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Abstract: The simulation of step, impulse and ramp responses of linear continuous-time time-
invariant single-input single-output systems with a pure time delay in the feedback loop is
tackled. Contrary to systems without time delay where a conversion from Laplace transform
to z transform with a zero-order hold allows for an exact response, delay in the feedback loop
requires either an unbounded number of states or approximations. This paper proposes an
approximation which fulfills a set of criteria, including exactness of the response over a specified
multiple of the delay and the conservation of the stability or lack of stability. The approach is
illustrated with examples.

1. INTRODUCTION

Continuous-time systems with time delays in the feedback
loop are difficult to simulate, because they have an infinite
number of states. They have both theoretical and practical
importance, though. Time delays are simple to model and
occur in many systems: properties of fluids transported
in a pipe, such as temperature or concentrations, or
electromagnetic emissions, exhibit a delay which is directly
related to their speed and path length.

Related research has focused mainly on numerical solu-
tions of delay differential equations (DDE). In Shampine
and Thomson [2000], the implementation of function
dde23 provided with MATLAB since version 6.5 is de-
scribed; delayed states are interpolated from past results
with cubic Hermite interpolation and discontinuities are
propagated. In Simulink, time delays (“transport delay”
blocks) are implemented as buffers of past samples. Out-
put is obtained with linear interpolation, or extrapolation
when the value of the delay is smaller than the integration
time step.

In MATLAB’s control toolbox, objects representing linear
time-invariant systems with delays cannot be connected
in a feedback configuration; see The Mathworks, Inc.
[2002]. The Time Delay System Toolbox for MATLAB,
described in Kim et al. [2000], is a set of functions for
simulation, design and analysis of systems with delays; its
DDE functions for nonlinear and linear systems are both
based on Kim and Pimenov [August 1997] which proposes
a Runge-Kutta-like approach with fixed integration step.

This paper deals with the simulation of the step response
of systems with a single time delay. It presents a method
based on the Laplace and z transforms which exploits the
system linearity. Impulse responses and ramp responses
can be deduced simply by adding a derivator or an integra-
tor to the transfer function (factor s or 1/s, respectively).

Particular attention is paid to the amount of computation.
Reducing the simulation time step to assure adequate
accuracy, or multiple iterations over the whole simulation
time span, should be avoided. The simulation time step
should depend only on requirements for truthful display or
further analysis. One of the goals is to permit interactive
applications with software such as Sysquake, where the re-
sponse is updated continuously when the user manipulates
parameters with the mouse; see Piguet [2004].

The remainder of this paper is organized as follows. Sec-
tion 2 enumerates the specifications which are considered
as important. Section 3 defines the model and the kind of
systems it can describes. Section 4 describes how the step
response is computed in order to satisfy the specifications.
Section 5 illustrates the method with different examples.
Finally, Section 6 summarizes the results and gives possible
extensions.

2. SPECIFICATIONS

The purpose of the simulation is to provide a response
which matches the true response as well as possible both
qualitatively and quantitatively. This includes the follow-
ing characteristics:

• Stability preservation. The simulation should exhibit
a diverging response if and only if the continuous-time
system with delay is unstable.

• Causality. If the whole response is delayed, so should
be the simulation, by the same value.

• No smoothing. This is especially important where the
response or its derivative are discontinuous, typically
for t = 0 and t = d.

• No artifact such as Gibbs effect. Reducing the time
step used for simulation should make the simulated
response converge to the true response of the system.
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• Approximation possible at any time scale. The sim-
ulation should be possible over time spans between
fractions to large multiples of the delay.
• Error on each sample as small as possible. Among

other quantities, overshoot should be preserved.
• Fast to compute. Simulation should allow to update

continuously the step response when parameters are
changed by the user in an interactive application.

3. MODEL

The following system is considered, in the domain of the
Laplace transform:
Definition 1. A single-delay causal single-input single-
output linear time-invariant continuous-time system is ob-
tained by connecting the following sub-systems:

• a single time delay p1(s) = e−ds where d > 0 is the
amount of time;
• causal rational transfer functions pi(s), i = 2, . . . , n.

Sub-systems are connected in series (the input of a sub-
system is equal to the output of another sub-system), in
parallel (the outputs of multiple sub-systems are added),
or with feedback (the output of one or multiple sub-
systems are used in a direct or indirect way as their
own inputs). A single exogenous signal U(s) enters the
system (system input), and a single sub-system output
Y (s) is considered (system output). The output and all
sub-systems are connected directly or indirectly to the
system input. ♦

This system covers all responses of interest which occur
in a single-input single-output system described by the
serial connection of a time delay and a rational transfer
function, controlled with a one- or two-degrees-of-freedom
controller described by rational functions such as a PID
(proportional-integral-derivative) controller.
Theorem 2. All single-delay causal single-input single-
output linear time-invariant continuous-time systems be-
tween input U(s) and output Y (s) can be represented by
the following transfer function:

G(s) =
Y (s)
U(s)

=
A(s) + B(s)e−ds

C(s) + D(s)e−ds
(1)

where A(s), B(s), C(s) and D(s) are polynomials of s; and
A(s)/C(s), B(s)/C(s), and D(s)/C(s) are all causal.

Proof. All single-delay causal single-input single-output
linear time-invariant continuous-time systems can be writ-
ten as

Y (s) = G11(s)U(s) + G12(s)Yδ(s)

Uδ(s) = G21(s)U(s) + G22(s)Yδ(s)

where Gij(s) are causal rational transfer functions, Uδ(s)
the input of the time delay and Yδ(s) = e−dsUδ(s) its
output. G(s) is obtained by eliminating Uδ(s) and Yδ(s):

G(s) =
G11(s) + (G12(s)G21(s)−G11(s)G22(s)) e−ds

1−G22(s)e−ds

This is equivalent to (1) with

U(s) Y (s)
A(s)
C(s)

D(s)
C(s)

e−ds

−

+

Fig. 1. System without delay in direct path.

A(s)
C(s)

= G11(s)

A(s)
C(s)

= G12(s)G21(s)−G11(s)G22(s)

A(s)
C(s)

=−G22(s)

All transfer functions are causal. ♦

Depending on the input and output, A(s) or B(s), and
D(s), can be zero. The case where A(s) = B(s) = 0 is
degenerated and not interesting. The case where C(s) is
zero corresponds to a non-causal system where the output
occurs with an advance of time d with respect to the input,
which cannot occur in the system as defined above.

The case where D(s) is zero corresponds to the absence of
delay in the feedback path; the response of G(s) is obtained
by summing the response of A(s)/C(s) and the delayed
response of B(s)/C(s). A single discrete-time transfer
function is obtained by choosing a sampling period h such
that the time delay is an integer multiple of h and by
converting separately A(s)/C(s) and B(s)/C(s) with zero-
order hold.

The remaining part of this paper will tackle the case where
at most one of A(s) and B(s) is zero.

4. STEP RESPONSE

It is assumed that step responses of rational transfer
functions can be computed without error. One method is
to convert the Laplace-transform continuous-time transfer
function to a z-transform discrete-time transfer function
with the zero-order hold method, which requires to cal-
culate the exponential of a matrix. Matrix exponentials
can be evaluated numerically with arbitrary precision (see
Moler and Loan [2003]). The discrete-time step response
samples match exactly the continuous-time step response
at the corresponding time instants.

Transfer function G(s) links input U(s) to output Y (s)
with a direct path, delayed or not depending whether
the time delay is in the feedback path or not. Fig. 4
shows the case without delay in the direct path, i.e. where
B(s) = 0, and Fig. 4 the case with delay in the direct path,
with A(s) = 0. The feedback loop adds a new term for
every t = kd, with k ∈ N∗, which is filtered by L(s)k,
where L(s) is the loop transfer function. It is possible
to compute the exact response by summing these terms,
simulated with zero-order hold conversion to discrete-time
which gives exact results for step responses; however, the
difficulty arises from the increasing degree of powers of
L(s). The main idea is to simulate exactly the response
over a few multiples of the delay (one is often sufficient)
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U(s) Y (s)
B(s)
C(s)

e−ds

D(s)
C(s)

e−ds

−

+

Fig. 2. System with delay in direct path.

and to approximate the subsequent effect of the feedback
loop.

4.1 Partial decomposition

Eq. (1) can be seen as the sum of two components G1(s)
and G2(s)e−ds, where G1(s) has a non-delayed path from
input to output, and G2(s)e−ds does not:

G(s) = G1(s) + G2(s)e−ds (2)

For the sake of simplicity, it is assumed in this section
that G(s) = G1(s), i.e. that B(s) = 0. For the general
case, G1(s) and G2(s) are handled separately.

The following theorem shows how G(s) can be decomposed
as the sum of m transfer functions with delays in the
numerator, and a transfer function with a delay of md.
Theorem 3. Let

G(s) =
A(s)

C(s) + D(s) e−ds
(3)

For any m ∈ N?,

G(s) =
m−1∑
k=0

A(s)
C(s)

(
−D(s)

C(s)

)k
e−kds

+
(
−D(s)

C(s)

)m
A(s)e−mds

C(s) + D(s)e−ds

(4)

Proof. For m = 1, (4) becomes

G(s) =
A(s)
C(s)

− D(s)
C(s)

· A(s)e−ds

C(s) + D(s)e−ds

(5)

which is readily checked by subtracting A(s)/C(s) from
(3). Proof for m > 1 proceeds recursively. Assume (4) is
true for m− 1:

G(s) =
m−2∑
k=0

A(s)
C(s)

(
−D(s)

C(s)

)k
e−kds

+
(
−D(s)

C(s)

)m−1
A(s)e−(m−1)ds

C(s) + D(s)e−ds

=
m−2∑
k=0

A(s)
C(s)

(
−D(s)

C(s)

)k
e−kds

+
(
−D(s)

C(s)

)m−1

G(s)e−(m−1)ds

Substituting G(s) by its value given by (5) yields

G(s) =
m−2∑
k=0

A(s)
C(s)

(
−D(s)

C(s)

)k
e−kds

+
A(s)
C(s)

(
−D(s)

C(s)

)m−1

e−(m−1)ds

+
(
−D(s)

C(s)

)m
A(s)e−mds

C(s) + D(s)e−ds

which is equivalent to (4). ♦

Remarks:

• This decomposition is a particular case of polynomial
long division, where the last term of (4) is the remain-
der.

• The number of terms in the sum can be arbitrarily
large; when it becomes infinite,

G(s) =
∞∑
k=0

A(s)
C(s)

(
−D(s)

C(s)

)k
e−kds

However, this series cannot be used directly, because
the term degree grows quickly and prevents numerical
evaluation.

4.2 Discrete-time rational transfer function

For simulation, the continuous-time transfer function in
the Laplace domain must be converted to a discrete-time
rational transfer function in the z domain.

Sampling period h is chosen such that d/h is an integer:

n =
d

h
∈ N? (6)

Then e−ds is converted to z−n.

Methods used to perform the conversion from Laplace
transform to z transform have an effect on the result.
Two of them are considered here: zero-order hold, which
gives an exact response if the input is a step; and bilinear
transform, which is preferred if the input is continuous,
e.g. if the signal has been filtered by low-pass transfer
functions. With a time delay in the feedback loop, it is
impossible to obtain an exact result with rational functions
of finite degree.

In (4), terms of the sum are rational transfer functions
with delays in the direct path; since they are applied to an
input step U(s), they can be converted with zero-order
hold without approximation. The last term contains a
delay in the feedback path. It can be rewritten as the serial
connection of a pure delay, a rational transfer function, and
a pure feedback block with unit direct path and a causal
transfer function with delay in the feedback path:(

−D(s)
C(s)

)m
A(s)e−mds

C(s) + D(s)e−ds

= e−mds
(−1)mA(s)Dm(s)

Cm+1(s)
F (s)

with

F (s) =
1

1 + D(s)e−ds/C(s)
(7)
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All rational transfer functions are converted with zero-
order hold, and delays are represented by negative powers
of z; this is done without approximation. F (s), which is
not rational, must be approximated.

4.3 Approximation of delayed feedback

Conversion from continuous-time to discrete-time with
zero-order hold makes sense only when the input is actu-
ally held constant between samples. This is not the case in
F (s), because the feedback signal is filtered recurrently by
D(s)/C(s). The simplest alternative is the plain bilinear
method, which is often used when converting a controller
designed in continuous time for a digital implementation.

However, bilinear conversion introduces an approximation
whose impact on the simulated step response must be eval-
uated. Reviewing the desired characteristics enumerated in
Section 2, two of them are important here, stability and
smoothing. A smoothing effect of the approximation of
F (s) would be acceptable, because F is applied only to a
signal already filtered by A(s)Dm(s)/Cm+1(s).

Stability (or instability) conservation is a different mat-
ter. The stability or instability property of the delayed
feedback is entirely captured in F (s), not by other terms
of (4). The theorem below gives a sufficient condition for
conserving the stability or unstability of G(s).
Theorem 4. If there is a single frequency ωx ≥ 0 such that
|D(jωx)/C(jωx)| = 1, then transfer function

G̃(z) =
m−1∑
k=0

z − 1
z
Z

[
L−1 A(s)

sC(s)

(
−D(s)

C(s)

)k]
z−kd/h

+
z − 1

z
Z
[
L−1 A(s)Dm(s)

sCm+1(s)

]
·

(−1)mz−kd/h

1 + z−d/h (D(s)/C(s))|s= ωx
tan(ωxh/2) ·

z−1
z+1

where L−1 denotes the inverse Laplace transform and Z
the z transform, is a discrete-time approximation of G(s)
which is stable if and only if G(s) is stable.

Proof. Considering the Nyquist criterion, one way to
maintain the stability or instability is to use the bilinear
conversion with prewarping at the crossover frequency
ωx to convert the rational part of the open-loop transfer
function, D(s)/C(s). This guarantees that the phase intro-
duced by the delay at the crossover frequency is the same
in continuous time as in discrete time. Hence the number
of encirclements of −1 is the same since the frequency
response crosses the unit circle only once. ♦

Remark: the result still holds when the open-loop fre-
quency response crosses the unit circle multiple times
provided that other crossings of the unit circle are far
enough from −1.

Bilinear conversion with prewarping at ωx maps D(s)/C(s)
to Dbp(z)/Cbp(z):

Dbp(z)
Cbp(z)

=
D( ωx

tan(ωxh/2)
· z−1
z+1 )

C( ωx

tan(ωxh/2)
· z−1
z+1 )

Polynomials Dbp(z) and Cbp(z) are obtained by canceling
denominators appearing in the right-hand term.

Cases where |D(jω)/C(jω)| 6= 1 for any real ω correspond
to degenerate cases where the bilinear transform without
prewarping should be used:

Db(z)
Cb(z)

=
D( 2

h ·
z−1
z+1 )

C( 2
h ·

z−1
z+1 )

Since there is no intersection between the Nyquist diagram
and the unit circle, the error in the phase shift produced by
the delay cannot stabilize or destabilize the system when
it is converted to discrete time.

4.4 Exact response over delay length

The method described above gives an exact response for
t ≤ md and a good approximation for t > md. It is often
sufficient to have m = 1: in the worst case where the
numerator’s degree is one less than the denominator’s de-
gree, the discontinuity of the step response first derivative
is conserved. This section gives the discrete-time transfer
function for m = 1 corresponding to the general form of
(1) where both A(s) and B(s) can be non-zero.

Eq. (1), (2) and (7) give

G1(s) =
A(s)
C(s)

F (s)

G2(s) =
B(s)
C(s)

F (s)

Transfer function F (s) is the effect of the delayed feedback.
It should be noted that its step response is 1 for 0 ≤ t < d.

Rational transfer functions A(s)/C(s), B(s)/C(s), and
D(s)/C(s) are converted to discrete-time transfer func-
tions in z with zero-order hold or bilinear mapping with
prewarping as explained above (the frequency ωx used for
prewarping is the crossover frequency of the open-loop
transfer function associated with F (s), i.e. D(s)/C(s),
which is common to G1(s) and G2(s)), and the step re-
sponse of G(s) is computed with difference equations.

Let
Azoh(z)
Czoh(z)

=
z − 1

z
Z
[
L−1 A(s)

sC(s)

]
Bzoh(z)
Czoh(z)

=
z − 1

z
Z
[
L−1 B(s)

sC(s)

]
The poles of the zero-order hold conversion of A(s)/C(s)
and B(s)/C(s) are the same, hence the common denomi-
nator Czoh(z). Then H(z), the discrete-time transfer func-
tion used to simulate the step response of G(s), is

H(z) =
znAzoh(z) + Bzoh(z)

Czoh(z)
· Cbp(z)
znCbp(z) + Dbp(z)

(8)

5. EXAMPLES

Examples illustrate the properties of the step response
approximation.
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0 5 t
0

1

Fig. 3. Step response of 2e−s/(s+ 1 + 2e−s) approximated
with a sampling period h = 0.2.

5.1 First-order system with time delay in the direct path

The step response of the following delayed first-order
system with unit negative feedback is computed.

P (s) =
2e−ds

s + 1

The closed-loop transfer function is

G(s) =
2e−ds

s + 1 + 2e−ds

Matching (1) gives
A(s)
C(s)

= 0
B(s)
C(s)

=
D(s)
C(s)

=
2

s + 1

The sampling period is chosen as h = 0.2, on purpose
large with respect to the time constant of P (s). B(s)/C(s)
is converted to discrete-time with zero-order hold and
D(s)/C(s) with bilinear transform:

Bzoh(z)
Czoh(z)

=
0.181

z − 0.819
ωx = 1.732

Dbp(z)
Cbp(z)

=
0.183z + 0.183

z − 0.817

Then (8) gives

H(z) =
0.181

z − 0.819
· z − 0.817
zn(z − 0.8165) + 0.183z + 0.183

Its step response with n = 5, which approximates the step
response of G(s) with d = 1, is shown in Fig. 3. While the
slow sampling is noticeable, the response starts exactly at
t = 1 and is exactly a first-order response for 1 < t < 2.

To evaluate whether the arbitrary choice of h has an im-
portant effect, Fig. 4 shows the error between the response
simulated with h = 0.2 and a reference response simulated
with h = 0.02, i.e. a sampling frequency multiplied by
10 (solid line). The maximum error is 6.3055 · 10−3, i.e.
0.4748 % of max |y(t)|.
Fig. 5 shows the same system simulated with the default
method of Simulink, ode45 with automatic variable step

0 5 t

-0.02

0

0.02

Fig. 4. Approximation error of the step response of
2e−ds/(s + 1 + 2e−ds) approximated with a sampling
period h = 0.2 (solid), and obtained with Simulink
with default settings (dash). Simulation time steps
are shown with circles.

0 5 t
0

1

Fig. 5. Step response of 2e−ds/(s+1+2e−ds) simulated by
Simulink with default settings (ode45 with automatic
variable step).

where the time delay is discretized with up to 1024
samples. The maximum time step is actually 0.2, i.e. a
direct comparison with Fig. 3 is legitimate. A noticeable
smoothing is observed at t = 1. Fig. 4 shows also the error
of the response obtained with Simulink in dash line. The
proposed method gives a significantly smaller error.

5.2 Effect of conversion methods

Was the choice of zero-order hold conversion and bilin-
ear transform with prewarping sound? A naive approach
would consist in using the zero-order hold conversion ev-
erywhere. Fig. 6 shows the response with zero-order hold
conversion for all transfer functions. The use of zero-order
hold for the feedback loop results in an important error in
the effect of this loop, i.e. oscillations, which have a smaller
damping; zero-order hold introduces an additional delay,
so this is not surprising. So the choice of using different
methods of conversions from continuous-time to discrete
time is validated by this example.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2635



0 5 t
0

1

Fig. 6. Step response of 2e−s/(s+ 1 + 2e−s) approximated
with a sampling period h = 0.2 and zero-order hold
also for D(s)/C(s).

0 5 t

-1

0

1

2

Fig. 7. Impulse response of 2e−ds/(s + 1 + 2e−ds) approx-
imated with a sampling period h = 0.02.

5.3 Impulse response

While the approach described above provides a solution for
the step response, it can readily be adapted to the impulse
response case, by multiplying G(s) by s. Fig. 7 shows the
impulse response of G(s) with h = 0.02.

5.4 Large time delay

The system of Example 5.1 is simulated with a time delay
d = 5 and a sampling period h = 0.2 (Fig. 8). The larger
time delay makes the system unstable.

6. CONCLUSION

A method for computing the step, impulse and ramp
responses of a continuous-time linear time-invariant single-
input single-output systems with time delay in the loop has
been designed. A general transfer function, which covers
all the cases where a single time delay is connected to
rational transfer functions, is converted to a discrete-time
transfer function with mixed zero-order hold and bilinear
with prewarping methods. In its simplest version, the
result is exact for t ≤ d (t ≤ 2d if the whole response is

0 10 20 t

-5

0

5

Fig. 8. Step response of 2e−5s/(s+1+2e−5s) approximated
with a sampling period h = 0.2.

delayed by d) and the stability or instability of the system
is conserved; exact response over a longer time range is
possible with higher-order transfer functions. Examples
validate the approach for different cases, both qualitatively
and quantitatively, and show its effectiveness with respect
to Simulink.

This method could be extended in at least two directions.
First, systems under consideration could include multiple
time delays. If these delays are small multiples of a
common divisor, a partial fraction expansion leads to the
sum of independant feedback loops with delays. Second,
linear state-space models with delays could be used, with
possible benefits from a numerical point of view.
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