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Abstract: Existing control theory for linear parameter varying system uses a uniform upper
bound on the induced-L2 norm for the varying parameters. In this paper, this constant is
generalized as a function of parameters, the design provides varying induced-L2 performance
in the presence of real-time variations and consequently gives rise to the superior robust
performance of the local operating point. The controller synthesis incorporates known bounds
on the rate of variation and as in the existing theory, the synthesis problem reduces to convex
optimization involving linear matrix inequalities. An example, robust LPV flight control design
of UAV demonstrator was used to illustrate the design criterion.

1. INTRODUCTION

Gain scheduling control problem of linear parameter vary-
ing (LPV) system has received plenty of attentions. An
LPV system is a finite dimensional linear system that
depends on one or more time-varying measurable para-
meters (e.g. families of linearized model for nonlinear
aircraft system). LPV control design uses these measure-
ments to provide good performance in the presence of real-
time parameters. In Apkarian [1995], Apkarian [1995a],
Becker [1994], the control problem is solved by single
quadratic lypunov function synthesis (SQLF), one such
method use a fixed quadratic Lyapunov function and H∞

optimization technique to guarantee exponential stabil-
ity. The approache in Apkarian [1998], Wu [1995],Feron
[1996],Wu [1996] incorporates a parameter-dependent Lya-
punov function (PDLF). This enables knowledge of the
bounds on the rate of variation of the parameter trajec-
tory to be used in the analysis test, unlike SQLF, which
designed with arbitrarily fast variations in the parameters.
The resulted controllers are characterized by solutions
to linear matrix inequalities, and optimization reduced
to convex programming. The controllers are themselves
parameter dependent and require real time measurements
of the varying parameters.

The performance criterion used by existing theory is a
uniform upper bound γ on L2 norm. In the controller
applications, if a uniform upper bound has been chosen
for all the operating points, the resulted controller perfor-
mance might be limited by a few troublesome operating
points (e.g. aircraft operates on the boundary of flight
envelope). One way to overcome the mediocre performance
is to use parameter dependent performance. This approach
gives rise to a more flexible norm bound that allows us to
characterized “local” performance in the parameters, and
subsequently evaluate the controllers with superior robust
performance.

The rest of the paper is organized as follows. In §2 we
present the robust performance problem for induced-L2

norm of LPV system. We generalized the existing synthesis

method in §3 and discuss the solution computation and
improved robust conditions with parameter dependent
performances in §4. Finally in §5 we present a design
example of robust longitudinal control of Eclipse UAV,
and use the approaches we discuss in the early sections.

The following notations are used in additional to standard
notations: R+ and Rn×n denotes the sets of positive
real numbers and positive-defined, real n × n matrices.
C1(V, W ) denotes continuous functions from U to V which
have the first order derivative. The vertices of ploytope V
are denoted by vert(V).

2. PROBLEM FORMULATION

Considered the LPV plant Σs(ρ) given by
[

ẋ(t)
e(t)
y(t)

]

=

[

A(ρ(t)) Bd(ρ(t)) Bu(ρ(t))
Ce(ρ(t)) Ded(ρ(t)) Deu(ρ(t))
Cy(ρ(t)) Dyd(ρ(t)) Dyu(ρ(t))

][

x(t)
d(t)
u(t)

]

(1)

where x(t) ∈ R
n, d(t) ∈ Rnd

, e(t) ∈ Rne
, and state space

data (A, B, C, D) depend continuously on time varying pa-
rameters that are represented by the vector-valued signal
ρ ∈ C1(R+, Rs). Varying parameters ρ(t) and its rate of
variation ρ̇(t) are contained in prespecified compact sets P
and V , where V is a convex polytope of the rate of variation
ρ̇(t) .

The induced-L2 norms associate with an LPV system can
be found using a parameter dependent quadratic Lya-
punov function and an integral quadratic constraint. The
definition of parameter-dependent quadratic performance
given below facilitates this characterization Wu [1995].

Lemma 1. Given a constant γ, the LPV system in (1) has
parameter-dependent quadratic performance of level γ if
some matrix function W ∈ C1(Rs, R+) satisfies





E(ρ, ρ̇) W (ρ)B(ρ) CT (ρ)
BT (ρ)W (ρ) −γInd

DT (ρ)
C(ρ) D(ρ) −γIne



 < 0 (2)

at all (ρ, ρ̇) for which ρ ∈ P and ρ ∈ V where
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E(ρ, ρ̇) = AT (ρ)W (ρ) + W (ρ)A(ρ) +

s
∑

i=1

ρ̇i

∂W (ρ)

∂ρi

Supposed the LPV system Σs in (1) has parameter-
dependent quadratic performance of level γ. Then, for any
allowable parameter ρ(t) , the LPV system is exponential
stable and

∞
∫

0

1

γ(ρ(t))
eT (t)e(t)dt <

∞
∫

0

γ(ρ(t))dT (t)d(t)dt

for all nonzero d ∈ L2, assuming zero initial conditions.
This implies the norm bound ‖Σs(ρ)‖i2 < supt>0γ(ρ(t)),
which for constant γ simply reduces to ‖Σs‖i2 < supt>0γ.
In the above treatment of LPV performance problem, γ
is constant, signifying performance for not only worst-case
disturbances, but also worst-case parameter variations.

3. OUTPUT FEEDBACK SYNTHESIS

Consider the generalized LPV plant in (1), let the nth-
order generalized simplified LPV system ΣV

P
given as







ẋ
e1

e2

y






=







A(ρ) Bd1(ρ) Bd2(ρ) Bu(ρ)
Ce1(ρ) 0 0 0
Ce2(ρ) 0 0 Inu

Cy(ρ) 0 Iny
0













x
d1

d2

u






(3)

where ρ ∈ Rs, x,∈ Rn, [dT
1 dT

2 ]T ∈nd , [eT
1 eT

2 ]T ∈
Rne , u ∈ Rnu and y ∈ Rnu

respectively represent the
parameters, states, disturbances, errors, controls and mea-
surements. Note for simplicity of derivation, we assume
Ded = 0, Dyu = 0 and Dyd = [0 Ind

], Deu = [0 Inu
]T has

full row rank and column rank respectively for all ρ ⊂ P .
It is shown that we can statically, invertibly transform any
general plant to satisfy the above assumptions using a loop
transformation Safonov [1989].

The gain-scheduling output-feedback control problem con-
sists of finding a dynamic LPV controller, K(ρ, ρ̇), with
state-space equations
[

ẋk(t)
u(t)

]

=

[

AK(ρ(t), ρ̇(t)) BK(ρ(t), ρ̇(t))
CK(ρ(t), ρ̇(t)) DK(ρ(t), ρ̇(t))

] [

xk(t)
y(t)

]

(4)

Define xT
c := [XT

c xT
k ]. The closed loop system can be

written as
[

ẋc(t)
e(t)

]

=

[

Ac(ρ(t), ρ̇(t)) Bc(ρ(t), ρ̇(t))
Cc(ρ(t), ρ̇(t)) Dc(ρ(t), ρ̇(t))

] [

xc(t)
d(t)

]

(5)

where

Ac(ρ, ρ̇) =

[

A + BuDKCy BuCK

BKCy AK

]

Bc(ρ, ρ̇) =

[

Bd2 Bd2 + BuDK

0 BK

]

Cc(ρ, ρ̇) =

[

Ce1 0
Ce2 + DKCy CK

]

Dc(ρ, ρ̇) =

[

0 0
0 DK

]

The parameter dependent terms in above matrices are
omitted. With the inequalities defined in (2), we have

the following main theorem for solving output feedback
synthesis problem in Wu [1995].

Theorem 2. Given the LPV plant in (3), and a constant
scalar γ, the parameter dependent quadratic performance
problem is solvable if and only if there exist matrix
function X, Y ∈ C1(Rs, Rn×n

+ ) that satisfy




EY (ρ, ρ̇) Y (ρ)CT
e1(ρ) Bd(ρ)

Ce1(ρ)Y (ρ) −γ(ρ)Ine1
0

BT
d (ρ) 0 −γ(ρ)Ind



 < 0 (6)





EX(ρ, ρ̇) X(ρ)BT
d1(ρ) CT

e (ρ)
BT

d1(ρ)X(ρ) −γ(ρ)Ind1
0

CT
e (ρ) 0 −γ(ρ)Ine



 < 0 (7)

[

Y (ρ) In

In X(ρ)

]

< 0 (8)

at all (ρ, ρ̇) for which ρ ⊂ P and ρ̇ ⊂ vert(V), where

EY (ρ, ρ̇) = Â(ρ)Y (ρ) + Y (ρ)ÂT (ρ) − γ(ρ)Bu(ρ)BT
u (ρ)

−
∑s

i=1 ρ̇i
∂Y (ρ)
∂ρi

EX(ρ, ρ̇) = ÃT (ρ)Y (ρ) + X(ρ)Ã(ρ) − γ(ρ)CT
y (ρ)Cy(ρ)

+
∑s

i=1 ρ̇i
∂X(ρ)

∂ρi

(9)

and

Ã(ρ) = A(ρ)−Bd2(ρ)Cy(ρ) Â(ρ) = A(ρ)−Bu(ρ)Ce2(ρ);

If we drop the derivation terms of X and Y in the equation
(9), the above theorem is equivalent to the single quadratic
Lyapunov function synthesis problem.

The necessary and sufficient conditions in Theorem 2 form
a system of LMIs with functional variables X, Y and
γ. Although these constraints are infinite dimensional as
written, they can be solved approximately using griding
method which will be discussed later. The resulting LMI
solution can then be used to construct explicit controller
formula:

Theorem 3. Suppose X, Y ∈ C1(Rs, Rn×n
+ ) and γ ∈

C(Rs, R+) satisfying (6)-(8) at all (ρ, ρ̇) for which ρ ∈ P
and ρ̇ ∈ vert(V). Let N, M ∈ C1(Rs, Rn×n

+ ) be matrix
functions that satisfy the identity

X(ρ)Y (ρ) + N(ρ)MT (ρ) = In (10)

Then the parameter-varying state-feedback and output
injection gains

F = −(γBT
u Y −1 + DT

euCe)

L = −(γX−1CT
y + BdD

T
yd)

and parameter varying state space matrices

CK = FY M−T

BK = N−1XL
AK = −N−1{AT + X(A + BuF + LCy)Y

+CT
e (Ce + DeuF )Y/γ + X(Bd + LDyd)B

T
d /γ

+ẊY + ṄMT }M−T

(11)

define a strictly proper (Dk = 0) LPV controller that solve
the γ-performance problem for LPV plant (3).

From (11) we can see the formula of AK in general explic-

itly depends on ρ̇ via (Ẋ, Ṅ). This makes the associated
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controller impractical to implemented. Nevertheless, the
product rule in (10) implies the identity

ẊY + ṄMT = −XẎ − NṀT ,

so that the derivation term in (11) can be eliminated by
adding either one of the following constraints:

• X is constant, (N, M) = (In, In − Y X)
• Y is constant, (N, M) = (In − Y X, In)

4. COMPUTATION OF SOLUTION

The constraints given by the LMIs (6)–(8) are clearly
infinite-dimensional; in order to compute solutions and
optimize γ using convex programming tools, some ap-
proximation must be made. First of all, we can relieve
the infinite-dimensionality of the constraints by approx-
imating the parameter set P by a finite grid Pgrid =

{p(l)}L
l=1 ⊂ P and resorting the continuity arguments

to extend the feasibility solution to entire parameter set
P . Secondly, we approximate the parameter-dependent
matrix variables by linear combination of user defined set
of continuously differentiable functions. For any matrices
{Xi}

N
i=1, Xi ∈ Sn×n and {Yi}

N
i=1, Yi ∈ Sn×n the function

X(ρ) :=

N
∑

i=1

fi(ρ)Xi, Y (ρ) :=

N
∑

i=1

gi(ρ)Yi (12)

are continuous differentiable on Rs → Sn×n. So once basis
function fi and gi are chosen, we can attempt to solve the
LMIs synthesis problem over the matrices Xi, Yi ∈ Sn×n.
There is no systematic rule of choosing the basis functions
but a practical technique has been proposed in Wu [1996],
the key is to mimic the dependency of the parameter of
the original plant.

The approximation procedure can then be solved with all
grid points (ρ, ρ̇) satisfying ρ ∈ Pgrid and ρ̇ ∈ vert(V).
Since ρ ⊂ Rs, it will require approximately Ls points to
grid P with approximately L points in each dimension. So
the optimization problem to determine appropriate Xi and
Yi is approximately Ls(2s+1 +1) affine matrix inequalities
in the matrix variables (X1, Y1, . . . , XN , YN ). Here we
assume 2s vertices for V(ρ). In the above approximation
procedure, the LMIs are satisfied only at the grid point of
P , the synthesis conditions might not be satisfied at some
parameter values that lie between the grid points. One
generally needs to check the computed solution against a
sufficiently fine grid, if the check fail, repeat the synthesis
procedure using more grid points.

If γ is restricted to be constant scalar, the computation is
straightforward, just minimize γ subject to (6)–(8) with
decision variable Xi, Yi, γ . As in our early discussion,
this is guarantee the worst case L2 performance for all
the grid points. Nevertheless, The LPV controller design
using a constant γ tends to be conservative at relatively
“benign” operating points, because the overall controller
performance has to be sacrificed by a few “troublesome”
operating points which correspond to the worst case per-
formance. If we allow γ to be parameter-varying, we do
not have to limited the overall controller performance. A
varying γ allows the designer to tolerate the unavoidable
mediocre performance at a few operating points without
sacrifice superior performance for parameter trajectory

Fig. 1. Two Degree of Freedom control structure

that avoids the worst case conditions. For the parameter
varying γ we can define a weight w(ρ), such that we can
minimized some convex combination δ(γ) := w(p)γ(p)
subject to (6)-(8), while γ(ρ) corresponds to L scalar
variables {γl}

L
l=1 evaluated at each grid points. In absence

of prior information about γ, we can initially choosing the
weight w(ρ) to be uniform and update the weights with
an iterative design procedure to search for “optimal” γ
. For example, we can find out the “difficult” operating
point by a few trials with constant weights for every
grid points, then penalized those grid points more heavily
with larger weights. Alternatively, we can approximate the

γ simply as a linear combination γ(ρ) =
∑N

k=1 hk(ρ)γk

where hk(ρ) ∈ C(Rs, R) is continuous basis function.

5. DESIGN EXAMPLE

In this section we will investigate an gain-scheduling con-
troller design for the longitudinal axis of the Eclipse UAV
demonstrator in Kannan [2006a]. The problem is revis-
ited using the methods discussed in the previous sections.
Single quadratic lypunov function synthesis (SQLF) and
parameter dependent lypunov function synthesis (PDLF)
are applied respectively to the longitudinal LPV controller
design and comparisons are made. The use of parameter
varying γ are discussed at the end of section.

5.1 Problem Setup

The longitudinal dynamics of the UAV is given by Kannan
[2006a]. The perturbation states in Equation are the
velocity u along the x-axis of the body axes coordinate
system, velocity w along the z-axis of the body axes, and
q is pitch rate. There are two inputs: elevator input and
throttle input which denoted by δt and δe. The system has
three outputs measurements available: pitch rate q, height
h and total velocity Vt. The velocity is considered ranging
between [22 72]m/s. The linear model in equation (13) is
obtained from a trim sub-routine, by linearizing the 6DoF
nonlinear system at different operating point, i.e. different
airspeed. The resulted 4th order equation of motion is:







u̇
ẇ

θ̇
q̇






=







Xu(ρ) Xw(ρ) −gcos(θ(ρ)) Xq(ρ)
Zu(ρ) Zw(ρ) Zρ(ρ) Zq(ρ)

0 0 0 1
Mu(ρ) Mw(ρ) Mρ(ρ) Mq(ρ)













u
w
θ
q






+











Xδe(ρ) Xδt(ρ)
Zδe(ρ) Zδt(ρ)

0 0
Mδe(ρ) Mδt(ρ)

0 0











[

δe

δt

]

(13)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

15072



and the output channels are

[

q
h
Vt

]

=

[

0 0 0 1 0
0 0 0 0 1

cos(αt) sin(αt) 0 0 0

]











u
w
θ
q
h











(14)

In the design of kannan [2006], Kannan [2006a], in order
to obtain the affine parameter dependent LPV system, the
static and dynamic derivatives in the equation (13) are
approximated by lease square curve fit as continuous func-
tions of the velocity. Since the height of the UAV does not
vary much, density is assumed to be constant and does not
change the LPV model and the coefficients Xq, Zρ, Zq, Mu

and Zδe are found to have the most significant effects on
the plant dynamics. In this design no approximation need
to be made, the LMIs can be solved at each grid point
independently.

The system design structure is shown in Fig.1. In this sys-
tem r1 are the reference inputs, r2 and r3 are perturbations
input, z1 are the performance inputs, z2 are the weighted
control outputs, e1 are the controller reference inputs, e2

are the feedback measurements and u are the actuator
control signals. The second and third output (h, Vt) are
choose to match the ideal model Wm, as only 2 outputs
are being matched, we augment the matching model to
become

[

qm

hm

Vm

]

=





0 0 0
0 1

s2+2s+1 0

0 0 1
s2+2s+1





[

qd

hd

Vd

]

(15)

the performance weight W1 are selected as

W1 =





100s+1
s2+20s+1 0 0

0 2.5
s+ǫ

0

0 0 1
s+ǫ



 (16)

where ǫ = 10−6. Integral terms in performance weight
are chosen for the design parameters Vt and h. Increased
gain gives the closed loop system better matching to the
ideal model and increase bandwidth of the disturbance
rejection.

The control weight W2 needs to limit the high frequency
activity and to allow low frequency tracking. Hence W2 are
selected as high-pass filter to bound this requirement. A
typical choice of the weighting function is ks+w

s+kw
, parameter

w is chosen so that high frequency control is minimised
above a certain threshold frequency and k is chose to
allow low frequency control effort. A sensible choice is
k = 10, w = 200rad/s, thus

W2 =

[ 10s+200
s+2000 0

0 10s+200
s+2000

]

(17)

5.2 Controller synthesis and results

The augmented closed-loop plant is constructed by com-
bining the linearised model, sensor and actuator models
and weighting functions, with 20 states, 10 outputs and
8 outputs. 11 different airspeeds space every 5m/s in the
range [22, 72] are considered used as the approximate de-
sign grid P . By observing the trajectories of the coefficients

0 10 20 30 40 50 60
−15

−10

−5

0

5

10

15

20

25

time(s)

P
it
c
h

 r
a

te
 (

ra
d

/s
e

c
)

Fig. 2. Pitch rate response (PDLF) with varying γ
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Fig. 3. Pitch rate response (PDLF)

Xq, Zρ, Zq, Mu and Zδe which are affected significantly
by Vt, it was found that a quadratic fitting is enough
to mimic the parameter trajectory. Thus, based on the
discussion in section 4, a choice of basis function gi(Vt)
for Y are [g1(Vt) g2(Vt) g3(Vt)] = [1 Vt V 2

t ]. A single
basis function f1(Vt) = 1 is chosen for X . The bound of

changing rate of airspeed is V̇t ∈ [−10 10]. The PDLF
synthesis problem is implemented with the Matlab LMI
toolbox Gahinet [1996]. The total number of LMIs to solve
is 44, the number of decision variables is 841. The convex
optimization procedure takes 1 hour 12 minutes to solve
and the resulted L2 performance γ is 8.4.

As a comparison, the SQLF synthesis only has to solve
23 LMIs with 421 decision variable and the elapsed com-
putation time is about 5 minutes. However, the final
achieved γ is 11.22. The closed-loop system response to
a doublet height signal at different airspeeds are shown
in Fig.2–7. It can be seen that the decoupled pitch rate
and airspeed responses of the PDLF with varying γ are
slightly better than normal PDLF. Fig.8–10 show the unit
height response of SQLF. Fig.11 is the singular value plots
of controller for PDLF. Fig.12 is the difference between
frequency response of closed-loop system and matching
model Wm. At high and low frequencies the difference is
very low, so good tracking is expected. The difference is
maximised around the operating bandwidth, which may
degrade the overshoot or settling time to step demand.

we chose a parameter γ dependent explicit on Vt

γ(Vt) = γ1 + γ2Vt

and minimized γ1, γ2 subject to (6)–(8) for SQLF syn-
thesis. The optimization procedure yields γ1 = 0.4745
and γ2 = 0.1675 and the optimal induced-L2 norm γ =
0.4745 + 0.1675V t. The results are shown in the Table 1.
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Fig. 4. Height response (PDLF)with varying γ
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Fig. 5. Height response (PDLF)
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Fig. 6. Airspeed response (PDLF)with varying γ
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Fig. 7. Airspeed response (PDLF)

Compared to the constant γ of 11.22 in worst case mea-
surement, the optimal L2 gains have been considerably
reduced at lower velocity, thus robust performance can
be achieved at those operating points without degrade
the overall performance for the operating point at higher
velocity.
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Fig. 8. Pitch rate response (SQLF)
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Fig. 10. Airspeed response (SQLF)
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Fig. 11. Controller frequency response (PDLF)

A similar simulation on PDLF synthesis yields the results
shown in Table 2 with induced-L2 performance γ =
0.4094+ 0.1178V t, which is compared to constant γ = 8.4
of PDLF synthesis.
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Fig. 12. Response of difference between closed-loop system
and Wm (PDLF)

Table 1. Different γ at different grid points
(SQLF)

Vt 22 27 32 37 42 47

γ 4.20 5.04 5.89 6.74 7.58 8.43

Vt 52 57 62 67 72

γ 9.28 10.12 10.97 11.82 12.66

Table 2. Different γ at different grid points
(PDLF)

Vt 22 27 32 37 42 47

γ 3.00 3.59 4.18 4.77 5.36 5.95

Vt 52 57 62 67 72

γ 6.54 7.12 7.71 8.30 8.89

6. CONCLUSION

In this paper we have designed the LPV controller for
longitudinal dynamics of UAV using single quadratic Lya-
punov function synthesis and parameter-dependent Lya-
punov function synthesis, it was found that PDLF ap-
proach with varying γ performance has better performance
compare to the PDLF approach with constant γ. And it
also provides more robust γ performance at benign oper-
ating point. The constant induced-L2 performance bound
used in the existing theory is generalized to a function of
parameters; The resulting performance criterion implies a
norm bound that depends naturally on the particular real
time trajectory of the parameters.
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