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Canada, H3C 3A7. (e-mail: lixian.zhang@polymtl.ca)
∗∗ Department of Computing and Mathematical Sciences, University of
Glamorgan, Pontypridd CF37 1DL, U.K. (e-mail: pshi@glam.ac.uk)
∗∗∗ Department of Physical and Mathematical Sciences, Autonomous
University of Nuevo Leon, San Nicolas de los Garza, Nuevo Leon,

Mexico, C.P. 66450 (e-mail: mbasin@fcfm.uanl.mx)

Abstract: In this paper, the problem of H∞ model reduction for switched linear discrete-
time systems with polytopic uncertainties is investigated. A reduced-order switched model
is constructed for a given robustly stable switched system, which has the same structural
polytopic uncertainties as the original system such that the resulting error system is robustly
asymptotically stable and an H∞ error performance is guaranteed. A sufficient condition for the
existence of the desired reduced-order model is derived and formulated in terms of a set of linear
matrix inequalities. By solving the corresponding convex optimization problem in such existence
condition, the vertex system of reduced-order model can be obtained, which also provides a
suboptimal H∞ gain for the error system between the original system and the reduced-order
model. A numerical example is given to show the effectiveness and the potential of the proposed
techniques.

1. INTRODUCTION

Within the past decades, switched systems have received
increasing attentions in the hybrid systems field. A hy-
brid system is meant a dynamic system combining con-
tinuous and discrete dynamics, in which corresponding
parts are described by differential (or difference) equations
and finite automaton (or other discrete event system),
respectively. Switched systems, which often ignore the
details of corresponding discrete dynamics, assume that
the switching signals belong to a certain class and be
determined either by time or by system state, or both,
or other supervisory decision procedures Daafouz et al.
[2002], Morse [1997]. If the switching signals are governed
by stochastic processes (for instance, Markovian chains),
the corresponding system is termed as jump system, which
has been extensively investigated in the past decades, see
for example, Shi et al. [1999], Zhang et al. [2003]. The
motivation to study switched systems is mainly in twofold.
Firstly, many physical systems inherently exhibit multi-
models or multi-structure feature, for example, piecewise
affine systems (PWA) Ferrari-Trecate et al. [2002], in
which mode will change when the system state hits certain
“boundaries” and thereby many general nonlinear systems
can be modeled by such systems approximately. Secondly,
in order to overcome the shortcomings of traditionally used
single controller and improve system performance, many
intelligent control strategies are designed based on the
idea of controllers switching Liberzon and Morse [1999],
Morse [1996], and the corresponding closed-loop systems
are often described by switched systems. The applications

using switched systems theory include modeling of net-
worked control systems (NCS) Lin and Antsaklis [2003],
stirred tank reactor El-Farra et al. [2005], wind turbine
regulation Leith et al. [2003], etc. On the general topic,
recent development and other practical examples in the
field of switched systems, we refer readers to Liberzon
and Morse [1999], McClamroch and Kolmanovsky [2000],
Morse [1997] and the references therein.

In switched systems, the switching signals are often con-
sidered as arbitrary in the occurring time of subsystems,
and a basic problem is to find non (or less)-conservative
conditions to guarantee the stability of the systems under
arbitrary switching signals Liberzon and Morse [1999]. One
of efficient methods regarding this issue is the multiple
Lyapunov functions (MLF) idea Branicky [1998], where
an individual Lyapunov function candidate is constructed
for each subsystem. As a special kind of MLF, the switched
quadratic Lyapunov function (SQLF) approach proposed
in Daafouz et al. [2002], attracts the poly-quadratic sta-
bility idea for polytopic uncertain system such that the
control and filtering problems for a class of discrete-time
switched systems under arbitrary switching can be solved
Zhang et al. [2006a,b].

On the other hand, it is well known that practical systems
are generally characterized by high-order mathematical
models, which bring serious difficulties to analysis, synthe-
sis and simulations of the systems concerned. Therefore,
model reduction has been a popular research area and
has attracted a lot of attention in the last few decades.
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Given a full-order model of some kind of dynamic system,
the objective of model reduction is to find a reduced-
order model such that these two models are close in some
sense, such as the notable H∞ performance criteria, which
is to minimize the energy of the estimation error for all
the energy bounded disturbances. In recent years, many
important results have been reported for various kinds
of nominal systems such as bilinear systems Zhang and
Lam [2002], Markovian jump systems Zhang et al. [2003],
and two-dimensional systems Gao et al. [2005] by using
various efficient approaches, especially the linear matrix
inequality (LMI) technique Ebihara and Hagiwara [2004],
Zhang et al. [2003]. In addition, model reduction problem
of uncertain dynamic systems has also been investigated
by some people. A novel idea to approximate the original
uncertain system by an uncertain reduced model, has been
proposed recently in the literature, see for example, Dolgin
and Zeheb [2003], Gao et al. [2005]. However, from the
author’s best knowledge, up to the date, some issues such
as H∞ model reduction problem on switched systems has
not been fully investigated yet, whether with or without
modeling uncertainties.

Thus, in this paper, the problem of H∞ model reduction
for switched linear discrete-time systems with polytopic
uncertainties is investigated. For a given robustly stable
switched system, our objective is focused on the construc-
tion of a reduced-order switched model, which also resides
in a polytope and approximates the original system well
in an H∞ norm sense, that is, utilize a polytopic uncer-
tain reduced switched model to approximate the original
uncertain switched system. Based on the SQLF approach
and parameter-dependent stability idea, a sufficient con-
dition for the existence of desired reduced order model is
derived and formulated in terms of a set of linear matrix
inequalities (LMIs). By solving the corresponding con-
vex optimization problem in such existence condition, the
vertex systems of reduced-order model can be obtained,
which also provides a suboptimal H∞ gain for the error
system between original system and reduced-order system.
A numerical example is given to show the effectiveness and
the potential of the proposed techniques.

Notation: The notation used in this paper is fairly stan-
dard. The superscript “T” stands for matrix transposition;
R

n denotes the n dimensional Euclidean space and |·| refers
to the Euclidean vector norm; l2[0,∞) is the space of
square summable infinite sequence and for ω = {ω(k)} ∈
l2[0,∞), its norm is given by ‖ω‖

2
=

√

∑∞

k=0
|ω(k)|2.

In addition, in symmetric block matrices or long matrix
expressions, we use ∗ as an ellipsis for the terms that are
introduced by symmetry and diag{· · · } stands for a block-
diagonal matrix. Matrices, if their dimensions are not ex-
plicitly stated, are assumed to be compatible for algebraic
operations. A symmetric matrix P > 0 (≥ 0) means P is
positive (semi-positive) definite. I and 0 represent identity
matrix and zero matrix, respectively.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a class of uncertain switched linear discrete-time
systems given by

(Σ) : x(k + 1) = Ai(λ)x(k) + Bi(λ)ω(k) (1)

y(k) = Ci(λ)x(k) (2)

where x(k) ∈ R
p is the state vector, ω(k) ∈ R

l is the
input vector which belongs to l2[0,∞), y(k) ∈ R

q is the
measurement output vector, i denoting i(k) for simplicity,
is a piecewise constant function of time, called a switching
signal, which takes its values randomly in the finite set
I = {1, . . . , N} , N > 1 is the number of subsystems,
and the matrices (Ai(λ), Bi(λ), Ci(λ)) denote the ith
subsystem. At an arbitrary discrete time k, the switching
signal i is dependent on k or x(k), or both, or other
switching rules.

The matrices of each subsystem have appropriate dimen-
sions with partially unknown parameters. It is assumed
that (Ai(λ), Bi(λ), Ci(λ)) ∈ ℜi, where ℜi is a given convex
bounded polyhedral domain described by s vertices in the
ith subsystem

ℜi ,

{

[Ai(λ), Bi(λ), Ci(λ)] =

s
∑

m=1

λm[Ai,m, Bi,m, Ci,m]

s
∑

m=1

λm = 1, λm ≥ 0, i ∈ I
}

(3)

Remark 1. The polytopic type uncertainty considered in
(3) is generally studied in recent literature, which is
well recognized to describe the parametric uncertainty
in engineering practice more precisely than the norm-
bounded uncertainty Jin and Park [2001]. In addition, the
parameters and structure of the uncertainties in practice
are usually the same throughout either the multi-models or
switched control systems De Koning [2003], McClamroch
and Kolmanovsky [2000], thus we assume both the number
of vertices and uncertain parameter λm in each subsystem
to be equal here without loss of generality.

Here, we are interested in constructing a reduced-order
switched system with the following form

(Σ̂) : x̂(k + 1) = Âi(λ)x̂(k) + B̂i(λ)ω(k) (4)

ŷ(k) = Ĉi(λ)x̂(k) (5)

where x̂(k) ∈ R
v is the state vector of the reduced-order

system with v < p, and (Âi(λ), B̂i(λ), Ĉi(λ), i ∈ I) are
matrices with compatible dimensions to be determined,
and belong to a convex polytope with the same structure
as described in (3), that is

[Âi(λ), B̂i(λ), Ĉi(λ)] =

s
∑

m=1

λm[Âi,m, B̂i,m, Ĉi,m] (6)

In addition, the switching signal i in (4)-(5) is also assumed
to be available in real-time and homogeneous with the one
in system (Σ).

Augmenting the model of system (Σ) to include the states

of system (Σ̂), we obtain the following error system

(Σ̄) : ξ(k + 1) = Āi(λ)ξ(k) + B̄i(λ)ω(k) (7)

e(k) = C̄i(λ)ξ(k) (8)

where e(k) = y(k) − ŷ(k) and
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ξ(k) =

[

x(k)
x̂(k)

]

, Āi(λ) =

[

Ai(λ) 0

0 Âi(λ)

]

,

B̄i(λ) =

[

Bi(λ)

B̂i(λ)

]

, C̄i(λ) =
[

Ci(λ) −Ĉi(λ)
]

(9)

Note that the developed error system also is a switched
linear system, which contains the same structure polytopic
uncertainties with uncertain switched system (Σ) in (1)-
(2).

To present the main objective of this paper more clearly,
we first introduce the following definition for the error
system (Σ̄) in (7)-(8), which will be essential for our
derivation.

Definition 1. Given a scalar γ > 0, error system (Σ̄) is
said to be robustly asymptotically stable with an H∞ error
performance γ if it is robustly asymptotically stable and
under zero initial condition, ‖e‖

2
< γ ‖ω‖

2
for all nonzero

ω(k) ∈ l2[0,∞).

Thus, the main objective of this paper is to find the
matrices ((Âi(λ), B̂i(λ), Ĉi(λ)) : i ∈ I) in system (4)-(5)
such that the error system (Σ̄) in (7)-(8) is asymptotically
stable and has a guaranteed H∞ error performance γ.

Remark 2. From (6) and similar discussion in Dolgin and
Zeheb [2003] or Gao et al. [2005], the reduced-order model
system in (4)-(5) is an uncertain switched system with
the same structural polytope, however, one can still make
some analysis and synthesis using the resulting uncertain
reduced-order model, such as robust control and robust fil-
tering. Moreover, the problem of approximating an uncer-
tain system by using a fixed reduced-order system without
uncertainties is a different model reduction problem be-
yond what we considered in this paper. Therefore, we shall
find the vertices ((Âi,m, B̂i,m, Ĉi,m) : i ∈ I, 1 ≤ m ≤ s)
in (4)-(5) to solve the underlying model reduction prob-
lem for the considered uncertain switched system. Notice
that when there is only one vertex, the model reduction
problem for switched systems with polytopic uncertainties
will reduce to the determinate one without parameter
uncertainties.

In addition, the following lemma, which presents the H∞

performance criterion for the error system (Σ̄), is required
for later development. The Lemma can be proved by
similar proof techniques as those used in Zhang et al.
[2006b] and thus omitted here.

Lemma 1. Zhang et al. [2006b] Consider the error system
(Σ̄) and let γ > 0 be a given scalar. If for the arbi-
trary switching signal i ∈ I and all admissible polytopic
uncertainties satisfying (3) there exist matrix functions
Pi(λ) > 0 and Ri(λ) such that

Ξij(λ) ,







Pj(λ) −Ri(λ) −RT
i (λ) 0

∗ −I
∗ ∗
∗ ∗

Ri(λ)Āi(λ) Ri(λ)B̄i(λ)
C̄i(λ) 0
−Pi(λ) 0

∗ −γ2I






< 0 (10)

then, system (Σ̄) is robustly asymptotically stable with an
H∞ error performance γ.

Remark 3. Note that Lemma 1 presents a fundamental
performance criterion for the error system (Σ̄). It is worth
mentioning that the introduction of the matrix function
Ri(λ) in above LMI overcomes the difficulty of the cross
coupling of product terms among different subsystems,
which transfers the interaction among subsystems to the
form Pj(λ) − Ri(λ) − RT

i (λ), thus the resulting terms
Ri(λ)Ai(λ) and Ri(λ)Bi(λ) can be easily dealt with. More
details on this technique can be found in Zhang et al.
[2006b].

3. MAIN RESULTS

The following theorem gives a sufficient condition for the
existence of an admissible H∞ reduced-order model in the
form of (4)-(5).

Theorem 2. Consider the uncertain switched linear system
(Σ̄) and let γ > 0 be a given scalar. Then, an admissible
H∞ reduced-order model in the form of (4)-(5) exists if for
i ∈ I, 1 ≤ m ≤ s there exist matrices R1i,m, R2i, R3i,m,

P2i,m, Ǎi,m, B̌i,m, Či,m, positive definite matrices P1i,m,
P3i,m such that

Ξij
m,n + Ξij

n,m < 0, (1 ≤ m ≤ n ≤ s) , ∀(i, j) ∈ I × I,

(11)
where,

Ξij
m,n ,















P1j,n −R1i,n −RT
1i,n P2j,n − εiER2i −RT

3i,n 0

∗ P3j,n −R2i −RT
2i 0

∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

R1i,nAi,m εiEǍi,m R1i,nBi,m + εiEB̌i,m

R3i,nAi,m Ǎi,m R3i,nBi,m + B̌i,m

Ci,m −Či,m 0
−P1i,m −P2i,m 0

∗ −P3i,m 0
∗ ∗ −γ2I















E , [ I 0 ]
T

, I ∈ R
v

Furthermore, if a feasible solution to above LMIs exists,
then the system matrices of an admissible H∞ reduced-
order model in the form of (4)-(5) are given by (1 ≤ n ≤ s)

Âi,m = R−1

2i Ǎi,m, B̂i,m = R−1

2i B̌i,m, Ĉi,m = Či,m (12)

Proof. According to Lemma 1, the error system (Σ̄) is
robustly asymptotically stable and guarantees a prescribed
H∞ error performance if there exist Pi(λ) > 0 and Ri(λ)
satisfying (10). Then, by defining matrix functions

Pi(λ) ,

[

P1i(λ) P2i(λ)
∗ P3i(λ)

]

, Ri(λ) ,

[

R1i(λ) ER2i

R3i(λ) R2i

]

and by considering (9) and some basic matrix manipula-
tions, it can be readily established that (10) is equivalent
to: ∀(i, j) ∈ I × I
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Ξij(λ) ,














P1j(λ) −R1i(λ) −RT
1i(λ) P2j(λ) −R2i −RT

3i(λ) 0
∗ P3j(λ) −R2i −RT

2i 0
∗ ∗ −I
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

R1i(λ)Ai(λ) ER2iÂi(λ)
[R1i(λ)Bi(λ)

+ER2iB̂i(λ)]

R3i(λ)Ai(λ) R2iÂi(λ)
[R3i(λ)Bi(λ)

+R2iB̂i(λ)]

Ci(λ) −Ĉi(λ) 0
−P1i(λ) −P2i(λ) 0

∗ −P3i(λ) 0
∗ ∗ −γ2I























< 0

(13)

Here, we further use the efficient parameter dependent
stability idea in coping with uncertainties for general
dynamic systems de Oliveira et al. [1999], Feron et al.
[1996], and assume the matrix functions Pi(λ) and Ri(λ)
to be the following forms:

Pi(λ) ,

s
∑

m=1

λmPi,m =

s
∑

m=1

λm

[

P1i,m P2i,m

∗ P3i,m

]

, (14)

Ri(λ) ,

s
∑

m=1

λmRi,m =

s
∑

m=1

λm

[

R1i,m ER2i

R3i,m R2i

]

, (15)

defining matrix variables (1 ≤ m ≤ s)

Ǎi,m , R2iÂi,m, B̌i,m , R2iB̂i,m, Či,m , Ĉi,m (16)

and taking (3) and (13)-(16) into account, we have

Ξij(λ) =
s

∑

m=1

s
∑

n=1

λmλnΞij
m,n

=
s

∑

m=1

λ2

mΞij
m,m +

s−1
∑

m=1

s
∑

n=m+1

λmλn(Ξij
m,n + Ξij

n,m).

Thus, if condition (11) holds, then Ξij(λ) < 0, which
implies (10) holds, i.e. the error system (Σ̄) is robustly
asymptotically stable with a guaranteed H∞ error per-
formance γ, meanwhile, if a solution exists, the vertex
matrices of reduced-order model system are given by (12).
This completes the proof. �

Condition (11) in Theorem 1 is formulated in terms of a set
of LMIs by letting ν = γ2, which can be solved by means
of numerically efficient convex programming algorithms
Boyd et al. [1994]. Moreover, the minimal performance
index γ based on Theorem 1 can be obtained by the
following convex optimization procedure:

min ν subject to (11)

Note that the above minimal γ =
√

ν will be suboptimal
for the error system (Σ̄) because the condition (11) is
sufficient.

4. ILLUSTRATIVE EXAMPLE

In this section, we will present a numerical example to
demonstrate the validity and applicability of the developed
theoretic result.

Consider the switched linear discrete-time system (1)-(2)
consisting of two uncertain subsystems, where there are
two groups of vertex matrices in subsystem 1:

A11 = ρ







1.3 2.2 −1.3 0.8
0.5 −0.3 1.9 −0.6
−0.7 −0.5 −0.4 −1.2
−1.7 2.1 0.3 2.8






, B11 = ρ







1.9
−1.8
1.6
−0.8






,

C11 = ρ [ 12.0 5.0 1.3 0.61 ] ,

A12 = ρ







−1.3 2.2 −1.3 0.8
0.5 −0.3 1.9 −0.6
0.7 −0.5 −0.4 −1.2
−1.7 2.1 0.3 −2.8






, B12 = ρ







1.9
1.8
−1.6
0.8






,

C12 = ρ [ 12.0 −5.0 1.3 −0.61 ] ,

and two groups of vertex matrices in subsystem 2:

A21 = ρ







1.1 2.2 −1.3 0.8
0.5 −0.3 1.5 −0.6
−0.7 −0.3 −0.4 −1.2
−1.7 2.1 0.3 2.0






, B21 = ρ







2.3
−1.3
1.6
−0.4






,

C21 = ρ [ 12.0 5.0 1.3 −0.41 ] ,

A22 = ρ







−1.1 2.2 −1.3 0.8
0.5 −0.3 1.5 −0.6
0.7 −0.3 −0.4 −1.2
−1.7 2.1 0.3 −2.0






, B22 = ρ







2.3
1.3
−1.6
0.4






,

C22 = ρ [ 12.0 −5.0 1.3 0.41 ] ,

where ρ is a scalar parameter denoting the size of convex
polytope each uncertain subsystem can be expanded into.
The arbitrary switching signal can be generated by Matlab
and a possible case is shown in Figure 1, the corresponding
algorithm can be referred to Zhang et al. [2006b]. Note
that the switching instants are random in Figure 1, and
the dwell time in each mode, which is coined in Morse
[1996] and detailed in Liberzon and Morse [1999], might
be one sampling instant or longer.

Here, we are interested in finding a second-order H∞

reduced model in the form of (4)-(5) to approximate
the above switched system such that the resulting error
system are asymptotically stable with a suboptimal H∞

error performance. By solving the corresponding convex
optimization procedure in Theorem 1, the different error
performance for given different ρ are calculated and listed
in Table 1.

ρ 0.1 0.15 0.2
γ 0.0193 0.0975 0.3258

Table 1 : H∞ approximation performance indexes by

second-order reduced model

In addition, for given ρ = 0.15 and consider the input
signal ω(k) = 0.8 exp(−0.4k), Figure 2 shows the output
trajectories of the original system and second-order H∞

reduced model by randomly giving different uncertain
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parameters λ in (3). Figure 3 presents the output errors
between original system and the reduced-order system.
It can be observed from simulations that the obtained
reduced model approximate the original system very well
under the given arbitrary switching signal and various
parameter uncertainties.

5. CONCLUSIONS

The problem of H∞ model reduction for switched linear
discrete-time systems with polytopic uncertainties is inves-
tigated. A sufficient condition for the existence of desired
reduced-order models is derived and formulated in terms
of a set of LMIs. By solving the corresponding convex
optimization problem in such sufficient condition, the ex-
pected reduced-order model is obtained and a suboptimal
H∞ gain for the error system between original system and
reduced-order model is designed. A numerical example is
included to show the potential and effectiveness of the
developed theoretic result. It is noted that in this paper,
the model reduction problem is solved by obtaining an
uncertain reduced-order model to approximate the original
system, thus it is believed that approximating an uncertain
switched system by a fixed reduced model is also worth
further investigation in the future.
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Fig. 2. Output trajectories of original system and second-
order reduced model
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Fig. 3. Output errors between original system and second-
order reduced model
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