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Abstract: A model suited for control tasks is developed for a submerged offshore pipe during
the pipelay operation. The pipe is fixed in the touchdown point at the seabed in one end and
attached to a pipelay vessel in the other end. The developed model is discrete and is on the
form of the robot equation with minimal coordinates. Thus the methods of controller synthesis
and stability analysis can be applied directly. The model constitutes a hyper redundant system
and it is shown that this system is passive. A PID-controller has been suggested. The simulation
results are in agreement with the theoretical results.

1. INTRODUCTION

The unprecedented demand for oil and gas coupled with
high commodity prices has accelerated deep- and ultra-
deepwater pipelaying through an impressive development
over the last ten years. Production from oil and gas fields
is currently foreseen in up to 3,500 meter water depth, and
thus one of the key drivers of the offshore pipeline industry
at the moment is the drive into deeper water. According to
Knight and Palathingal [2007], the next five years will see
17,509 km of pipeline laid in deeper waters, compared with
9,507 km over the previous five year period. An analysis
of global deepwater project numbers and lengths over the
two five-year periods shows a 26% increase in the number
of forecast projects, but yet a comparative increase of 56%
in length.

The pipelay method S-lay is fast and economical and
dominates the market for deepwater pipeline installation.
The present trends in deepwater pipelay systems are well
described in Heerema [2005]. Pre-fabricated pipe elements
are assembled horizontally in a production facility onboard
the pipelay vessel and extended over a partly submerged
supporting structure known as the stinger extending from
the stern of the vessel as illustrated in Figure 1. The pipe
is held on to the vessel by heavy tension equipment. The
pipelay vessel operates in the two modes station keeping
and pipe placement, which both use dynamic positioning
systems (DP). The allowable sagbend strains determine
the required angle of departure β from the stinger. The
departure angle, in combination with the stinger length,
determines the required stinger radius ro. This radius
yields a certain overbend strain which has to be checked
against design specifications to stay within limits for
buckling and ovalization. To effectively utilize the tension
equipment, the departure angle should be near-vertical.
To limit overbend strains in the pipeline, for large pipe
diameters a relatively large stinger radius is required and
therefore a longer stinger. Another reason for wishing to
achieve a near-vertical departure angle is to limit tension
force in the pipeline on the seabed to avoid free spans in
areas with uneven seabed. A steel-pipe with
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Fig. 1. The pipe configuration can be described by the
radii of the overbend ro and the sagbend rs. These are
represented by the inscribed circles. Note that rs > ro.
It is desired that β → 90.

an outer diameter of 0.76 m will require a stinger radius
of approximately 240 m which would require a stinger
longer than 300 m. The longest stinger in use today is
140 m, found on the pipelay vessel Solitaire owned by
Allseas. Thus a near-vertical departure-angel is not always
possible.

For pipe diameters and water depths where a near-vertical
departure angle is not possible, control systems become
of importance. Control systems may support the pipelay
operation by optimizing the use of the system actuators to
increase lay rates and to reach deeper waters. A model of
the pipe is required to do this. There is an abundance of
publications dealing with analysis of flexible pipes/risers
as reviewed by Patel and Seyed [1995]. The numerical
analysis of these structures are commonly classified into
three main methods; Finite-Element Method, Finite Dif-
ference Method and Lump-Mass Method, where references
to publications to all methods are found in Chai and
Varyani [2006]. A comparison between continuous and
discrete modelling is presented in Dreyer and Van Vuuren
[1999]. Several commercially available tools for modelling
and simulation are used to simulate the pipelay process in

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 15034 10.3182/20080706-5-KR-1001.3338



advance of the actual installation. These tools take as in-
put the seabed topology, the pipe and vessel properties and
external conditions such as waves and weather conditions.
The usability of these models in model based controllers
are limited due to the complexity.

In this paper a model for the pipe is developed as part
of a system joining a pipe and a vessel, that is suited for
controller tasks while keeping the geometric configuration
and the force balance of the pipeline. Instead of discretiza-
tion of catenary equations or finite element models which
are disadvantageous due to their complexity, the standard
robot model for a robot manipulator found in e.g. Spong
and Vidyasagar [1989] or Sciavicco and Siciliano [2001] is
utilized to model the pipeline. The vessel is included in
the pipe model as the last link of the structure. A linked
structure with many joints is termed hyper-redundant by
Chirikjian and Burdick [1994]. Using a standard robot
model formulation is advantageous since tools, developed
for robot manipulators, for controller synthesis and stabil-
ity analysis now can be applied directly. Moreover, to fur-
ther extend the results, a passivity analysis for the system
is performed. A controller for dynamic positioning using
the angle of departure as reference is implemented and
simulation results are provided to illustrate the theoretical
results.

2. MATHEMATICAL MODELLING

The pipeline is modeled as a series of connected links
as illustrated in Figure 2. It will move in six degrees of
freedom (DOF) seen from Fossen [2002], and thus each
pipe element must support longitudinal stretching, lateral
bending and longitudinal rotation. Hence each element
will have two rotational and a translational joint. In this
paper only planar motion of the pipeline in a vertical
plane is considered. Thus the rotation is ignored and the
longitudinal bending is assumed to be small compared to
the lateral bending so it is also ignored. The model is
based on the robot equation with minimal coordinates.
Kinematics of the pipe is investigated firstly, followed by
the system dynamics.

2.1 Kinematics

The slender pipeline structure is divided into n elements,
each denoted by i, of length li and mass mi connected by 1
DOF revolute joints. Let an earth fixed frame I be used as
an approximation to the inertial frame, where the origin
of I is located on the seabed. Let the slender structure be
fixed to the origin of I. Let an orthogonal frame Bi be
attached to link i such that its x-axis is pointing toward
link i + 1. These frames are said to be in the operational
space of the model. The generalized coordinates for the
model are

q = [ q1 q2 . . . qn ]
T
∈ R

n, (1)

which are in the joint space of the model. Assume that the
elements are cylindrical with evenly distributed mass. The
model is then simplified by using point masses located in
the mass centers of the elements. Figure 2 show the first
three elements of the slender structure.

The position of mass i is given by

pi = [ xi yi ]
T

, (2)
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Fig. 2. The three first elements of the slender structure
connected by rotational joints.

where

xi =

i−1
∑

j=1

lj cos αj +
1

2
li cos αi (3)

yi =

i−1
∑

j=1

lj sinαj +
1

2
li sinαi (4)

and

αi =

i
∑

k=1

qk. (5)

The velocity of element i is given by the time derivative of
the position pi,

vi = [ ẋi ẏi ]
T

, (6)

where

ẋi =

i−1
∑

j=1

(−lj sin (αj) α̇j) −
1

2
li sin (αi) α̇i (7)

ẏi =

i−1
∑

j=1

(lj cos (αj) αj) +
1

2
li cos (αi) α̇i (8)

and

α̇i =

i
∑

k=1

q̇k. (9)

The Jacobian matrix Jvi
∈ R

2×n for link i represents
the mapping from the time-derivative of the generalized
coordinates to the translational velocity of the mass center.
Hence

vi = Jvi
q̇, (10)

where
Jvi

= [ (Jvi
)1 (Jvi

)2 . . . (Jvi
)n ] , (11)

and the columns of the matrix are found to be
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(12)
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The Jacobian matrix Jωi
∈ R

1×n for link i is the linear
mapping from time-derivative of the generalized coordi-
nates to the rotational velocity of the center of mass of
the links. That is

ωi = Jωi
q̇, (13)

where
Jωi

= [ (Jωi
)1 (Jωi

)2 . . . (Jωi
)n ] , (14)

and the columns of the matrix are found to be

(Jωi
)k =

{

1 , k ≤ i
0 , k > i.

(15)

Both Jacobians are mappings between the joint space
and operational space. This completes the kinematics of
the general slender structure. Assume that the pipe is
homogenous and let the links of the pipe be of equal length
l and thus equal mass m and volume.

The introduction of the vessel in the system can be done in
several ways. The preferred method is to connect the pipe
to a real ship model as provided in Fossen [2002]. However,
to simplify the model, the last link of the structure is
modelled as the vessel, such that link n is the vessel and
the links 1 . . . n−1 model the pipe. Thus the pipe elements
are still modelled as point masses, while the vessel is not.

2.2 Dynamics

The equation of motion of the suspended pipe in the
vertical plane is developed using a Lagrangian formulation
and found to be a form of the robot equation of motion
given in the joint space known from Sciavicco and Siciliano
[2001],

M (q) q̈ + C (q, q̇) q̇ + H(q, q̇)q̇ + f(q) + g (q) = τ ,
(16)

where

M (q) - system inertia matrix
C (q, q̇) - Coriolis-centripetal matrix
H(q, q̇) - hydrodynamic damping matrix
f(q) - vector of spring forces in the pipe joints
g (q) - vector of gravitational/buoyancy forces
τ - vector of control inputs

where M,C,H ∈ R
n×n and g, f , τ ∈ R

n. Recall that the
elements modelling the pipe are point masses, thus only
the last element representing the vessel has both mass and
inertia. The inertia matrix M is

M = mnJT
vn

Jvn
+ InJT

ωn
Jωn

+

n−1
∑

i=1

(

miJ
T
vi

Jvi

)

, (17)

where mi is the mass of pipe element i and mn and In is
the mass and moment of inertia of the vessel. The choice of
Coriolis-centripetal matrix C is not unique. A particular
choice of C is where the generic element are

cij =

n
∑

k=1

cijk q̇k, (18)

where the coefficients

cijk =
1

2

(

∂mij

∂qk

+
∂mik

∂qj

−
∂mjk

∂qi

)

(19)

are termed Christoffel symbols of the first type. Due to
symmetry of M,

cijk = cikj . (20)

By choosing the matrix C in this way we have that Ṁ−2C
is skew-symmetric, i.e.

νT
[

Ṁ − 2C
]

ν = 0 ∀ν ∈R
n. (21)

Note that the complexity of M and hence C, will grow sig-
nificantly when the number of links increase. However, as
the links are considered to be point masses the complexity
is kept down. Also, the Recursive Newton-Euler Algorithm
can be employed for numerical treatment of large systems
since C is then no longer required to be found analytically.

The masses in the model are subject to the hydrostatic
forces of gravity and buoyancy. Let the gravity vector be
defined as

g0 = [ 0 −9.81 ]
T

. (22)

For the links with point masses representing the pipe, the
gravity ggi

∈ R
n and buoyancy gbi

∈ R
n of an element

i ∈ 1 . . . n − 1 both attacks in the center of gravity and
are given in the inertial frame as

ggi
= mig0 (23)

gbi
= −Viρwg0 (24)

where Vi is the link volume and ρw is the water density.
The surface vessel is at rest when buoyancy and weight
balance. The total hydrostatic effects on link n repre-
senting the vessel has a translational force that keeps the
vessel on the surface and a torque to keep it leveled. The
force is a function of the difference between the displaced
water volume of the vessel and the nominal displaced water
volume when the vessel is at rest and is given as

ggn
+ gbn

= −ρwAwp (yn − h)g0. (25)

Small perturbations only in heave is assumed such that
the waterplane area of the vessel Awp is assumed to be
constant. The water depth is given by h, and yn is heave
position of the center of gravity of the vessel. The model
for the restoring moment in pitch gθ is given as

gθ = −φp(θ − θref ) − φdθ̇ (26)

where θ = αn and φp, φd ∈ R are constants. θref is the
desired pitch angle, usually set to 0. The moment is highly
dependent on vessel properties such as the hull shape,
which justifies the use of this model. The vector g (q)
in (16) is the combined restoring forces of the n links
represented in the generalized coordinates, found to be

g(q) =

n
∑

i=1

JT
vi

(q) (ggi
+ gbi

) + JT
ωn

gθ. (27)

The elasticity/bending stiffness of the pipe is modelled
as static springs in the rotational joints connecting the
elements. Assume that the spring is at rest when the
corresponding joint angle qi = 0. The spring effect in joint
i is given by

fi = kqi (28)

where k ∈ R is the bending stiffness of the pipe. As the
pipe is homogeneous, it is assumed that k is the same for
all joints. Let the spring forces f (q) in (16) be

f (q) = [ f1 f2 . . . fn ]
T

(29)

which is readily seen to be equivalent to

f (q) = kq (30)

Note that the elasticity effect is modelled directly on the
states and not the mass centers of the links.
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The pipe is subject to hydrodynamic forces of added mass
and drag. These forces are expressed for a general body by
Morison’s equation, found in Faltinsen [1990]. The added
mass term is only significant at high speeds and is omitted.
The pipe elements have no angular momentum, due to the
lumped point masses. By adopting Morison’s equation, the
drag force h acting on a pipe element of unit length is found
to be

h = CD

1

2
ρwdo |u|u (31)

where do is the pipe diameter, u is the undisturbed velocity
normal to the element and CD is the drag coefficient,
found from experiments. Positive force is in the wave
propagation direction. Let the vni

denote the component
of vi normal to the link. vni

is found by applying a
coordinate transformation of vi to the body fixed frame
Bi, selecting the normal component and a new coordinate
transformation back to the I frame. The formulation of
vni

in generalized coordinates is

vni
= PiJvi

q̇ (32)

where

Pi =
(

RI
Bi

)

[

0 0
0 1

]

(

RI
Bi

)T
(33)

is a linear mapping from vi to vni
. Note that P−1

i does
not exist. The rotation matrix RI

Bi
from I to Bi is

RI
Bi

=

[

cos αi − sinαi

sinαi cos αi

]

. (34)

Let γ = 1
2CDρwdol ≥ 0, and apply (31), the drag force

on a link in general coordinates is

hi(q, q̇) = γ ‖vni
‖PiJvi

q̇. (35)

The hydrodynamic damping effects on the entire system
H(q, q̇) ∈ R

n×n
is

H(q, q̇) = γ

n
∑

i=1

(

‖vni
‖JT

vi
PiJvi

)

. (36)

Applying control inputs to the actuators in the joints
control the configuration of a robot manipulator. For the
robot equation based slender marine structure model the
joints are not actuated. Only the position of the vessel on
the surface and the stinger configuration can be controlled.
Let τ in (16) be given as

τ = τq + τt (37)

where τq represents control forces from the stinger and τt

the thruster forces. The stinger configuration is adjustable,
which corresponds to an actuator on the joint connecting
links n−1 and n. Any joint that is supported by the stinger
also have actuators. Assume that the stinger is shorter
than the link length li for any link i. Hence

τq = [ 0 . . . 0 τqn ]
T
∈ R

n. (38)

The thruster force F = [ Fx 0 ]
T
∈ R

2 actuates the vessel
in the surge direction in frame Bn, and is converted to
general coordinates such that

τt = JT
vn

F. (39)

Now all the matrices and vectors in equation (16) are
known and a complete set of equations of motions for the
system of pipe and vessel has been developed.

2.3 Passivity analysis

Passivity provides a powerful tool for the stability analysis
of nonlinear systems. Recall that the input is given by τ
and let the output y be defined as

y = q̇. (40)

The model inputs are the translational and angular veloc-
ities vn and ωn of the vessel in the operational space and
the stinger configuration rate of change q̇n in the joint
space. The outputs are τqn

and thruster forces F. For the
storage function V (q, q̇) defined as

V (q, q̇) =
1

2
q̇TM (q) q̇+

1

2
kqTq+

q(t)
∫

0

g (ζ) dζ (41)

the system is input-output passive. From the previous
section it is known that the inertia matrix is positive
definite, M (q) > 0, ∀q and k > 0 which implies that

V > 0, ∀q, q̇ ∈ R
n \ {0} (42)

Taking the time derivative of V along the system trajec-
tories of (16)

V̇ = −q̇THq̇ + q̇Tτ ≤ q̇Tτ (43)

as the H is positive semidefinite. This can be seen by
reformulating (36) by inserting (33) such that

H(q, q̇) =γ

n
∑

i=1

(

‖vni
‖KT

i Ki

)

(44)

where

Ki =

[

0 0
0 1

]

(

RI
Bi

)T
Jvi

(45)

Recall that γ > 0 and ‖vni
‖ > 0, ∀x 6= 0. The matrix Ki is

rank deficient, and KT
i Ki is symmetric so it is known from

Strang [1986] that H(q, q̇) is positive semidefinite. To get
a physical understanding of this recall that the drag force
defined in (31) only damps the motions normal to the pipe
elements. The tangential motion is not damped and thus
there will be zero damping for longitudinal velocities, thus
there exists q̇ 6= 0 such that H(q, q̇) = 0. If surface friction
of the pipe in the tangential direction is introduced, the
matrix Ki will have full rank and H(q, q̇) would be
positive definite, such that q̇THq̇ ≥ 0, q, q̇ ∈ R

n.

Inserting (37) into (43) yields

V̇ ≤ q̇nτjn
+ ẋT

nFx (46)

which implies that the system is passive. By choosing a
passive controller such as a PD controller the closed loop
system is by Theorem 6.1 in Khalil [2002], also passive.

2.4 Comparison to the catenary

To validate the model it is geometrically compared to the
solution of the classical catenary problem given in Seyed
and Patel [1992] as

y (x) =
H

w

(

cosh
( w

H

)

− 1
)

(47)

where w is the submerged pipe unit weight and H is the
horizontal tension component. The catenary is a static
solution while the developed model is dynamic. It is
generally assumed that a pipe follows closely the curve
of the catenary during pipelay except at the end points.
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Fig. 3. Static plot of the devloped pipe model over a
catenary (I) and arc (II). Note that τq = 0, which
causes the large angle q9.

This can be compensated by applying a stiffened catenary
model as presented in Plukett [1967]. Figure 3 shows the
static solution of 16 plotted over a catenary from the origin
to the point of inflection. For the overbend the catenary
is not applicable and a circle arc is used. The curve-fit is
as good as can be expected considering that the catenary
assumes no bending stiffness, while k 6= 0 for the developed
pipe model.

3. CONTROL DESIGN

It is important to prevent damage to the pipeline and to
increase the operation time for the vessel, thus the lay rate.
A commonly used control strategy is tension control based
on the measured tension at the pipe tip. The developed
model does not give this tension, so in this section a
curvature based controller independent of the tension is
developed. The thrusters are used to shape the curvature
of the suspended pipe. This will provide optimal support
for the pipe on the stinger and minimize the bending of
the pipe at the stinger tip. Known measurements are the
vessel and touchdown point positions, the pipe tension at
the vessel, the stinger configuration and the length of the
suspended pipe. An ROV is commonly positioned over
the touchdown point. The actuators in the system are
the thrusters of the vessel and the configuration of the
stinger. Wether the latter is an actuator is arguable as it
is rarely practical to modify during the pipe installation. A
DP system is developed where the thrusters of the vessel
are used to position the vessel such that a desired radius for
the pipe at the overbend ro is obtained. Assume that for a
given depth and pipe dimension there exist an optimal pipe
configuration with a overbend given as roref

. The stinger
configuration is approximated by an arc with radius ro.
It is desirable to use the thrusters to position the ship
so that the pipe configuration coincides with the stinger
configuration. Assume that there exist a mappings from
ro to xn. These mappings depend on the pipe and vessel
properties. To minimize the error between the stinger and
pipe configurations the PID controller
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Fig. 4. Pipe configuration with and without the DP
controller.

Fx = −kpx̃n − kdvn − ki

∫ t

t0

x̃n (ζ) dζ (48)

where x̃n = xn − xref is the error in surge direction,
kp, kd,ki ≥ 0 are controller gains and xref is the desired
position for xn, is applied. This controller will control
the angle qn by applying thruster force. Let τqn

= 0
as the stinger is assumed to be fixed in the optimal
configuration. For ki = 0 the closed loop system is known
to be passive, and thus the stability properties of the
closed loop are ensured. Passivity can generally not be
guaranteed for a PID controller, unless the integrator
action is limited. Saturation of the thrusters will probably
limit the performance of the controller.

4. SIMULATIONS

To illustrate the theoretical results and the properties of
the closed loop system, simulation results are presented.
The numerical data utilized in the simulation are given in
Appendix A. Note that ki = 0 so that the controller is PD
which ensures stability. The system has been simulated in
Matlab with the ode15s solver. A nine element model is
used, where the vessel starts in its equilibrium position at
time t = 0 s, and at time t = 5 s the controller is enabled
and moves the vessel to obtain the desired configuration.
For the given numerical data xn (qn) is found empirically.
Assume also that the angles qi < qc ∀i ∈ 1, . . . , n where qc

is the critical angle where pipe buckling starts. Figure 4
shows the pipe configurations at times t = 0 s and t = 300
s. The DP controller reference position xref = 790 m.

Figure 5 shows all the states q of the model. The sim-
ulations confirm the passivity property found previously.
The desired position was for the simulation xref = 790 m,
while the controller moved the vessel to xn = 783 m. This
stationary offset can be reduced by ki 6= 0. The angles has
some over-shoot and oscillation, which can be reduced by
better tuning of the model parameters. Let τq = 0 for the
simulation.
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Fig. 5. The state vector q, which are the joint angles.

5. DISCUSSION

Based on the robot equation it is possible to model a
marine pipe being laid on the seabed from a pipe lay
vessel by a set of ordinary differential equations. This
model is suited for control applications and has advantages
over the catinary pipe model, which lacks dynamics, and
also over FEM models which have complexity beyond the
need for control systems. The form of the model is well
known in controller design groups, and numerous methods
of controller design may be applied.

6. CONCLUSION

A model of a submerged offshore pipe fixed in the touch-
down point at the seabed in one end and attached to a
pipelay vessel in the other end is developed. The model is
discrete and is on the form of the robot equation with min-
imal coordinates. The model structure is hyper-redundant.
It is shown that the system is passive with input Fx and
output ẋ. A passive PD-controller has thus been applied.
The theoretical results are verified by simulations. The
simulation results are in agreement with the theoretical
results. Thus the model proves to be suited for control
purposes in the pipelay operation.
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Appendix A. NUMERICAL DATA

Pipe length L = 1000 m
Inner diameter di = 0.6900 m
Outer diameter do = 0.7610 m
Bending stiffness k = 1.4 · 1011

Element length li = L/ (n − 1)

Pipe density ρ = (ρa − ρs) (di/do)
2

+ ρs

Length on waterline ln = 240 m
Water plane area Awp = 1000 m2

Volume displacement Vn = 4.96 · 104 m3

Displacement mn = 5.08976 · 107 kg
Torque gain proportional φp = 1.0 · 1014

Torque gain damping φd = 1.0 · 1014

Number of elements n = 9
Water depth h = 700 m
Drag coefficient Cd = 1.6

Air density ρa = 1.200 · 103 g/m
3

Water density ρw = 1.025 · 106 g/m
3

Steel density ρs = 7.850 · 106 g/m
3

Controller gain proportional kp = 0.4 · 108

Controller gain damping kd = 0.4 · 108

Controller gain integrator ki = 0
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