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Abstract: Proper Orthogonal Decomposition (POD) based projection methods are an impor-
tant tool for the reduction of complex nonlinear models. Large reductions in model order can be
frequently be obtained due to the exploitation of correlations between model states that exist
for representative behavior of the model. However, when this model behavior includes traveling
waves or shock fronts these methods perform less well as a large number of modes is required
to capture this type of behavior. This paper investigates the use of correlation to pre-process
simulation data such that bi-orthogonal projection can subsequently be applied to obtain a
reduced model that is of low order.

1. INTRODUCTION

Medium and large-order dynamical systems are often in-
ferred from discretization of spatially distributed physical
phenomena. Such physical phenomena might exhibit vari-
ous forms of spatial symmetry. In this paper we consider
the application of a Proper Orthogonal Decomposition
(POD) type method to reduce the order of models of
systems with translation symmetry. In its standard form,
the POD method uses simulation data of the system in
the form of a collection of snapshots of the system state at
each time instant to build an empirical covariance matrix.
From this covariance matrix the empirical eigenmodes of
the system are identified. The model equations are then
projected on these eigenmodes to obtain the reduced sys-
tem. However, this method performs poorly for simulation
data that contains traveling waves or fronts. To remedy
this, the simulation data is first aligned by applying spatial
translation to the state at each time instance. This puts
the data into the frame of reference of the traveling wave.
The aligned simulation data is subsequently used to find
the dominant modes of the wave profile.

Translation of data as a preprocessing step to POD was
introduced by Kirby and Armbruster (1992) using a tem-
plate fitting procedure. It was applied to periodic systems
in Glavaski et al. (1998), Shah and Sorensen (2005). In
the current paper the template fitting procedure is used
to deal with non-periodic systems, which requires the use
of extrapolation techniques. Furthermore, the wave profile
is not considered to be known a-priori. The projection
and reconstruction relations are chosen such that resulting
projection is bi-orthogonal.

This paper is organized as follows: After introducing
translational symmetry relations, the application of the
standard POD method to these types of systems is used
to motivate the approach whereby the basisfunctions are
translated in the spatial domain. The main part of the
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paper is devoted to the alignment of non-periodic data on
a bounded domain as a pre-processing step to POD. The
followed approach is illustrated using an example based on
a fixed-bed reactor.

2. SYSTEMS WITH TRANSLATIONAL SYMMETRY

For systems with behavior that include traveling waves
or shock fronts, the dynamics conform either exactly or
approximately to a translation symmetry relation between
temporal and spatial coordinates. To formulate this re-
lation, we consider one dimensional phenomena in this
paper. Consider signals that act on an infinite one dimen-
sional spatial domain X = R and let Y be a Hilbert space
of functions defined on X. We denote the corresponding
inner product and norm in Y by 〈·, ·〉 and ‖·‖, respectively.
Correlation 〈p, q〉/(‖p‖‖q‖) is denoted by corr(p, q). Let
U be a class of input signals u : R+ → R

nu and let
f : Y × U → Y be a Lipschitz continuous function. We
consider the system

∂y

∂t
= f(y, u), (1)

where y(t) ∈ Y and u ∈ U . We write y(t, x) for the
evaluation of y at time t and location x ∈ X. We will
say that the system (1) admits a translational symmetry
if there exists a continuous function w : R → X such that

y(t, x) = y(0, x− w(t)) (2)

for all x ∈ X, t, δ ∈ R+. We call w the wave displacement
function. Inserting (2) into (1) and using the existence of
w(t), (1) can be rewritten as

f(y, u) = −
∂y

∂x
ẇ = −

∂y

∂x
g(w, u), (3)

with the function g : R×R
nu → R. Integrating (3) over x

the first order system

ẇ= g(w, u) (4a)

y(t, x) = y(0, x− w(t)) (4b)

is obtained that exactly captures the dynamics of (1).
In many cases the symmetry relation (2) only holds
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approximately, as waves and fronts change shape while
traveling. For us, this means that shifted time solutions
are highly correlated. This is quantified by

corr(y(t, x), y(t+ δ, x− w(t+ δ))) > 1 − ǫ (5)

for some δ and 0 < ǫ << 1. The reduction to a one
dimensional system for the case when the exact relation
(2) holds indicates that the potential for approximation
by reduced order models for systems where (5) holds is
large.

3. MODEL REDUCTION USING POD

In its standard form, the POD method uses a Galerkin
projection to arrive at the reduced order system. First,
the more general Petrov-Galerkin projection for systems
of type (1) will be formulated. Suppose that {φ(i)}i∈Z+

is

a complete basis of Y. Let {ψ(i)}i∈Z+
be a basis for the

corresponding dual space Y∗ and let (·, ·) : Y × Y∗ → R

denote the inner product of the Hilbert space with its dual.
Hence, for every y ∈ Y we have

y =
∑

i∈Z+

aiφ
(i) where ai = (y, ψ(i)) (6)

In particular (φ(i), ψ(j)) = δij ,∀i, j ∈ Z+. Given a pair

of dual bases {φ(i)}, {ψ(i)} we consider the m-th order
approximation

ŷm =

m
∑

i=1

aiφ
(i) (7)

for any y ∈ Y. In particular, for y satisfying (1) we get

ŷm(t) =

m
∑

i=1

ai(t)φ
(i)(x) (8)

where the coefficients ai are obtained from a Petrov-
Galerkin projection of (1) in the sense that

ȧj(t) = (f(
m

∑

i=1

ai(t)φ
(i)(x), u), ψ(j)) (9)

where j = 1, . . . ,m. Using the definitions

Φ := [φ(1), .., φ(m)], Ψ := [ψ(1), .., ψ(m)]

and letting ◦ be defined such that Φ ◦ a refers to (8) and
Ψ ◦ f refers (20), the reduced order model can be written
in more compact notation:

ȧ(t) = Ψ ◦ f(Φ ◦ a, u) = f̂(a, u) (10a)

ŷm(t) = Φ ◦ a (10b)

The POD method uses sampled solution trajectories of
finite dimension Ys ⊂ Y of the original system to de-
termine an orthogonal basis (i.e. ψ(i) = φ(i) that leads
to an accurate approximation of (1) by (10) for these
trajectories. Suppose that p observations {y(1), . . . , y(p)}
with y(i) ∈ Y are available. These are often referred to
as snapshots of the signal. We call an orthonormal basis
{φ(i)} a POD basis of Y (w.r.t this data) if the error

γ =

p
∑

i=1

‖y(i) − ŷ(i)
m ‖ (11)

is minimal for any truncation level m. We consider a finite
number of time observations

y(t1), . . . , y(tp) (12)

as data. It can be shown, e.g. Holmes et al. (1996), that the
POD basis is derived from the solutions of the eigenvalue
problem

Rφ(i) = λiφ
(i) (13)

where R : Y → Y is obtained from autocorrelation of the
observations

〈ζ1, Rζ2〉 =

p
∑

j=1

p
∑

i=1

〈ζ1, y
(ti)〉〈ζ2, y

(tj)〉 (14)

Each φ(i) ∈ Y is referred to as a POD mode.

In practice, for any Galerkin-type projection method, first
solutions are obtained for a high-order but finite dimen-
sional system. This system is obtained by discretizing Y
into a finite (but huge) dimensional vector space Yb ⊂ Y
using for example the method of lines at n spatial points.
In this case the operators (Ψ : R

n → R
m,Φ : R

m → R
n)

become matrices, the inner product is the Euclidian prod-
uct and ◦ is now matrix multiplication.

When the POD method as outlined above is applied to
systems with translational symmetry, the result is a har-
monic decomposition, see Kirby and Armbruster (1992). In
this case, the number of modes required to approximate
y is generally large. To illustrate this, the POD method
as outlined above is applied to a example system with
translational symmetry. Consider, for example, a system
that represents a traveling unit pulse that exhibits the
following response:

y(x, t) = 1(x− t) (15)

where 1(·) : Y → Y is a function that is defined as

1(x) =

{

1 for x = 0
0 for x 6= 0

If the vector y is sampled at n uniform temporal (ti =
0, .., n) and spatial (xi = 0, .., n) intervals, the snapshot
matrix is simply:

Tsnap = In (16)

The eigenspectrum of the identity matrix is flat. Therefore
the POD method will perform poorly as a large reduced
model order m is required to attain a desired accuracy
(γ = n − m). This poor performance is not limited to
the example system but occurs whenever dynamics which
conform to translational symmetry are dominant in the
model response. To improve the performance, adaptation
of the POD method is required.

4. PROJECTION FOR SYSTEMS WITH SYMMETRY

To take advantage of the translational symmetry rela-
tion an alternative parameterization of the state vector
was proposed , see Kirby and Armbruster (1992). Define

φ
(i)
wi(x) := φ(i)(x − wi) and let y be parameterized by the

functions {φ(i)} and the coefficients ai, wi as

y(t, x) =
∑

i∈Z+

ai(t)φ
(i)
wi

(x) (17)

Inserting this parameterizations into the original system
equation (1)
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∑

i∈Z+

ȧi(t)φ
(i)
wi

(x) − ẇi(t)ai(t)
∂φ

(i)
wi

∂x
(x)

= f(
∑

i∈Z+

ai(t)φ
(i)
wi

(x), u) (18)

is obtained. Now let m ∈ Z+ be a finite integer. We
introduce the following assumption:

Assumption 1. Let the functions φ(i) and ai, wi for i =
1, ..,m be such that the functions in the set

{φ(i)
wi

(t),−
∂φ

(i)
wi

∂x
(t)ai(t)}i∈1,...,m (19)

are linearly independent.

If this assumption holds, the functions in (19) form a basis
for the space V ⊂ Y. The associated dual basis is given for
the space V∗ by {ψ(i)}i∈1,..,2m. Projecting onto the dual
space V∗, the time derivatives of the coefficients and phases
can be obtained from

ȧj(t) = (f(
m

∑

i=1

ai(t)φ
(i)
wi

(x), u), ψ(j)) (20)

ẇj(t) = (f(

m
∑

i=1

ai(t)φ
(i)
wi

(x), u), ψ(j+m)) (21)

for j = 1, ..,m. Defining

Φw := [φ(1)
w1
, .., φ(m)

wm
] Ψw := [ψ(1), .., ψ(m)]

a := col({ai}i∈1,..,m) w := col({wi}i∈1,..,m)

the reduced model is now given by
(

ȧ
ẇ

)

= Ψw ◦ f(Φw ◦ a, u) = f̂(a,w, u) (22)

If a single phase is present (i.e. wi = w ∈ R,∀i ∈ Z+), this
can be simplified significantly for unbounded domains or
periodic functions by putting the system (1) into the frame
of reference of the traveling wave and using orthogonal
projection Glavaski et al. (1998).

We now consider the case of the bounded spatial domain
X = Xb : x ∈ [xb

min, .., x
b
max] with the associated Hilbert

space Yb. Define the domain Xw : x ∈ [xw
min, .., x

w
max] with

the Hilbert space Yw such that it encompasses Xb, i.e.
Xb ⊂ Xw. Let the functions {φ(i)} form a basis for Yw and

let the functions {φ
(i)
b,w} be defined as

φ
(i)
b,wi

(x) := φ(i)(x− wi)

for all {x,wi|x ∈ Xb, x− wi ∈ Xw} (23)

Assumption 2. We assume that for within a certain time
interval t0 ≤ t ≤ t1 it holds that

xb
min − xw

min ≤ wi(t) ≤ xw
max − xb

max for all i = 1, ..,m

Under this assumption, the function φ
(i)
b,w(x) is now defined

everywhere on its domain. Using the inner product (·, ·)Xb
,

we can now directly apply the method proposed in this
Section on the bounded domain Xb for the time period
t0 ≤ t ≤ t1.

5. SNAPSHOT ALIGNMENT

For this point on we assume that a single phase or wave
is present. To identify the dominant modes of the wave

profile from data, this data is first put into a frame of
reference which negates the displacement from the single
phase, so that the coherent structures of the wave can
be identified. For a set of samples {y(1), . . . , y(p)} this
amounts to finding a set of offsets {w(1), . . . , w(p−1)}. The
aligned samples can then be reconstructed by

y(i)
w (x) = y(i)(x− w(i)) (24)

Centering, Glavaski et al. (1998), and template fitting,
Kirby and Armbruster (1992), are two methods to ac-
complish this, with and without prior knowledge of the
dominant waveform, respectively. In the template fitting
approach a wave template y0 is translated to match each
sample.

ŵ(i) = arg max
w

〈y0(x− w), y(i)(x)〉 (25)

In practice the simulation data y(i) is obtained for the
bounded domain Xb. We propose an approach similar to
template fitting, with the template being determined from
data. First the intersample wave displacement is estimated
on the bounded domain as

ŵ(i,j) = arg max
w

corr(y(i)(x− w), y(j)(x))Xb
(26)

Repeating this procedure for each pair of snapshots in the
snapshot matrix a distance matrix Ŵij can be estimated.

Ŵij =









0 ŵ(1,2) ŵ(1,3) .. ŵ(1,n)

ŵ(2,1) 0 ŵ(2,3) .. ŵ(2,n)

.. .. .. .. ..

ŵ(n,1) ŵ(n,2) .. ŵ(n,n−1) 0









(27)

As w is a measure for the offset, for any triple i, j, k with
j > k > i it holds that

w(i,j) = w(i,k) + w(k,j) (28)

From these constraints and the estimates in the distance
matrix (27) a vector ŵa can be estimated that updates the
estimates ŵ(i,i+1) for i ∈ 1, . . . , p − 1 to conform to (28).
This can be accomplished by solving an over-determined
linear equation system in the least square sense,

minŵa
‖Aŵa − b‖2, (29)

where b contains the off-diagonal elements of the distance
matrix (27) stacked in a single vector and the matrix A is
determined from the distance constraints (28). The offsets
{w(1), . . . , w(p−1)} can be obtained from ŵa as

ŵ(i) =
i

∑

j=1

wa,j (30)

Using this set of offsets, the series of translated snapshots

ŷ
(i)
w (x) is determined .

To use the approach in the previous Section we have
to generate a set of basisfunctions on Xw : x ∈
[xw

min, .., x
w
max]. As the data obtained on Xb and then

translated, extrapolation is required. Furthermore, as sim-
ulation data is sampled at a finite number of spatial points,
interpolation is also required to obtain samples of trans-
lated snapshots y(i)(x−w). Both these procedures will be
formulated for the domain sampled at finite resolution. Let
Xb and its bounded encompassing domain Xw be sampled
at a finite number of equidistant points x1, .., xqmax

. Using
1 ≤ q1 ≤ q2 ≤ qmax the following indexing for the samples
is used:
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xq1+1, .., xq2
∈Xb,Xw

x1, .., xq1
, xq2+1, .., xqmax

∈Xw

On the domain Xb the sampled snapshot is given by

y(i) : {y(i)(xj)}j=q1+1,..,,q2

The translation of a snapshot y(i) is formed on Xw in
the following manner. Consider the following two sets of
extrapolated samples:

ŷ
(i)
L : {y(i)(xj)}j=1,..,,q1−(w−1)

ŷ
(i)
R : {y(i)(xj)}j=q2−(w−1),..,qmax

The translated snapshot y(i)(x−w) is obtained by padding

the original snapshot y(i) on the left and right with ŷ
(i)
L

and ŷ
(i)
R respectively. For displacements w that are exact

multiples of the resolution the translated snapshot is given
by

y(i)(x− w) : (ŷ
(i)
L , y(i), ŷ

(i)
R )

where (, ) denotes set concatenation. If w is not an exact
multiple of the resolution, linear interpolation is used:

y(i)(x− w) = (w − w)y(i)(x− w) + (w − w)y(i)(x− w)

where w,w ∈ Z represent w rounded down respectively up
to the nearest integer.

To obtain ŷ
(i)
L , ŷ

(i)
R by extrapolation from y(i) a number

of methods can be used. The simplest approach is to

use zero-padding. Alternatively, the samples of ŷ
(i)
L , ŷ

(i)
R

are obtained by replicating the nearest sample in Xb.
Thirdly, if the waveform is approximatively constant over
time, the missing samples of the waveform at one time
instant can be inferred from the samples of the waveform
at other time instants. As is it assumed that changes in
the waveform are continuous, the missing samples for a
waveform are padded with the samples from the snapshot
with the smallest time offset which includes the desired
samples. The translation procedure that uses this type
of padding for the finite domain and a finite number
of samples is illustrated graphically in Figure 1. A final
extrapolation method is to determine missing samples by
assuming that the translated snapshot matrix is of low
rank, and using an iterative method to update the missing
samples such that the resulting snapshot matrix converges
to a matrix of chosen (low) rank. First, the missing samples
are initialized using another extrapolation method. Next,
a singular value decomposition (SVD) is calculated, and a
low order approximation to the snapshot matrix is formed
using a small number of singular values and vectors. The
values of the missing samples in the original snapshot
matrix are padded from this low order approximation.
In the next iteration, the singular value decomposition is
applied to this updated snapshot matrix. This approach
has been used to deal with missing data Troyanskaya
(2001). However, this requires the determination of an
SVD at each iteration. In addition poor convergence was
observed.

A further issue with the finite resolution is that maxi-
mization of the correlation between a pair of snapshots
(26) has to be implemented in the discrete domain. This
maximization procedure can be carried out in two stages.

First the pair of integer offsets ŵ
(i,j)
1 , ŵ

(i,j)
2 ∈ Z for which

xxxx
xx

xxxx xxxxxxxxx xxxxx

xx xxxxxxxx xxxxxxx xxxx

Common samples of the wave pattern Samples of the wave pattern unique to 

a subset of snapshots

Samples that extend bejond avaliable 

data in the snapshot matrix

x
Copying of sample values

t

x

t

x

t

x

t

x

1. 2.

3. 4.

Fig. 1. Alignment of snapshots with finite resolution over
a finite domain

the correlation is highest are determined by calculating
the correlation over all possible integer offsets w = 1, .., n.
To obtain a sub-sample resolution for the estimated offset
ŵ(i,j), the derivatives of the correlation function are cal-

culated at ŵ
(i,j)
1 , ŵ

(i,j)
2 . This information is used to fit a

cubic spline function of which the extremal value is used
to determine ŵ(i,j).

As the domain is bounded, waves or shock fronts may
enter and leave the domain at certain time instant. If
this occurs during the time period when the snapshots
are sampled, only a subset of the snapshots might exhibit
high correlation for spatial shifted solutions. A practical
method to decide whether for each pair of snapshots
y(i), y(j) wave phenomena dominate the dynamics is to
employ the following criteria:

• Sufficient correlation exists for an optimal choice of
w :

max
w

corr(y(i)(x), y(i)(x− w(i)))Xb
> 1 − δ1 (31)

• Sufficient differentiation in the correlation exists:

min
w
corr(y(i)(x), y(i)(x− w(i)))Xb

< δ2 (32)

• There is a single maximum:

max
w∈S

corr(y(i)(x), y(i)(x− w(i)))Xb
< 1 − δ4

with S : (w|w < wmax − δ3 ∧ w > wmax + δ3)
(33)

where δ1, .., δ4 are tuning parameters. If there is not
sufficient differentiation in the correlation when varying
w or the correlation is not sufficiently high for an optimal
choice of w, the advantage of including basisfunctions that
are translated by w is negligible and standard POD is the
preferred method.

6. EXAMPLE

The proposed approach is illustrated using an example
that is based on a reactor with a single absorbtion reaction.

A
k

−→ A∗ (34)

With {y1, y2} = {[A], A∗} and u = [A]in, the PDE for this
example is given by
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Fig. 2. Original snapshot matrices for y1 and y2

ǫ1
∂y1
∂t

= F
∂y1
∂x

− ky1 max(0, 1 − y2)

ǫ2
∂y2
∂t

= ky1 max(0, 1 − y2)

with BC y1(0, x) = 0, y2(0, x) = 0, y1(t, 0) = u

The max(·, 0) is used to prevent instability and divergence
when approximation errors are incurred. The reaction rate
is dependent on the spatial position. This situation might
occur if the temperature is non-uniform throughout the
reactor. The dependence of the reaction rate on the spatial
position is given by

k(x) = k0(1 + vx) (35)

For v > 0 the rate is increasing and for v < 0 rate is
decreasing along the reactor axis. Initially, the following
values are chosen for the model parameters:

ǫ1 = 0.01, ǫ2 = 1, F = 1, k0 = 50, v = −0.95

The inflow is given by

u =

{

0 if 0 < t < 1

1 − 0.5min(2,
1

1.9
(t− 1)) if t ≥ 1

(36)

The system is simulated for the time interval t ∈ [0, 4]
and snapshots of y1, y2 are collected on a uniform time
grid ts : {0, 0.1, .., 1}. The snapshot matrices for y1, y2
are shown in Figure 2. From these snapshot matrices
the snapshots that show sufficient correlation in time are
selected. From the snapshots it can be observed that as
the reaction constant decreases along the reactor axis, the
shape of the reaction front becomes more gradual when it
progresses through the reactor.

Using the alignment procedure that snapshots the show
sufficient correlation are aligned. The resulting aligned
snapshot matrices for four different padding methods are
shown in Figure 3. It is clear that for this type of data zero-
padding and, to a lesser extent, identical padding distort
the wave shape. This is reflected by the singular value
spectra for the matrices obtained using these padding
methods, shown in Figure 4 (a) and Figure 4 (b). The
ratios between the first and subsequent singular values are
limited, in particular for zero-padding. If other samples
are used for padding this ratio improves as shown in
Figure 4 (c). Further improvement can be accomplished
by iteratively adapting the padded samples from based on
a low rank SVD approximation, employing for example
the method proposed in Brand (2006). For this iterative
procedure the snapshot matrix is shown in Figure 3 (d).
The singular value spectrum, see Figure 4 (d), does indeed
show an improvement between the first and subsequent
singular values compared to padding from other samples.

0

50

100

150

2000

5

10

15

20

25

30
0

0.5

1

Time (samples)Space (samples)

y
1

(a) Zero-padding

0

50

100

150

2000

5

10

15

20

25

30
0

0.5

1

Time (samples)Space (samples)

y
1

(b) Identical padding

0

50

100

150

2000

5

10

15

20

25

30
0

0.5

1

Time (samples)Space (samples)

y
1

(c) Padding from other samples

0

50

100

150

200 0

10

20

30
0

0.2

0.4

0.6

0.8

1

Time (samples)
Space (samples)

y
1

(d) Padding using SVD-iteration

Fig. 3. Original and aligned snapshot matrices for different
padding methods
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(c) Original - Padding from other
samples.
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Fig. 4. Comparison between singular value spectra of
the aligned snapshot matrices for different padding
methods.

From the aligned snapshot matrix, for which the padding
is done based on other time samples, a POD basis is
determined. A separate basis was be determined for each
component y1, y2. The first basisfunctions for aligned snap-
shot matrix are shown in 5. For y2, the first basisfunction
captures the wave shape and the second is used to change
the slope of the wave. For y1 the basisfunctions also reflect
the effect of the padding.

For both the standard POD approach and the approach
using the moving basis functions, simulations for the time
interval t ∈ [1.15, 1.9], in which the front travels through
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Fig. 5. Basisfunctions obtained from the aligned snapshot
matrix for y1 and y2.

the reactor, are shown in Figure 6. The error for the
standard POD approach is more oscillatory, while the
error for the approach using the moving basis functions
manifests itself as an offset in amplitude and phase of
the wave. A more extensive comparison between both
approaches is given in Table 8. As can be expected,
the approach using moving basis functions permits lower
model orders with errors comparable to POD. If a high
accuracy is required, this advantage diminishes. This is
due the fact that errors which are incurred during the
alignment procedure and the projection onto the moving
basis functions become significant relative to the error that
results from truncating the POD basis. These alignment
and projection errors can be characterized as:

• Linear interpolation errors incurred when translating
over non-integer intervals.

• The error due to the fact that the padded samples are
obtained using an extrapolation of observed samples.

The diminishing advantage at higher accuracies is also
related to the fact that for higher accuracies an increasing
fraction of the basisfunctions capture the changing shape
of the wave. The extent to which this is possible in terms
of the number of basisfunctions required is the same as
for standard POD. Therefore, at higher accuracies, the
number of basisfunction required by the moving wave POD
approach tends to that of the standard POD approach.

POD Translated POD

Accuracy Modes MSE Modes MSE

0.95 16 2.0311 6 (4 + 2) 0.5257

0.99 26 0.4694 7 (5 + 2) 0.3300

0.999 34 0.0775 16 (13 + 3) 0.1783

Table 8 : Comparison of standard and translated POD
method.

7. CONCLUSIONS AND FURTHER WORK

The use of translating basisfunctions allows a significant
reduction in the number of modes required to approx-
imate systems of which the responses are characterized
by traveling waves or shock fronts. When multiple waves
are present simultaneously or when the spatial domain is
finite, a dual basis is used to project the reduced domain.
This dual basis requires updating during simulation. The
alignment of snapshot data is required as a pre-processing
step to eigenmode decomposition. On the finite domain
both interpolation and extrapolation are required to per-
form this alignment. The extrapolation method used has a
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(a) Comparison of the original model and the standard POD approx-
imation.
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(b) Comparison of the original model and the projected model with
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Fig. 6. Comparisons of the standard POD approximation
(POD) to the projected model with translating bas-
isfunctions (Wave POD).

large effect on the basisfunctions that are obtained. Several
choices are possible for extrapolation, and the optimal
choice in general depends on the application and the a-
priori knowledge that is available. When the wave shape
remains relatively constant in time, in many cases the
most practical choice is to extrapolate spatial samples of
a snapshot based on snapshots at earlier or later time
instances. The example shows that in particular for lower
accuracy requirements a relatively low number of modes
are needed for the approach with translating basisfunc-
tions as opposed to standard POD. As accuracy require-
ments increase, this relative difference diminishes. A major
disadvantage of this method is the requirement to update
the dual basis during simulation.
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