂′D̂−B̂′

dQ(kτ)B̂d, and we assume

T̂d(k) > O. (17)

Then, using the Riccati equation(15)(16) and completing
the performance index (14) with respect to col(w′

d, v
′), we

have ([5],[6])

JvT (x0, ū∗, w̄, wd, v, rc, rd)

= −











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











ER̄s
{γ2‖w̄ − γ−2B′

1Qe‖2}ds

+J̄c(rc) + J̄d(rd) − e′(T )Q(T )e(T )

−
N

∑

k=0

ER̄k
{‖T̂

1/2
d (k)[

[

wd

v

]

− T̂−1
d (k)Rd(k)e(k)]‖2}.

For w̄, wd, v and x0 in the error system (13), let w̄ =

w̄∗ = γ−2B′

1Qe,

[

wd

v

]

=

[

w∗

d
v∗

]

= T̂−1
d (k)R̂d(k)e(k),

x0 = x∗

0 = x̂0. Then we get e(t) = 0 over [0, T ], because
e(t) = 0 is an equibrium point of the error system (13) for

t ∈ [0, T ]. Therefore, since

[

w∗

d
v∗

]

(k) = 0, k ∈ [0, N ], the

estimated output

f(k) = Ĉe(kτ) + D̂

[

w∗

d
v∗

]

(k) = 0

for k ∈ [0, N ]. As a result, we get

JvT (x∗

0, ū∗, w̄
∗, w∗

d, v∗, rc, rd) = J̄c(rc) + J̄d(rd).

Now we adopt ū∗ = ū∗ as the optimal input minimizing
JvT for the worst case disturbance and the worst case
initial state and so

JvT (x∗

0, ū, w̄∗, w∗

d, v∗, rc, rd)

=

N
∑

k=0

ER̄k
{‖ū(k) + T−1

2 (k)B′

dX(kτ)Adx(kτ)‖2
T2(k)}

+J̄c(rc) + J̄d(rd)

≥ J̄c(rc) + J̄d(rd)

= JvT (x∗

0, ū
∗, w̄∗, w̄∗

d, v̄∗, rc, rd)

because x∗

0 = x̂0, w̄∗ = 0, w∗

d = 0, v∗ = 0 and e(t) = 0
for t ∈ [0, T ]. Moreover, using this optimal input ū∗ = ū∗,
the inequality

JvT (x0, ū
∗, w̄, wd, v, rc, rd)

= −











N−1
∑

k=0

(k+1)τ
∫

kτ+

+

T
∫

Nτ+











ER̄s
{γ2‖w̄ − γ−2B′

1Qe‖2}ds

+J̄c(rc) + J̄d(rd) − ‖e(T )‖2
Q(T )

−
N

∑

k=0

ER̄k
{‖T̂

1/2
d (k)[

[

wd

v

]

− T̂−1
d (k)Rd(k)e(k)]‖2}

≤ J̄c(rc) + J̄d(rd)

= JvT (x∗

0, ū
∗, w̄∗, w∗

d, v∗, rc, rd)

holds. By these inequalities, the following theorem, which
gives the solution of H∞ tracking problem by output
feedback, holds.

Proposition 4.1. Consider the system (1) and the perfor-
mance index (3), and suppose A1 and A2. Then the H∞

Tracking Problem is solvable by Output Feedback
if and only if there exist X(t) > O and Q(t) > O
satisfying the conditions X(0−) < γ2R−1, X(T ) = O and
Q(0−) = γ2P−1

0 such that the Riccati equations (4)(5),
(15)(16) and the condition (17) hold over [0, T ]. A saddle
point strategy is given by

x∗

0 = [γ2R−1 − X(0−)]−1θ(0),

w∗ =
1

γ2
B′

1(Xx + θ), w∗

d = 0, v∗ = 0,

u∗

c(k) = −T−1
2 (k)B′

d

×[X(kτ)(Adx̂c(kτ) + B3drd(k)) + θc(kτ+)]

+L2[y(k) − C2x̂c(kτ)]

where θ(t), t ∈ [0, T ] satisfies (6) and θc(s), s ∈ [t, t + h]
satisfies (7). x̂c(t) is the ’causal’ part of (12) at time t. x̂c

is the expected value of x̂ over R̄s and R̄k, but the actual
value x̂c(t) is determined based on the information y(k),
Rs+hτ and Rk+h with 0 ≤ h ≤ N . Moreover, the value of
the game is

JvT (x∗

0, u
∗

c , w
∗, w∗

d, v∗, rc, rd)

=

N
∑

k=0

ER̄k
{‖T−1

2 (k)B′

dX(kτ)Adx̂1(kτ)

+T−1
2 (k)B′

dθ1‖
2
T2(k)}

+J̄c(rc) + J̄d(rd) (18)

where θ1(t) = θ(t) − θc(t), x̂1(t) = x̂(t) − x̂c(t), t ∈ [0, T ],
J̄c(rc) and J̄d(rd) are given by (9) and (10).

(Proof)
Sufficiency: We have already described the sufficient condi-
tion for the solvability of the trackig problem. The optimal
input u∗

c(k), k ∈ [0, N ] can be adopted using only the
causal parts θc and x̂c of θ and x̂, determined on-line based
on the information Rs+hτ , Rk+h and y(k), k ∈ [0, N ].
Necessity: On this game problem, the reference signals
{rc(·)} and {rd(·)} are arbitrary. Therefore, by considering
the case of rc(·) ≡ 0 and rd(·) ≡ 0, one can easily deduce
the necessity for the solvability of our game problem.
(Refer to [5][6] and etc.)(QED.)

Remark 4.1. J̄c(rc) and J̄d(rd), which mean the tracking
errors including the preview information vector θ, are
equal to zero, if rc = 0, rd = 0 and θ(t) = 0 at all
t ∈ [0, T ]. Namely, in the case of neither inputting any
reference signals nor considering any preview information,
these tracking error terms are reduced to zero.

The saddle-point strategies are given by arbitrary {rc} and
{rd} and the jump parts (16) of the Riccati equation do
not depend on the coefficient matrices B3, B3d, D13 and
D13d of the reference signals {rc} and {rd}. Therefore we
can decied the controller gains L1 and L2 by considering
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the case where {rc} and {rd} are identically zero. (See
([5][6]) for details.) Now let Z(t) = γ2Q−1(t) with Z(kτ) =
γ2Q−1(kτ−) and Z(kτ+) = γ2Q−1(kτ) We consider the
following Riccati equation with jump parts.

Ż = ¯̄AZ + Z ¯̄A
′

+ B1B
′

1 t �= kτ (19)

Z(kτ+) = AdZ(kτ)A′

d

−(R′

2ZT2ZR2Z)(k) + (F ′

1ZVZF1Z)(k) (20)

VZ(k) > aI for some a > 0 (21)

where

R2(k) = B′

dX(kτ)Ad,

T1Z(k) = γ2Im − T
−1/2
2 R2(k)Z(kτ)R′

2T
−1/2
2 (k),

T2Z(k) = D̂21D̂
′

21 + C2Z(kτ)C′

2,

R1Z(k) = T
−1/2
2 R2(k)Z(kτ)A′

d,

R2Z(k) = C2Z(kτ)A′

d,

SZ(k) = C2Z(kτ)R′

2T
−1/2
2 (k),

VZ(k) = [T1Z + S′

ZT−1
2Z SZ ](k),

F1Z(k) = [V −1
Z (R1Z − S′

ZT−1
2Z R2Z)](k),

F2Z(k) = −[T−1
2Z (R2Z + SZF1Z)](k),

D̂21 = [D21 Ik].

Finally, utilizing this Riccati equation, we get the following
theorem.

Theorem 4.1. Consider the system (1) and the perfor-
mance index (3), and let γ > 0 be a given scalar. Suppose
A1 and A2. Then each of the H∞ Tracking Problems
is solvable by Output Feedback if and only if there
exist X(t) > O and Z(t) > O satisfying (4)(5), (19)-
(21) over [0, T ] such that X(0) < γ2R−1, X(T ) = O and
Z(0−) = P0. Then the following results hold using the
gains

L1(k) = R′

2ZT−1
2Z (k),

L2(k) = −T−1
2 R2(k)Z(kτ)C′

2T
−1
2Z (k).

Case a) A suitable control law for the H∞ fixed-
preview tracking is given by

˙̂xc = Ax̂c + B1w̄
∗

c + B3rc

x̂c(kτ+) = Adx̂c(kτ) + Bduo,a(k) + B3drd(k) (22)

+L1[y(k) − C2x̂c(k)], x̂c(0) = x∗

0c

uo,a(k) = Kxx̂c(kτ) + Krd
rd(k) + Kθθc(kτ+)

+L2[y(k) − C2x̂c(kτ)]

where w̄∗

c = γ−2B′

1(Xx̂c + θc), x∗

0c = [γ2R−1 −
X(0−)]−1θc(0). Moreover, the value of the performance in-
dex JvT (x∗

0, uo,a(k), w∗, w∗

d, v∗, rc, rd) coincides with (18).
Case b) A suitable control law for the H∞ tracking of
noncausal rc(·) and rd(·) is given by

˙̂x = Ax̂ + B1w̄
∗ + B3rc, w̄∗ = γ−2B′

1(Xx̂ + θ)

x̂(kτ+) = Adx̂(kτ) + Bduo,b(k) + B3drd(k) (23)

+L1[y(k) − C2x̂(k)], x̂(0) = x∗

0

uo,b(k) = Kxx̂(kτ) + Krd
rd(k) + Kθθ(kτ+)

+L2[y(k) − C2x̂(kτ)]

Moreover, since θ(t) = θc(t) and x̂(t) = x̂c(t) for all
t ∈ [0, T ], the value of the performance index
JvT (x∗

0, uo,b, w
∗, w∗

d, v∗, rc, rd) = J̄c(rc) + J̄d(rd)

5. INFINITE HORIZON CASE

Consider

ẋ = Ax + B2u, t �= kτ, x(0) = x0

x(kτ+) = Adx(kτ) + B2dud(k) (24)

zc = C1x, t �= kτ

zd(k) = C1dx(kτ) + D12dud(k)

Definition 5.1. (a) The system (24) (or ([A,Ad],[B2, B2d]))
is said to be stabilizable if there exist matrices K and Kd

such that (A+B2K, Ad +B2dKd) is exponentially stable.
(b) The system (24) (or ([C1, C1d],[A,Ad])) is said to be
detectable if there exist matrices J and Jd such that (A +
JC1, Ad + JdC1d) is exponentially stable.
(c) If (a) and (b) hold, the system (24)
(or ([A,Ad],[B2, B2d],[C1, C1d])) is said to be stabilizable
and detectable.

The sufficient and necessary conditions for the solvability
of the H∞ tracking problems in the finite horizon case are
the same as the ones for the solvability of the standard H∞

control problems and so we can obtain the convergence and
stability conditions for the H∞ tracking problems in the
infinite horizon case.

Now we consider the following conditions for the system
(1).
J1: ([A,Ad], [B1, O], [C1, C1d]) is stabilizable and de-
tectable.
J2: ([A,Ad], [O,B2d], [O,C2d]) is stabilizable and de-
tectable.

Theorem 5.1. Consider the ststem (1) and the perfor-
mance index (3) with T → ∞, and let γ > 0 be a
given scalar. Suppose A1 and A2. Also suppose that R
is sufficiently small. Then each of the H∞ Tracking
Problems is solvable by Output Feedback if and only
if there exist τ -periodic stabilizing solutions X(t) > O and
Z(t) > O satisfying (4)(5), (19)-(21) over [0, T ] such that
X(0) < γ2R−1 and Z(0−) = P0. Then the output feedback
controller for each case of the H∞ tracking problems is
given by (22) and (23) respectively Now θ and θc are given
by

{

θ̇(t) = −Ā′(t)θ(t) + B̄(t)rc(t), t �= kτ

θ(kτ) = Ā′

d(k)θ(kτ+) + B̄d(k)rd(k)

and



















θ̇c(s) = −Ā′(s)θc(s) + B̄(s)rc(s), s �= kτ
t ≤ s ≤ tf

θc(jτ) = Ā′

d(j)θc(jτ
+) + B̄d(j)rd(j),

k < j ≤ kf (kf τ < tf < (kf + 1)τ)
θc(tf ) = 0

where, for kτ+ ≤ t ≤ (k+1)τ , tf = t+hτ and kf = k +h.
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6. A NUMERICAL EXAMPLE

We consider the following numerical example.(cf.[1],[8])

˙̄xs = Āx̄s + B̄1ws + B̄2ũ, x̄ ∈ R2, ws ∈ R1,

y(k) = C2x(kτ) + D21wd(k) + v(k)

Ā =

[

0 1
−1 0.4

]

, B̄1 =

[

1
−1

]

, B̄2 =

[

0
1

]

,

C2 = [ 0 1 0 ] , D21 = [ 0 1 ]

where the control input ũ is realized through a zero-order
hold i.e., ũ(t) = u(k), kτ < t < (k + 1)τ , and τ is
a sampling period. The dynamics of this system can be
represented by the following linear system with impulsive
effects (or linear jump system).([5][6])

ẋ = Ax + B1w, t �= kτ, x(0) = x0

x(kτ+) = Adx(kτ) + Bdu(k), x ∈ R3, w ∈ R1

where

A =

[

0 1 0
−1 0.4 1
0 0 0

]

, Ad =

[

1 0 0
0 1 0
0 0 0

]

,

B1 = col(1,−1, 0) and Bd = col(0, 0, 1). Motivated by
the above jump system representation of the sampled-
data system, we consider the following jump system with
a feedforward term of the reference signal at the jump part
and introduce an objective function.

ẋ = Ax + B1w, t �= kτ, x(0) = x0

x(kτ+) = Adx(kτ) + Bdu(k) + B3drd(k)

zd(k) = C1dx(kτ) + D12du(k) + D13drd(k)

y(k) = C2x(kτ) + D21wd(k) + v(k)

where

B3d =

[

0.1
0
0

]

, C1d =

[

0.35 1.5 0
0 0 0

]

,

D12d =

[

0
0.5

]

, D13d =

[

−1.0
0

]

JdT (x0, u, w,wd, v, rd) = −γ2x′

0R
−1x0

−γ2[‖w‖2
2 + ‖wd‖

2
2 + ‖v‖2

2]

+

N
∑

k=0

ER̄k
{‖C1dx(k) − rd(k)‖2 + 0.52‖u(k)‖2}

where Nτ < T < (N + 1)τ and T is assumed to be very
large. By the term B3drd(k), the tracking performance can
be expected to be improve as similar to [1][8].

Let γ = 20, τ = 0.05 and we design a output feedback
law by which the function JdT is minimized. We apply the
results of H∞ tracking for rd(k) = 2 sin(2k) with various
step lengths of preview, and show the simulation results.
It is shown that increasing the preview steps form h = 0 to
h = 3, 6, 9, 12, improves the tracking performance. In fact,
the square values ‖C1dx(k) + D13drd(k)‖2 of the tracking

0 2 4 6 8 10
0

1

2

3

4

5

6

Times[s]

T
ra

c
k
in

g
 e

rr
o
rs

h=0 

h=3

h=6 

h=9 

h=12 

h=24 

h=36 

Fig. 1. The error of tracking rd(k) = 2 sin(2k) for various
preview lengths

errors are shown in Fig. 1 and it is clear the tracking error
decreases as increasing the preview steps by this figure.
For the preview length h = 24, the tracking performance
becomes better, and, for h = 36, finally, the tracking error
almost tends to zero except for a little vibration.
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