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Abstract: The paper presents a reliable multi-objective re-optimisation control strategy for batch processes 
based on bootstrap aggregated neural networks. Bootstrap aggregated neural networks not only give better 
generalisation performance than single neural networks but also provide model prediction confidence 
bounds. In order to overcome the problem of unknown disturbances, on-line re-optimisation is carried out 
to amend the control policy for the remaining batch duration. In addition to the process operation 
objectives, the reliability of model prediction is incorporated in multi-objective optimisation in order to 
improve the reliability of the obtained optimal control policy. The standard error of the individual neural 
network predictions is taken as the indication of model prediction reliability. The proposed method is 
demonstrated on a simulated fed-batch process. 

 

1. INTRODUCTION 

Batch or semi-batch processes are suitable for the responsive 
manufacturing of high value added products (Bonvin, 1998). 
In the operation of batch processes, it is usually desirable to 
meet a number of objectives concerning product quality and 
economics of plant operations. These objectives are usually 
conflicting to each other and their relative importance usually 
changes with market conditions. Multi-objective optimisation 
control can be utilised to maximise the profit from batch 
process manufacturing.  

The effectiveness of multi-objective optimisation depends on 
the accuracy of the process model. Developing detailed 
mechanistic models is usually very time consuming and may 
not be feasible for agile responsive manufacturing. Data 
based empirical models, such as neural network models 
(Ahmad and Zhang, 2006) and nonlinear partial least square 
models (Qin and McAvoy, 1992; Li et al., 2005; Zhao et al., 
2006), and hybrid models (Tian et al., 2001) have to be 
utilised. Bootstrap aggregated neural networks have been 
shown to possess better generalisation capability than single 
neural networks (Sridhar et al., 1996; Zhang et al., 1997) and 
are used in this paper to model batch processes. An additional 
feature of stacked neural networks is that they can also 
provide prediction confidence bounds indicating the 
reliability of the corresponding model predictions (Zhang, 
1999). Due to model-plant mismatches, the “optimal” control 
policy calculated from a neural network model may not be 
optimal when applied to the actual process (Zhang, 2004). 
Thus it is import that the calculated optimal control policy 
should be reliable. Zhang (2004) proposes a reliable optimal 
control approach for batch processes through incorporating 
model prediction confidence into the optimisation objective 
function in a single objective optimisation framework. 
However, single objective optimisation may not be efficient 
in handling multiple process operating objectives. Mukherjee 

and Zhang (2006) present a reliable off-line multi-objective 
optimisation control method where model prediction 
reliability is incorporated as additional objectives in the 
multi-objective optimisation framework.  

An important concern for the optimisation of fed-batch 
processes is the presence of unmeasured disturbances and 
model plant mismatches which tend to degrade the 
performance of off-line computed optimal control profile. 
The computed optimal profile is not “optimal” when it is 
applied to the actual process. The most common disturbances 
are due to the variation in raw materials, reactive impurities, 
and reactor fouling etc. The lack of availability of robust on-
line sensors for monitoring the progress of the batch quality 
variables further complicates the problem. The quality 
variables are only accessible via delayed off-line laboratory 
analysis and are often measured at the end of a batch. The 
open loop operations of batch reactors thus provide a 
degraded “optimal” performance. Two important strategies 
that have been reported are the mid-course correction policy 
(Yabuki and MacGregor, 1997) and a variation of it, the 
repeated on-line re-optimisation control strategy (Xiong and 
Zhang, 2005). The concept is to build data based empirical 
models which can predict the end point quality value and 
execute mid course control adjustments designed at reducing 
the predicted deviations of the final product quality variables 
from their respective target values. The on-line re-
optimisation policy is implemented using sampled system 
state values during the early stage of a batch to re-calculate 
the control profile for the remaining batch stage.  

This paper presents a reliable multi-objective on-line re-
optimisation control technique for batch processes. The batch 
length is divided into three process operation stages, the 
initial batch stage, the re-optimisation control profile 
calculation stage and, finally, the implementation stage for 
the on-line re-optimised control profile. In the initial batch 
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stage, system state values are recorded via off-line laboratory 
analysis at predetermined sample times. The second stage, 
usually lasting for a single sampling interval, allows the 
calculation of the on-line re-optimisation profile based on 
previous sampled system state values and future off-line 
computed control profiles. 

Bootstrap aggregated neural network models are built to 
predict the relevant batch end point quality variables with 
inputs to the model being the sampled system state values 
during the initial stage and control profiles for the remaining 
batch stage. The neural network models are then used for the 
computation of the reliable on-line optimal control profile 
using multi-objective optimisation principles.  

The paper is organised as follows. Section 2 presents a fed-
batch process used in this study. Modelling of the process 
using bootstrap aggregated neural networks is presented in 
Section 3. Section 4 presents a reliable on-line re-
optimisation control strategy. Some concluding remarks are 
given in Section 5.  

2. A FED-BATCH PROCESS 

The fed-batch reactor is taken from (Terwiesch et al., 1998). 
The following reaction system 
 CBA k⎯→⎯+ 1  
 DBB k⎯→⎯+ 2  
is conducted in an isothermal semi-batch reactor. The 
objective in operating this reactor is, through addition of 
reactant B, to convert as much as possible of reactant A to the 
desired product, C, in a specified time tf = 120 min. It would 
not be optimal to add all B initially as the second order side-
reaction yielding the undesired species D will be favoured at 
high concentration of B.  To keep this undesired species low, 
the reactor is operated in semi-batch mode where B is added 
in a feed stream with concentration bfeed = 0.2. Based on the 
reaction kinetics and material balances in the reactor, the 
following mechanistic model can be developed. 

 u
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dt
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In the above equations, [A], [B], [C], and [D] denote, 
respectively, the concentrations of A, B, C, and D, V is the 
current reaction volume, u is the reactant feed rate, and the 
reaction rate constants have the nominal value k1 = 0.5 and k2 
= 0.5. At the start of reaction, the reactor contains [A](0) = 
0.2 moles/litre of A, no B ([B](0) = 0) and is fed to 50% 
(V(0)=0.5). 

3. MODELLING OF THE FED-BATCH PROCESS USING 
BOOTSTRAP AGGREGATED NEURAL NETWORKS 

Fig. 1 shows an aggregated neural network where several 
networks are developed to model the same relationship and 
are combined together. Earlier studies show that an advantage 
of aggregated neural networks is that they can not only give 
better generalisation performance than single neural networks, 
but also provide model prediction confidence measures 
(Zhang, 1999). 
 

X Y

 
 
Fig. 1. A bootstrap aggregated neural network 

In this study, a fixed batch time of 120 minutes is considered 
as in (Zhang, 2005). Since it is usually difficult to measure 
the product quality variables frequently during a batch, it is a 
general practice to measure the product quality variables only 
at the end of a batch. The batch duration is divided into 10 
equal intervals and within each interval the reactant feed rate 
is kept constant. The objective in operating this process is to 
maximise the amount of the final product [C](tf)V(tf) and 
simultaneously minimise the amount of undesired species 
[D](tf)V(tf). Neural network models for the prediction of the 
final amounts of product [C](tf)V(tf) and by-product 
[D](tf)V(tf) at the final batch time are of the form: 

 y1 = f1(U)      (6) 
 y2 = f2(U)      (7) 

where y1 = [C](tf)V(tf), y2 = [D](tf)V(tf), U = [u1 u2 … u10]T is 
a vector of the reactant feed rates, f1 and f2 are nonlinear 
functions represented by neural networks. The above models 
are used for off-line optimisation.  

In this study, simulated process operational data from 50 
batch runs were generated with the reactant feed rate 
randomly distributed in the range [0, 0.01]. Of the 50 batches 
of data, 40 batches were used to develop neural network 
models and the remaining 10 batches were used as unseen 
testing data. Gaussian noise with zero mean and a variance of 
2.5×10-4 was added to the reactant feed rate to simulate the 
effect of measurement noise. 

Two bootstrap aggregated neural networks each containing 
20 neural networks were developed for predicting [C](tf)V(tf) 
and [D](tf)V(tf). Each individual neural network has a single 
hidden layer with 10 hidden neurons. Hidden neurons use the 
sigmoid activation function whereas the output layer neuron 
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uses the linear activation function. The Levenberg-Marquardt 
training algorithm with “early stopping” was used in this 
study to train the networks. For training each network, 
bootstrap re-sampling with replacement (Efron, 1982) was 
used to generate a replication of the 40 batches of process 
data. Half of the replication was used as training data while 
the other half was used as the validation data. 

For on-line re-optimisation, the batch length is divided into 
three process operation stages. The initial batch sampling 
stage lasting for 48 minutes, allows the recording of 
concentrations of [C] and [D] via off-line laboratory analysis 
with each sampling interval being 12 minutes. Corresponding 
future off-line calculated control inputs are also recorded for 
being used as neural network model inputs. The fifth 
sampling interval lasting from 48 minutes to 60 minutes is 
used for performing on-line re-optimisation. The re-
optimised control profile is implemented from time 60 
minutes onwards to the final batch time of 120 minutes. The 
control action is constant during each sampling interval and 
thus is a piecewise continuous function. 

The neural network models for the prediction of 
concentration variables [C](tf)V(tf) and [D](tf)V(tf) at the final 
batch time used in on-line re-optimisation are of the form: 

 y1 = f3(U1)      (8) 
 y2 = f4(U1)      (9) 

where y1 = [C](tf)V(tf), y2 = [D](tf)V(tf), U1 = [C1 C2 C3 C4  
u6… u10]T, C1 to C4 are the sampled concentration values in 
[0 min, 48 min], u6 to u10 are the reactant feed rates for the 
remaining batch period [60 min, 120 min], f3 and f4 are 
nonlinear functions represented by neural networks.  
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Fig. 2. Model errors of individual networks for the fed batch 
reactor  

Table 1. Bootstrap aggregated neural network 
prediction accuracy on the testing data  

[C](tf)V(tf) [D](tf)V(tf) 
MSE Standard 

Prediction 
Error 

MSE Standard 
Prediction 

Error 
0.0034 0.0020 0.0040 0.0028 

Two bootstrap aggregated neural networks each containing 
20 neural networks were developed for representing Eq(8) 
and Eq(9). Fig. 2 shows the mean squared errors (MSE) for 
the individual networks on training, validation, and testing 
data sets for the two neural network models. It can be 
observed from Fig. 2 that the individual neural network errors 
on the training, validation and testing data sets are 
inconsistent in that networks giving small errors on the 
training data may not give small errors on the testing data. 
Table 1 shows the MSE of the bootstrap aggregated neural 
network models and the standard error from the individual 
network predictions on the testing data. 

 

4. RELIABLE ON-LINE RE-OPTIMISATION CONTROL 

The optimal control scheme involves satisfying conflicting 
objectives, i.e. maximise the amount of the final desired 
product [C](tf)V(tf) and simultaneously minimise the amount 
of the final undesired species [D](tf)V(tf). In order to obtain a 
reliable control policy from the aggregated neural network 
model, minimisation of the standard error of individual 
network predictions are introduced as additional objectives in 
the optimisation method. This may be formulated in terms of 
a multi-objective optimisation problem which is solved using 
the goal attainment method (Gembicki, 1974). 
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   01.00 ≤≤ ju  10,,2,1 ⋅⋅⋅=j  

    ( ) 00.1≤ftV  

where γ is a scalar variable, Wi  are the weighting parameters, 
Fi

* are design goal values, U is the sequence of the reactant 
feed rates into the reactor, V is the reaction volume obtained 
by integrating the reactant feed rate, ( )fCe t

c,σ  and 

( )fCe t
d,σ  denote the individual standard prediction errors 

from the two bootstrap aggregated neural network models. 
For off-line optimisation, U = [u1… u10]T and the model used 
is given by Eq(6) and Eq(7). For on-line re-optimisation, U 
=[u6… u10]T and the model used is given by Eq(8) and Eq(9). 

Off-line optimisation is first performed and the first half of 
the control profile, u1 to u5, is implemented. Then on-line re-
optimisation is performed to re-calculate the control profile 
for the remaining batch period, i.e. u6 to u10.  

The presented objective function in Eq(10), F(U), maximises 
the amount of product, [C](tf)V(tf), and minimises the amount 
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of by-product, [D](tf)V(tf). Simultaneously it also minimises 
the standard prediction errors from the aggregated neural 
network models for these two quality variables. The neural 
network model prediction under the optimal control policy 
obtained by solving the multi-objective optimisation has a 
narrow model prediction confidence bound and thus the 
computed on-line optimal control policy is reliable. 

The principle of on-line re-optimisation control has been 
applied to the following two cases:  

 Case I: F* = [-0.065   0.015    0.001   0.001]  

 Case II: F* = [-0.075   0.030    0.001   0.001]  

The weights in the goal attainment optimisation algorithm for 
the maximisation of [C], minimisation of [D] and the 
minimisation of the standard prediction errors of the two 
neural network models, ( )fCe t

c,σ  and ( )fCe t
d,σ , have the 

same values which were used for the calculation of the 
offline ‘optimal’ control profile. In order to demonstrate the 
advantage of the proposed technique,  50 solutions of the 
optimal control problem were computed by varying the 
weights on [C](tf)V(tf) and [D](tf)V(tf), W1 and W2 
respectively, randomly and uniformly within [0, 1]. Model 
plant mismatch is simulated by taking k1 and k2 as normally 
distributed random variables with a mean of 0.50 and a 
standard deviation of 0.05. 

Table 2. Comparison between off-line and on-
line optimisation 

Cases  Off-line 
optimisation 

On-line re-
optimisation

[C](tf)V(tf) 0.06324 0.06277 I 
[D](tf)V(tf) 0.02804 0.02665 
[C](tf)V(tf) 0.06327 0.06299 II 
[D](tf)V(tf) 0.02807 0.02713 
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Fig. 3. Optimal control profile for fed-batch reactor 

Fig. 3 shows one of the computed on-line re-optimisation 
control profiles for Case I and Case II respectively. Similar 
profiles are obtained for all the 50 different Pareto solutions 

generated. The corresponding trajectories for the system 
states for the two investigated cases are shown in Fig. 4 and 
Fig. 5 respectively. The optimisation and simulation results 
for the same sample solution are presented in Table 2. The 
values of the mechanistic model calculated (i.e. the actual 
process) system states for the off-line and on-line re-
optimised optimal control profile are presented for the 
considered sample solution. The mechanistic model 
calculated output signifies the end point quality values when 
the calculated ‘optimal’ control profile is applied to the actual 
process (i.e. the simulation on the mechanistic model). 
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Fig. 4. Optimal system state profile for fed-batch reactor: 
Case I 
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Fig. 5. Optimal system state profile for fed-batch reactor: 
Case 2 

 
The values shown in Table 2 signify the effect of the 
principle of on-line re-optimisation control scheme. For Case 
I, though [C](tf)V(tf) under the off-line computed optimal 
control profile is 0.743 % better than that under the on-line 
re-optimised control profile, the corresponding value of 
[D](tf)V(tf)  is 4.96 % better if the on-line re-optimisation 
control scheme is put in action. Similarly, for the study in 
Case II, though [C](tf)V(tf) under the off-line computed 
optimal control profile is 0.442% better than that under the 
on-line re-optimised control profile, the corresponding value 
of [D](tf)V(tf)  is 3.35% better if the on-line re-optimisation 
control scheme is utilised. Since this is a multi-objective 
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optimisation problem, the on-line re-optimisation control 
scheme improves the overall process operation.  

Fig. 6 shows the relative errors of the bootstrap aggregated 
neural network model predictions under the two different 
optimal control profiles: considering confidence bounds (o) 
and not considering confidence bounds (*). It can be seen 
from Fig. 6 that the neural network predictions under the 
control profiles calculated by considering the model 
prediction confidence bounds are generally more accurate 
than those under the control profiles calculated without 
considering the model prediction confidence bounds. Thus, 
the optimisation results incorporating the model prediction 
confidence bounds are more reliable than those without 
incorporating the model prediction confidence bounds.  
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Fig. 6. Bootstrap aggregated neural network model prediction 
accuracy for fed-batch reactor, o - with model prediction 
confidence bounds, * - without model prediction confidence 
bounds 
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Fig. 7. Comparison of Pareto solutions for fed-batch reactor 
(O: with confidence bound; *: without confidence bound) 

Fig. 7 shows the Pareto solutions obtained for the 
optimisation results with and without model prediction 
confidence bounds. The standard prediction errors of the 
individual neural network models are also given in Fig. 7. It 

can be concluded from Fig. 7 that the resulting end point 
quality variable values are better when the minimisation of 
the standard prediction errors is incorporated as an additional 
optimisation objective.  

Fig. 8 illustrates the percentage improvement in the quality 
variables due to use of on-line re-optimised control profile. It 
may be concluded from the diagram that there is a 
consequent improvement in the end point quality variables 
since most of the obtained solutions show a positive 
improvement in either of the concentration values. The 
number count of the improvements in the solutions is 
presented in Table 3. It can be seen from Table 3 that the 
proposed reliable on-line re-optimisation technique overall 
improves the process operation. Out of the 50 solutions 
considered, there are no simultaneous deteriorations in 
[C](tf)V(tf)  and [D](tf)V(tf). 
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Fig. 8. Improvement by on-line re-optimisation incorporating 
model prediction confidence bound 

Table 3. Improvement in solutions by using on-
line re-optimisation control  

Number of casesCriteria considered 
Case I Case II

Improvement in [C](tf)V(tf) 10 15 
Improvement in [D](tf)V(tf) 38 35 
Simultaneous Improvement  
in [C](tf)V(tf)  & [D](tf)V(tf)   

0 2 

Simultaneous deterioration  
in [C](tf)V(tf)  & [D](tf)V(tf) 

0 0 

 
 

5. CONCLUSIONS 

A reliable on-line re-optimisation control strategy for batch 
processes based on bootstrap aggregated neural network 
models is proposed. In addition to process operation 
objectives, model prediction reliability offered by bootstrap 
aggregated neural networks is incorporated as additional 
optimisation objectives. In order to overcome the effect of 
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unknown disturbances and model plant mismatches, on-line 
re-optimisation is carried out at the middle of a batch. 
Optimal control actions for the remaining batch period are re-
calculated based on the updated predictions of final product 
quality. The effectiveness of the proposed technique is 
demonstrated by application to a simulated fed batch process.  
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