
A unifying formulation of the

Fokker-Planck-Kolmogorov equation

for general stochastic hybrid systems

Julien Bect

Department of Signal Processing and Electronic Systems, Supelec,

Gif-sur-Yvette, France. E-mail: julien.bect@supelec.fr
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1. INTRODUCTION

Among all continuous-time stochastic models of (nonlinear)

dynamical systems, those with the Markov property are espe-

cially appealling because of their numerous nice properties. In

particular, they come equipped with a pair of operator semi-

groups, the so-called backward and forward semigroups, which

are the analytical keys to most practical problems involving

Markov processes. When the system is determined by a stochas-

tic differential equation, these semigroups are generated by Par-

tial Differential Equations (PDE) — respectively the backward

and forward Kolmogorov equations. The forward Kolmogorov

PDE, also known as the Fokker-Planck equation, rules the time

evolution t 7→ µt, where µt is the probability distribution of the

stateXt of the system at time t. This paper deals with the gener-

alization of this Fokker-Planck-Kolmogorov (FPK) equation to

the framework of General Stochastic Hybrid Systems (GSHS)

recently proposed by Bujorianu and Lygeros (2004, 2006).

The GSHS framework encompasses nearly all continuous-

time Markov models arising in practical applications, includ-

ing piecewise deterministic Markov processes (Davis, 1984,

1993) and switching diffusions (Ghosh et al., 1992, 1997). Two

kinds of jumps are allowed in a GSHS: spontaneous jumps,

defined by a state-dependent stochastic intensity λ(Xt), and

forced jumps triggered by a so-called guard set G. General-

ized FPK equations have been given in the literature, in the

case of spontaneous jumps, for several classes of models; see

Gardiner (1985), Kontorovich and Lyandres (1999), Krystul

et al. (2003) and Hespanha (2005) for instance. The case of

forced jumps is harder to analyze, at the FPK level, because no

stochastic intensity exists for these jumps. Until recently, the

only results available in the literature were dealing with one-

dimensional models; see Feller (1952, 1954) and Malhamé and

Chong (1985). These results have been extended to a class of

multi-dimensional models by Bect et al. (2006).

The main contribution of this paper is general formulation of

the FPK equation for GSHS’s. It is based on the concept of

mean jump intensity, which conveniently substitutes for the

stochastic intensity when the latter does not exist. This equation

unifies all previously known instances of the FPK equation

for stochastic hybrid systems, and provides GSHS practitioners

with a tool to derive the correct evolution equation for the

probability law of the state in any given example. The results

presented in this paper are extracted from the PhD thesis of the

author (Bect, 2007).

The paper is organized as follows. Section 2 introduces our

notations for the GSHS formalism, together with various as-

sumptions that will be needed in the sequel. In Section 3 we

define the crucial concept of mean jump intensity, which is

used in Section 4 to derive our general formulation of the FPK

equation for GSHS’s. Section 5 concludes the paper with a

series of examples and some general remarks concerning PDEs

and integro-differential equations.

2. GENERAL STOCHASTIC HYBRID SYSTEMS

The object of interest in the GSHS formalism is a continuous-

time strong Markov process X =(Xt)t≥0, with values in a

metric space E0. It is defined on a filtered space (Ω,A,F),
equipped with a system

{

Px; x ∈ E0
}

of probability measures
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on (Ω,A), with the property that Px {X0 = x} = 1 for all

x ∈ E0 (i.e., X starts from x under Px). As usual, Ex denotes

the expectation operator corresponding to Px.

It is assumed that, for each ω ∈ Ω, the samplepath t 7→ Xt(ω)
is right-continuous, has left limits X−

t (ω) in the completion E
of E0, and has a finite number of jumps, denoted by Nt(ω), on

the interval [0; t] for all t ≥ 0. The last condition can be seen as

a “pathwise non-Zenoness” requirement. We will denote by τk
the kth jump time, with τk = +∞ if there is less than k jumps.

2.1 The hybrid state space

The (completed) state-space of the model is assumed to have

a hybrid structure: E = ∪q∈Q {q} × Eq , where Q is a finite

or countable set, and each Eq is either the closure of some

connected open subset Dq ⊂ R
nq (nq ≥ 1) or any singleton

space (in which case we set nq = 0). The state at time t can

therefore be written as a pair Xt = (Qt, Zt), where Qt ∈ Q
and Zt ∈ EQt

. We denote by Qd =
{

q ∈ Q
∣

∣ nq = 0
}

the set

of all “purely discrete” modes, and by Ed = ∪q∈Qd {q} × Eq

the corresponding subset of E.

The state spaceE is regarded as the disjoint sum of the sets Eq ,

q ∈ Q, and endowed with the disjoint union topology 1 . We

denote by E the Borel σ-algebra, and by Ec the subsets of

all relatively compact Γ ∈ E . Moreover, we define a “volume

measure” on E by the relation

m(Γ) =
∑

q 6∈Qd

mq(Γ ∩ Eq) +
∑

x∈Ed

δx(Γ) , Γ ∈ E ,

where mq is the nq-dimensional Lebesgue measure on Eq

and δx the Dirac mass at x. (Note that Eq ⊂ R
nq has been

tacitly identified with {q} × Eq ⊂ E.)

Let ∂Eq be the boundary of Eq in R
nq , with the convention

that ∂Eq = ∅ when nq = 0. We define the boundary ∂E of

the state space by the relation ∂E = ∪q∈Q {q} × ∂Eq, and the

guard set by G = E \ E0. It is not required that G = ∂E.

Notations. Let µ : E → R be a (signed) measure, K : E ×
E 7→ R a kernel and ϕ : E → R a measurable function.

The following notations will be used throughout the paper,

assuming the integrals exist: (µK)(dy) =
∫

µ(dx)K(x, dy),
(Kϕ)(x) =

∫

K(x, dy)ϕ(y) and µϕ =
∫

µ(dx)ϕ(x).

2.2 A stochastic differential equation with jumps

A vector field g on E is regarded as a first order differential

operator with respect to the continuous variables: its action

on a continuously differentiable function ϕ ∈ C1(E) will be

denoted by gϕ, where (gϕ)(q, z) =
∑nq

i=1 gi(q, z) dϕ
dzi (q, z) on

E \ Ed and gϕ = 0 on Ed. The number of “components” of g

depends on the mode q: to simplify the notations, we shall

agree that the indexes i and j always correspond to summations

on the number of continuous variables, and drop the explicit

dependence on q. For instance, the definition of gϕ can be

rewritten as gϕ =
∑

i g
i ∂ϕ
∂zi .

The process X is assumed to be driven by an Itô stochastic

differential equation between its jumps: there exist r+1 smooth

1 which is (here) locally compact, separable and completely metrizable

vector fields f l and a r-dimensional Wiener process B such

that, in mode q ∈ Q \ Qd,

dZt = f0(q, Zt) dt+

r
∑

l=1

f l(q, Zt) dBl
t . (1)

In other words, for all ϕ ∈ C2(E), X satisfies the following

generalized Itô formula

ϕ(Xt) − ϕ(X0) =

∫ t

0

(Lϕ)(Xs) ds+

r
∑

l=1

∫ t

0

(f lϕ)(Xs) dBl
s

+
∑

0<τk≤t

(

ϕ(Xτk
) − ϕ(X−

τk
)
)

,

where L is the differential generator associated with (1), i.e.

L =
∑

i f
i
0

∂
∂zi + 1

2

∑

i,j

(

∑r
l=1 f i

lf
j
l

)

∂2

∂zi∂zj . We make the

following smoothness assumptions:

Assumption 1. The drift f0 is of classC1, and the other vector

fields f l, 1 ≤ l ≤ r, are of class C2.

2.3 Two different kinds of jumps

We assume that there exists a Markov kernel K from E to E0

and a measurable locally bounded function λ : E0 → R+, such

that the following Lévy system identity holds for all x ∈ E0,

t ≥ 0, and for all measurable ϕ : E × E0 → R+:

Ex

{

∑

0<τk≤t
ϕ(X−

τk
, Xτk

)

}

= Ex

{
∫ t

0

(Kϕ)(X−
s ) dHs

}

where (Kϕ)(y) =
∫

E0 K(y, dy′)ϕ(y, y′) and H is the pre-

dictable increasing process defined by

Ht =

∫ t

0

λ(Xs) ds+
∑

τk≤t

1X−

τk
∈G . (2)

The first part corresponds to spontaneous jumps, triggered “ran-

domly in time” with a stochastic intensity λ(Xt), while the

other part corresponds to forced jumps, triggered when X hits

the guard set G.

Remark. The terms “spontaneous” and “forced” seem to have

been coined by Bujorianu et al. (2003). They are closely related

to the probabilistic notions of predictability and total inaccessi-

bility for stopping times (see, e.g., Rogers and Williams, 2000,

chapter VI, §§12–18), but be shall not discuss this point further

in this paper.

Remark. The pair (K,H) is a Lévy system for the processX in

the sense of Walsh and Weil (1972, definition 6.1). Most authors

require thatH be continuous in the definition of a Lévy system,

thereby disallowing predictable jumps.

3. MEAN JUMP INTENSITY

From now on, we assume that some initial probability law µ0

has been chosen, with µ0(G) = 0 since the process cannot start

fromG. All expectations will be taken, without further mention,

with respect to the probability Pµ0
=

∫

µ0(dx)Px.
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3.1 Definition and link with the usual stochastic intensity

It is assumed from now on that E(Nt)<+∞. This is a usual

requirement for stochastic hybrid processes 2 , which is clearly

stronger than piecewise-continuity of the samplepaths. Its being

satisfied depends not only on the dynamics of the system but

also on the initial probability law µ0.

In order to introduce the main concept of this section, let us

define a (positive, unbounded) measure R on E × (0; +∞) by

R (A) = Eµ0

{

∑

k≥1
1A

(

X−
τk
, τk

)

}

.

For any Γ∈E , the quantity R (Γ × (0; t]) is the expected num-

ber of jumps starting from Γ during the time interval (0; t].

Definition 2. Suppose that there exists a mapping r : t 7→ rt,
from [0; +∞) to the set of all positive bounded measures on E,

such that, for all Γ ∈ E ,

(1) t 7→ rt(Γ) is measurable,

(2) for all t ≥ 0, R (Γ × (0; t]) =
∫ t

0
rs(Γ) ds.

Then r is called the mean jump intensity of the process X
(started with the initial law µ0).

Let us split R into the sum of two measures R0 and RG, corre-

sponding respectively to the spontaneous and forced jumps of

the process. Then, using the Lévy system identity, it is easy to

see that a mean jump intensity r0 always exist for the sponta-

neous part R0: it is given by

r0t (Γ) = E
(

λ(Xt) 1Xt∈Γ

)

=

∫

Γ

λ(x)µt(dx) .

In other words: for spontaneous jumps, a mean jump intensity

always exists, and it is the expectation of the stochastic jump

intensity λ(Xt) on the event {Xt ∈ Γ}.

Forced jumps are more problematic. The Lévy system identity

is powerless here, since no stochastic intensity exists (because

forced jumps are predictable). All hope is not lost, though:

a simple example will be presented in the next subsection,

proving that a mean jump intensity can exist anyway. This is

fortunate, since the existence of a mean jump intensity will

be an essential ingredient for our unified formulation of the

generalized FPK equation. See subsection 5.2 for further details

on that issue.

3.2 Where µ0 comes into play: an illustrative example

Consider the following hybrid dynamics on E= [0; 1]: the

state Xt moves to the right at constant speed v > 0 as long

as it is in E0 = [0; 1), and jumps instantaneously to 0 as soon

as it hits the guard G = {1} (i.e., the reset kernel is such

that K(1, · )= δ0).

If we take µ0 = δ0 for the initial law, then the process jumps

from 1 to 0 each time t is a multiple of 1/v, i.e. τk = k/v
and X−

τk
= 1 almost surely. There is therefore no mean jump

intensity in this case, since R =
∑

k≥1 δ(1, k/v).

2 See, e.g., Davis (1984) or Bujorianu and Lygeros (2004).

Now take µ0 to be the uniform probability on [0; 1] (which is,

incidentally, the only stationary probability law of the process).

Then

R
(

Γ × (0; t]
)

= δ1(Γ)

∫ 1

0

argmax
k≥1

{

k − x

v
≤ t

}

dx

= δ1(Γ)

∫ 1

0

⌈vt+ x⌉ dx

= vt δ1(Γ) ,

where ⌈vt+ x⌉ is the smaller integer greater or equal to vt +
x. Therefore the mean jump intensity exists in this case, and

is equal to v δ1 (it is of course time-independent, since µ0

is stationary). In particular, the global mean jump intensity is

rt(E) = v.

4. GENERALIZED FPK EQUATION

4.1 A weak form of the FPK equation

Taking expectations in 2.2, the following generalized Dynkin

formula is obtained: for all compactly supported ϕ ∈ C2(E)
and all t ≥ 0,

E {ϕ(Xt) − ϕ(X0)} = E

{
∫ t

0

(Lϕ)(Xs) ds

}

+ E

{

∑

0<τk≤t

ϕ(Xτk
) − ϕ(X−

τk
)

}

.

(3)

Let us assume the existence of a mean jump intensity rt at all

times. Then (3) can be rewritten as

(µt − µ0)ϕ =

∫ t

0

µs(Lϕ) ds+

∫ t

0

rs(K − I)ϕds , (4)

where µt is the law of Xt and I is the “identity kernel” on E,

i.e. the kernel defined by I(y, dy′) = δy(dy′). Formally differ-

entiating (4) yields

µ′
t = L∗µt + rt(K − I) , (5)

where t 7→ µ′
t is the “derivative” of t 7→ µt (in a sense to

be specified later), and L∗ the adjoint of L in the sense of

distribution theory.

Equation (5) begins like the usual Fokker-Planck equation for

diffusion processes (µ′
t = L∗µt) and ends with an additional

term that accounts for the jumps of the process.

Definition 3. We will say that t 7→ µt is a solution in the weak

sense of the generalized FPK equation for the GSHS if

a) there exists a mean jump intensity t 7→ rt,
b) there exists a mapping t 7→ µ′

t, from [0; +∞) to the

space Mc(E) of all Radon measures on E, such that t 7→
µt(Γ) is absolutely continuous with a.e.-derivative t 7→
µ′

t(Γ), for all Γ ∈ Ec,

c) L∗µt is a Radon measure for all t ≥ 0,

d) equation (5) holds as an equality between Radon mea-

sures, i.e. µ′
t(Γ) = (L∗µt)(Γ) + rt(K − I)(Γ) for all

t ≥ 0 and all Γ ∈ Ec.

Such a weak form of the FPK equation is the price to pay for a

unified treatment of both kind of jumps. Conditions 3.a and 3.b

can be seen as smoothness requirements with respect to the time

variable, and 3.c with respect to the space variables.
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4.2 “Physical” interpretation

The usual FPK equation admits a well-known physical inter-

pretation as a conservation equation for the “probability mass”

(see e.g. Gardiner, 1985). Indeed, assuming the existence of a

smooth pdf p ∈ C2,1(E × R+), the equation µ′
t = L∗µt can

be rewritten as a conservation equation ∂pt/∂t = div(jt), with

the probability current jt defined by

jit = f i
0 pt −

1

2

∑

j

∂(aijpt)

∂zj
, aij =

r
∑

l=1

f i
lf

j
l . (6)

The additional “jump term” in the generalized FPK equation,

admit a nice physical interpretation as well. To see this, let us

rewrite it as the difference of two bounded positive measure:

rt(K−I) = rsrct −rt, where rsrct = rtK . Therefore rt and rsrct

behave respectively as a sink and a source in the generalized

FPK equation: for each Γ ∈ E , rt(Γ) dt is the probability mass

leaving the set Γ during dt, because of the jumps of the process,

while rsrct (Γ) dt is the probability mass entering Γ.

These two measures are in fact connected by the reset ker-

nel K(x, dy). In particular, the relation rt(E) = rsrct (E) holds

at all times t ≥ 0, ensuring that the total probability mass is

conserved. Moreover, introducing the measures Wt(dx, dy) =
rt(dx)K(x, dy), we have rt =

∫

W (·, dx), rsrct =
∫

W (dx, ·)
and the generalized FPK equation can be rewritten more sym-

metrically as

µ′
t = L∗µt +

∫

(Wt(dx, ·) −Wt(·, dx)) .

It appears clearly, under this form, as a generalization of the

differential Chapman-Kolmogorov formula of Gardiner (1985,

equation 3.4.22) — which only allows spontaneous jumps.

4.3 Sufficient conditions for the existence of a weak solution

The main result of this paper show that the various requirements

of definition 3 are not independent. We denote by |ν| the total

variation measure of a Radon measure ν, which is finite on Ec.

We shall say that a function t 7→ νt from [0;∞) to Mc(E) is

right-continuous (resp. locally integrable) is t 7→ νtϕ is right-

continuous (resp. locally integrable) for all bounded measurable

ϕ : E → R.

Theorem 4. Consider the following assumptions:

a) there exists a mean jump intensity r (3.a), such that t 7→ rt
is right-continuous,

b) t 7→ µt is differentiable in the sense of 3.b, t 7→ µ′
t is

right-continuous and t 7→ |µ′
t| locally integrable,

c) L∗µt is a Radon measure for all t ≥ 0 (3.c), t 7→ L∗µt is

right-continuous and t 7→ |L∗µt| is locally integrable.

If any two of these assumptions hold, then the third holds as well

and t 7→ µt is a solution in the weak sense of the generalized

FPK equation.

The proof of this theorem is given in appendix A. We will not

try to give general conditions under which assumptions 4.a–4.c

are satisfied, since such conditions would inevitably be, in the

general setting of this paper, very complicated (involving the

initial law µ0, the vector fields g of the stochastic differential

equation, the geometry of the state space E and the reset

kernel K).

4.4 The case when a piecewise smooth pdf exists

Equation (5) is an evolution equation for the measure-valued

function t 7→ µt. In most situations of practical interest, the

measures µt admit a pdf pt, with respect to the volume mea-

sure m on E (sometimes with an additional singular measure,

like a linear combination of Dirac masses, but this case will not

be discussed here). If the function p : (x, t) 7→ pt(x) is smooth

enough, at least piecewise, then equation (5) simultaneously

gives birth to an evolution equation for t 7→ pt and to static re-

lations that hold for all t ≥ 0 (so-called “boundary conditions”,

although the name is not entirely appropriate here). This can be

done quite generally, using some additional measure-theoretic

tools for which there is no room in this paper. The reader is

referred to Bect (2007, §IV.2.C) for more on this issue.

5. EXAMPLES

5.1 A class of models with spontaneous jumps

Our first series of examples covers a large family of models

without forced jumps (G = ∅). The reset kernel K is assumed

to satisfy the following assumption:

Assumption 5. There exists a kernel K∗ on E such that

m(dx)K(x, dy) = m(dy)K∗(y, dx) .

(We do not assume thatK∗ is a Markov kernel, i.e. thatK∗(y, ·)
is a probability measure for all y.) The following result is an

easy consequence of Theorem 4:

Corollary 6. If there exists a pdf p ∈ C2,1(E × R+), then

the measures rt and rsrct are absolutely continuous with respect

to m,
drt
dm

= λ pt ,
drsrct

dm

= K∗ (λ pt) ,

and the following evolution equation holds:

∂pt

∂t
= L∗pt + K∗ (λ pt) − λ pt . (7)

Assumption 5 holds for several classes of models known in the

literature: pure jump processes with an absolutely continuous

reset kernel, the switching diffusions of Ghosh et al. (1992,

1997) and also the SHS of Hespanha (2005).

Example 7. Pure jump processes occur when L = 0, i.e. when

there is no continuous dynamics. We consider here the case

where K is absolutely continuous: K(x, dy) = k(x, y)m(dy).
For instance, if the amplitude of the jumps is independent of

the pre-jump state and distributed the pdf ρ, then k(x, y) =
ρ(y − x). In this case Assumption 5 holds with K∗(x, dy) =
k(y, x)m(dy). Introducing the function γ(x, y) = λ(x)k(x, y),
equation 7 turns into the well-known master equation (Gar-

diner, 1985, eq. 3.5.2):

∂p

∂t
(y, t) =

∫

(

γ(x, y)p(x, t) − γ(y, x)p(y, t)
)

m(dx) .
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In particular, when all modes are purely discrete (nq = 0), this

is just the usual forward Kolmogorov equation for a continuous-

time Markov chain.

Example 8. In the case of switching diffusions, the state space

is of the formE = Q×R
n (with Q a countable set and n ≥ 1)

and the reset kernel of the form

K
(

(q, z), ·
)

=
∑

q′ 6=q

πqq′ (z) δ(q′,z) ,

where π(z) = (πqq′ (z)) is a stochastic matrix for all z ∈ R
n.

Assumption 5 is fulfilled with K∗ defined by

K∗
(

(q, z), ·
)

=
∑

q′ 6=q

πq′q(z) δ(q′,z) .

Equation 6 becomes in this case the familiar generalized FPK

equation for switching diffusion processes (see, e.g., Kon-

torovich and Lyandres, 1999; Krystul et al., 2003): for all

x = (q, z) ∈ E and t ≥ 0,

∂p

∂t
(x, t) = (L∗pt)(x) +

∑

q′ 6=q

λq′q(z) pt(q
′, z) − λ(x) pt(x) ,

where λq′q(z) = λ(q′, z)πq′q(z).

Example 9. The SHS of Hespanha (2005) are also defined

on E = Q × R
n, but this time the post-jump state Xτk

is

determined by applying a reset map Ψ : E → E0 to the pre-

jump state X−
τk

, Ψ being chosen randomly in a finite of reset

maps Ψk. The reset kernel can therefore be written as

K(x, ·) =
∑

k

πk(x) δΨk(x) ,

with πk(x) the probability of choosing the reset map Ψk given

that X−
τk

= x. Provided that the functions Ψk are local C1-

diffeomorphisms, the kernel K fulfills Assumption 5 with

K∗(x, ·) =
∑

k

∑

y∈Ψ−1

k
({x})

πk(y)
∣

∣Jk(y)
∣

∣

−1
δy ,

where Jk(y) is the Jacobian determinant of Ψk at y. Therefore,

introducing a stochastic intensity λk = λ̺k for each one of the

reset maps, we recover thanks to Corollary 6 the generalized

FPK equation given by Hespanha (2005, p. 1364):

∂p

∂t
(x, t) = (L∗pt)(x)

+
∑

k

∑

y∈Ψ−1

k
({x})

(

λk pt

|Jk|
(y) − (λk pt)(x)

)

.

5.2 A class of models with forced jumps

The measure-valued formulation of the generalized FPK equa-

tion equation (5) paves the way for an easier proof of some

recent results (Bect et al., 2006), concerning GSHS with forced

jumps and deterministic resets. A typical example of this class

of process is the thermostat model of Malhamé and Chong

(1985). Since a complete statement and proof of these results

would be too long for this paper, we shall only provide an

illustrative example. The interested reader is referred to the PhD

thesis of the author (Bect, 2007, IV.2.C and IV.3.C). A thorough

treatment will appear in a forthcoming publication.

Example 10. Let us consider a GSHS without spontaneous

jumps (λ = 0), whose hybrid state space is defined by Q =
{0, 1}, E0 = [zmin; +∞) × R

n−1, and E0 = (−∞; zmax] ×
R

n−1 (where zmin<zmax). Assume that the guard G is the

whole boundary ∂E, and that the reset map is defined by

Ψ(q, z) = (1−q, z). In other words, the discrete componentQt

switches from 0 to 1 when Z1
t reaches the lower threshold zmin,

and switches back to 0 when Z1
t reaches the upper thresh-

old zmax.

For such a hybrid structure, it is easily shown using Theorem 4

that no C2,1 solution can exist. Consider the set G′ = Ψ(G),
which is the disjoint unions of two “hyperplanes” in E0. A

careful examination of (5) suggests to look for solution that are

of class C2,1 on E0 \G′, possibly with a discontinuity onG′. If

the process effectively has a pdf p satisfying these assumptions,

then it can be proved using Theorem 4 that:

(1) The usual Fokker-Planck equation, ∂pt/∂t = L∗pt, holds

on the four components of E0 \G′,

(2) The jumps are accounted for by the static relation jout
t =

jint ◦ ψ on G, at all times t ≥ 0, where jout
t and jint are

the outgoing and ingoing probability current, respectively

defined on G and G′ (see (6) for the defintion of the

probability current).

(3) The mean jump intensity rt is supported by G and given

by the outgoing flux of the probabily current jt, i.e.

rt(Γ) =
∫

Γ∩G j
out
t ds, where s is the surface measure.

(4) Finally, for each x ∈ G such that at least one of the “noise

driven” vector fields gl (1 ≤ l ≤ r) is transverse to G,

the pdf has to satisfy the so-called absorbing boundary

condition pt(x) = 0. For similar reasons, pt has to be

continuous at each x ∈ Γ such that at least one of the

“noise driven” vector fields is transverse to G′.

5.3 A remark concerning PDEs

Notations can be deceiving, sometimes. The compact formula-

tion of (5) and (7), which makes them look very much like the

usual Fokker-Planck equation, should not fool the reader into

thinking that these equations are simple PDEs. Indeed, even

when a (piecewise) smooth pdf exists, the generalized FPK

equation is in general a system of integro-differential equa-

tions, with boundary conditions that can also involve integrals.

The integrals are hidden in the kernel notation: (rtK)(Γ) =
∫

rt(dx)K(x,Γ). Fortunately, they disappear in many inter-

esting examples where the reset kernel is simple enough (see

examples 8–10). This is an important observation for practical

applications, since the numerical solution of a PDE is much

easier than that of a general integro-differential equation.

Appendix A. PROOF OF THEOREM 4

Let C2
c (E) denote the set of all compactly supported ϕ ∈

C2(E). The following lemma is an easy consequence of the

smoothness of the vector fields:

Lemma 11. For all ϕ ∈ C2(E), t 7→
∫ t

0
(L∗µs)(ϕ) ds is

differentiable on the right, with the right continuous derivative

t 7→ (L∗µt)(ϕ).
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In the sequel, “right continuous” is abbreviated as “rc”.

⋄ Assume that both 4.a and 4.b hold. Then each term of (4)

has a t-derivative on the right. Differentiating both sides proves

that (5) holds for all t ≥ 0, hence that L∗µt is a Radon measure

and that t 7→ L∗µt is rc. Moreover, integrating the inequality

|L∗µt| ≤ |µ′
t| + 2rt yields that, for all Γ ∈ Ec,

∫ t

0

|L∗µs| (Γ) ds ≤

∫ t

0

|µ′
s| (Γ) ds+ 2 E

{

Nt

}

≤ +∞ .

Therefore t 7→ |L∗µs| is locally integrable, which proves 4.c.

⋄ Assume now that 4.a and 4.c hold, and set µ′
t = L∗µt +

rt(K−I), for all t ≥ 0. Clearly, µ′
t is a Radon measure, t 7→ µ′

t

is rc and
∫ t

0

µ′
tϕ = (µt − µ0)ϕ , ∀t ≥ 0 , ∀ϕ ∈ C2

c (E) . (A.1)

Moreover, for all Γ ∈ Ec,
∫ t

0

|µ′
s| (Γ) ds ≤

∫ t

0

|L∗µs| (Γ) ds+ 2 E
{

Nt

}

≤ +∞ ,

which shows that t 7→ |µ′
s| is locally integrable. Therefore,

using standard approximation techniques and a monotone class

argument, it can be proved that (A.1) still holds for ϕ = 1Γ,

Γ ∈ Ec, i.e. that t 7→ µ′
t is the “derivative” of t 7→ µt in the

sense of definition 3.b.

⋄ Finally, assume that 4.b and 4.c hold. Then, for all ϕ ∈
C2

c (E), equation (4) can be rewritten as
∫∫

G×]0;t]

ϕ(x)
(

RG(dx, ds) − (L∗µs)(dx)ds
)

=

∫∫

E0×]0;t]

ϕ(x)
(

(RGK)(dx, ds) − ξs(dx) ds
)

, (A.2)

where ξs = µ′
s −

(

L∗µs

)

(E0 ∩ · ) − r0(K−I). The mea-

sures RG and r0 have been defined in subsection 3.1. Clearly,

ξt ∈ Mc(E) and t 7→ ξt is locally integrable. Using once more

standard approximation techniques, one can prove that (A.2)

still holds when ϕ = 1Γ, with Γ a compact subset of G. In this

case the right-hand side vanishes, yielding

RG(Γ×]0; t]) =

∫ t

0

(L∗µs)(Γ) ds .

Moreover, since t 7→ RG(Γ×]0; t]) is increasing and t 7→
(L∗µt)(Γ) is rc, we have (L∗µt)(Γ) ≥ 0 for all t ≥ 0. This

allows to extend (A.2) to all Γ ∈ Ec, using a monotone class

argument, thus proving the existence of a mean jump intensity

rG
t = (L∗µs)(G ∩ · ) for the forced jumps.
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