

Reinforcement Hybrid Evolutionary Learning

for TSK-type Neuro-Fuzzy Controller Design

Yung-Chi Hsu, Sheng-Fuu Lin

Department of Electrical and Control Engineering

National Chiao-Tung University
1001 Ta Hsueh Road, Hsinchu, Taiwan 300, R.O.C.

(e-mail: sflin@mail.nctu.edu.tw)

Abstract: This paper proposes a recurrent TSK-type neuro-fuzzy controller (TNFC) with reinforcement
hybrid evolutionary learning algorithm (R-HELA). The proposed R-HELA combines the compact genetic
algorithm (CGA) and the modified variable-length genetic algorithm (MVGA) to perform the
structure/parameter learning for constructing the TNFC dynamically. The evolution of a population
consists of three major operations: group reproduction using the compact genetic algorithm, variable two-
part crossover, and variable two-part mutation. Illustrative example is conducted to show the performance
and applicability of the proposed R-HELA method.

1. INTRODUCTION

Recently, many evolutionary algorithms, such as the
genetic algorithm (GA), genetic programming, evolutionary
programming, and evolution strategies, have been proposed.
Since they are heuristic and stochastic, they are less likely to
get stuck at the local minimum, and they are based on
populations made up of individuals with specific behaviours
similar to certain biological phenomena. These common
characteristics have led to the development of evolutionary
computation as an increasingly important field.

The evolutionary fuzzy model generates a fuzzy system
automatically by incorporating evolutionary learning
procedures, where the well-known procedure is GA. Several
genetic fuzzy models, that is, fuzzy models augmented by a
learning process based on GAs, have been proposed. Karr
applied GAs to the design of the membership functions of a
fuzzy controller (Karr 1991), with the fuzzy rule set assigned
in advance. Since the membership functions and rule sets are
co-dependent, simultaneous design of these two approaches
would be a more appropriate methodology. Bandyopadhyay
et. al. used the variable-length genetic algorithm (VGA) that
let the different lengths of the chromosomes in the population
(Bandyopadhyay et al. 2000). Juang et. al. proposed genetic
reinforcement learning in design of fuzzy controllers (Juang et
al. 2000). The GA that Juang et. al. adopted was based upon
traditional symbiotic evolution which, when applied to fuzzy
controller design, complements the local mapping property of
a fuzzy rule. However, the aforementioned approaches may
require one or more of the following: 1) the number of fuzzy
rules has to be assigned in advance; 2) the lengths of the
chromosomes in the population must be the same.

For solving above problems, in this paper, we present a
TSK-type neuro-fuzzy controller (TNFC) with a
reinforcement hybrid evolutionary learning algorithm (R-
HELA). The proposed R-HELA determines the number of

fuzzy rules automatically and processes the variable-length
chromosomes. The length of each individual denotes the total
number of genes in that individual. The initial length of each
individual may be different from each other, depending on the
total number of rules encoded in it. Individuals with an equal
number of rules constitute the same group. Thus, initially
there are several groups in a population. We use the elite-
based reproduction strategy to keep the best group. Therefore,
the best group can be reproduced many times for each
generation. The reinforcement signal from the environment is
used as a fitness function for the R-HELA. That is, we
formulate the number of time steps before failure occurs as
the fitness function. In this way, the R-HELA can evaluate the
candidate solutions for the parameters of the TNFC model.

The advantages of the proposed R-HELA method are
summarized as follows: 1) it determines the number of fuzzy
rules and tune the free parameters of the TNFC model in a
highly autonomous way. Thus, users need not give it any a
priori knowledge or even any initial information on these. 2)
It is applicable to chromosomes of different lengths. 3) It does
not require precise training data for setting the parameters of
the TNFC model. 4) It is indeed that the algorithm can
perform better and converge more quickly than some
traditional genetic methods.

This paper is organized as follows. In section 2, the
TSK-type neuro-fuzzy controller (TNFC) is introduced. In
section 3, the proposed hybrid evolution learning algorithm
(HELA) is described. In section 4, the reinforcement hybrid
evolution learning algorithms used for constructing the TNFC
controller is introduced. In section 5, the simulation results are
presented. The conclusions are summarized in the last section.

2. TSK-TYPE NEURO-FUZZY CONTROLLERS

A Takagi-Sugeno-Kang (TSK) type controller (Lin et al.
1996) employs different implication and aggregation methods

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6530 10.3182/20080706-5-KR-1001.3323

than the standard Mamdani controller. Instead of using fuzzy
sets, the conclusion part of a rule is a linear combination of
the crisp inputs.

IF x1 is A1j (m1j , σ1j) and x2 is A2j(m2j , σ2j)…
 and xn is Anj (mnj , σnj) (1)

THEN y’=w0j+w1jx1+…+wnjxn

Since the consequence of a rule is crisp, the defuzzification
step becomes obsolete in the TSK inference scheme.
Therefore, the controller’s output is computed as the weighted
average of the crisp rule outputs, which is computationally
less expensive then calculating the center of gravity.

In this paper, we adopt a TSK-type neuro-fuzzy
controller (TNFC) to perform a control problem. The
functions of the nodes in each layer are described as follows:
Layer1 (Input Node): No function is performed in this layer.
The node only transmits input values to layer 2.

ii xu =)1((2)
Layer2 (Membership Function Node): Nodes in this layer
correspond to one linguistic label of the input variables in
layer1; that is, the membership value specifying the degree to
which an input value belongs to a fuzzy set is calculated in
this layer. For an external input ix , the following Gaussian
membership function is used:

 []
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= 2

2)1(
)2(exp

ij

iji
ij

mu
u

σ
 (3)

where ijm and ijσ are, respectively, the center and the width of
the Gaussian membership function of the jth term of the ith
input variable ix .
Layer 3 (Rule Node): The output of each node in this layer is
determined by the fuzzy AND operation. Here, the product
operation is utilized to determine the firing strength of each
rule. The function of each rule is

 ∏=
i

ijj uu)2()3((4)

Layer 4 (Consequent Node): Nodes in this layer are called
consequent nodes. The input to a node in layer 4 is the output
delivered from layer 3, and the other inputs are the input
variables from layer 1. For this kind of node, we have

)(
1

0
)3()4(∑

=

+=
n

i
iijjjj xwwuu (5)

where the summation is over all the inputs and ijw are the
corresponding parameters of the consequent part. The wij is
any real value. If wij=0, i>0, the TNFC controller in this case
will be called the zero-order TNFC controller.
Layer 5 (Output Node): Each node in this layer corresponds to
one output variable. The node integrates all the actions
recommended by layers 3 and 4 and acts as a defuzzifier with

∑

∑ ∑

∑

∑

=

= =

=

=

+
=== M

j
j

M

j

n

i
iijjj

M

j
j

M

j
j

u

xwwu

u

u
uy

1

)3(

1 1
0

)3(

1

)3(

1

)4(

)5(

)(
 (6)

where M is the number of fuzzy rules.

3. A HYBRID EVOLUTION LEARNING ALGORITHM

In this section, the proposed hybrid evolutionary
learning algorithm (HELA) will be introduced. Recently,
many efforts that try to enhance the traditional GAs have been
made (Michalewicz 1999). Among them, one category focuses
on modifying the structure of a population or the role an
individual plays in it, such as the distributed GA (Tanese
1989), the cellular GA (Arabas et al. 1994), and the symbiotic
GA (Moriarty et al. 1996).

In a traditional evolution algorithm, the number of rules
in a model must be predefined. Our proposed HELA
combines the compact genetic algorithm (CGA) and the
modified variable-length genetic algorithm (MVGA). In the
MVGA, the initial length of each individual may be different
from each other, depending on the total number of rules
encoded in it. Thus, we do not need to predefine the number
of rules. In this paper, individuals with an equal number of
rules constitute the same group. Initially, there are several
groups in a population. Unlike the traditional variable-length
genetic algorithm (VGA) (Bandyopadhyay et al. 2000),
Bandyopadhyay et. al. used “#” to mean, “does not care”. In
this study, we adopt the variable two-part crossover (VTC)
and the variable two-part mutation (VTM) to make the
traditional crossover and mutation operators applicable to
different lengths of chromosomes. Therefore, we do not use
“#” to mean, “does not care” in the VTC and the VTM.

In this study, we divide a chromosome into two parts.
The first part of the chromosome gives the antecedent
parameters of a TNFC model while the second part of the
chromosome gives the consequent parameters of a TNFC
model. Each part of the chromosome can be performed using
the VTC on the overlapping genes of two chromosomes. In
the traditional VGA, Bandyopadhyay et. al. only evaluated
the performance of each chromosome in a population. The
performance of the number of rules was not evaluated in
(Bandyopadhyay et al. 2000). In this study, we use the elite-
based reproduction strategy to keep the best group with the
same length chromosomes. Therefore, the best group can be
reproduced many times for each generation. The elite-based
reproduction strategy is similar to the maturing phenomenon
in society, where individuals become more suitable to the
environment as they acquire knowledge from society.

In the proposed HELA method, we adopt the compact
genetic algorithm (CGA) (Harik et al. 1999) to carry out the
elite-based reproduction strategy. The CGA represents a
population as a probability distribution over the set of
solutions and is operationally equivalent to the order-one
behavior of the simple GA (Lee et al. 1995). The advantage of
the CGA is that it processes each gene independently and
requires less memory than the normal GA. The building
blocks (BBs) in the CGA represent the suitable lengths of the
chromosomes and reproduce the chromosomes according to
the BBs. The coding scheme consists of the coding done by
the MVGA and the CGA. The MVGA codes the adjustable
parameters of a TNFC model into a chromosome, as shown in
Fig. 1; where MSj represents the parameters of the antecedent
of the jth rule in the TNFC, Cj represents the parameters of the
consequent of the jth rule. In Fig. 2, the CGA codes the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6531

probability vector into the building blocks (BBs), where each
probability vector represents the suitability of the rules of a
TNFC model. In CGA, we must predefine the maximum
number of rules (Mmax) and the minimum number of rules
(Mmin) to prevent the number of fuzzy rules generated beyond
a certain bound (i.e., [Mmax, Mmin]).

m11 11σ wjn

 MS1 MS2 ... MSj MSM C1... C2 ... Cj ... CM

m21 21σ ... mi1 1iσ mn1 ... … wj0 wji
Fig. 1. Coding the adjustable parameters of a TNFC into a
chromosome in the MVGA.

Fig. 2. Coding the probability vector into the building
blocks (BBs) in the CGA.

The learning process of the HELA involves three major
operators: elite-based reproduction strategy, variable two-part
crossover, and variable two-part mutation. The major learning
process is described step-by-step as follows:
a. Elite-Based Reproduction Strategy (ERS): Reproduction

is a process in which individual strings are copied according
to their fitness value. A fitness value is assigned to each
individual using Eqs. (13). The goal of the R-HELA method
is to maximize the fitness value. The higher a fitness value,
the better the fitness. In this study, we use an elite-based
reproduction strategy (ERS) to mimic the maturing
phenomenon in society, where individuals become more
suitable to the environment as they acquire more knowledge
from society. The CGA is used here to perform the ERS.
The CGA represents the population as a probability
distribution over the set of solutions and is operationally
equivalent to the order-one behavior of the simple GA. The
CGA uses the BBs to represent the suitable length of the
chromosomes and reproduces the chromosomes according
to the probability vector in the BBs. The best performing
individuals where in the top half of each population are
using to perform the ERS. According to the results of the
ERS, using the crossover and the mutation operations
generates the other half individuals. After the ERS, the
suitable length of chromosomes will be preserved and the
unsuitable length of chromosomes will be removed. The
detailed of the ERS is shown as follows:
Step 1. Update the probability vectors of the BBs according
to the following equations:

⎩
⎨
⎧

−=
≤+=

otherwisevalueUptVV
fitMaxAvgifvalueUptVV

kkk

kkkk

),*_(
),*(

λ
λ (7)

where k=[Mmax,Mmin]

NcfitAvg
Nc

p
p /

1
∑
=

= (8)

∑
=

=
Nc

p
pkk fitfitTotalvalueUpt

1
__ (9)

∑
=

=
kN

p
kpk fitfitTotal

1

_ (10)

where Vk is the probability vector in the BBs and represents
the suitable chromosome in the group with k rules in a
population; λ is a threshold value we predefine; Avg
represents the average fitness value in the whole population;
Nc is the population size; Nk is the kth group size; fitp is the
fitness value of the pth chromosome in all Nc populations;
fitkp is the fitness value of the pth chromosome in kth group;
and kfitMax _ is the best fitness value (maximum value of
Eq. (13)) in the kth group. As shown in Eq. (7),
if kfitMax _ ≥Avg, then the suitable chromosomes in the kth
group should be increased. On the other hand,
if kfitMax _ <Avg, then the suitable chromosomes in the kth
group should be decreased. Eq. (10) represents the sum of
the fitness values of the chromosomes in the kth group.
Step 2. Determine the reproduction number according to
the probability vectors of the BBs as follows:

Repk=)_/(*)2/P(size VelocyTotalVk
 where k=[Mmax,Mmin] (11)

∑
=

=
max

min

_
M

Rk
kVVelocyTotal (12)

where Psize represents the population size; Repk is the
recorder, and a chromosome has k rules for constructing a
TNFC.
Step 3. After step 2, the reproduction number of each group
in the top half of a population is obtained. Then we generate
Repk chromosomes each group using the roulette-wheel
selection method (Cordon et al. 2001).
Step 4. If any probability vector in BBs reaches 1, then stop
the ERS and set the probability vector to 1 for all groups
with the same number of rules, according to step 2. The
lacks of the chromosomes are generated randomly. To
replace the ERS step, we use the roulette-wheel selection
method (Cordon et al. 2001) – a simulated roulette is spun –
for this reproduction process.
b. Variable two-part crossover: Although the ERS
operation can search for the best existing individuals, it does
not create any new individuals. In nature, an offspring has
two parents and inherits genes from both. The main operator
working on the parents is the crossover operator, the
operation of which occurs for a selected pair with a
crossover rate. In this paper, we propose the variable two-
part crossover (VTC) to perform this step. In the VTC, the
parents are selected from the enhanced elites. In the VTC,
two parents are selected using the roulette-wheel selection
method (Cordon et al. 2001). The two parents may be
selected from the same or different groups. Performing
crossover on the selected parents creates the offspring. Since
the parents may be of different lengths, we must avoid
misalignment of individuals in the crossover operation.
Therefore, a variable two-part crossover is proposed to solve
this problem. The first part of the chromosome gives the
antecedent parameters of a TNFC model while the second
part of the chromosome gives the consequent parameters of
a TNFC model. The two-point crossover is adopted in each
part of the chromosome. Thus, new individuals are created
by exchanging the site’s values between the selected sites of
the parents’ individuals. To avoid the misalignment of
individuals in the crossover operation, in the VTC, the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6532

selection of the crossover points in each part will not exceed
the shortest length chromosome of two parents. Two
individuals of different lengths using the variable two-part
crossover operation are shown in Fig. 3. MSj represents the
parameters of the antecedent part of the jth rule in the TNFC,
Wj represents the parameters of the consequent of the jth
rule in the TNFC, and M_k is the number of fuzzy rules in
kth chromosome. After the VTC operation, the individuals
with poor performance are replaced by the new offspring.

Fig. 3. The VTC in the HELA.

c. Variable two-part mutation: In this paper, the variable
two-part mutation (VTM) is proposed to perform the mutation
operation. In each part of a chromosome, uniform mutation is
adopted, and the mutated gene is drawn randomly from the
domain of the corresponding variable.

4. REINFORCEMENT LEARNING FOR A TNFC

Unlike the supervised learning problem, in which the
correct “target” output values are given for each input pattern,
the reinforcement learning problem has only very simple
“evaluative” or “critical” information, rather than
“instructive” information, available for learning. In the
extreme case, there is only a single bit of information to
indicate whether the output is right or wrong. The
reinforcement hybrid evolutionary learning algorithm (R-
HELA) and its training environment interact in a
reinforcement learning problems are shown in Fig. 4. In this
paper, the reinforcement signal indicates whether a success or
a failure occurs.

As show in Fig. 4, the proposed R-HELA consists of a
TNFC model, which acts as the control network to determine
a proper action according to the current input vector
(environment state). The structure of the proposed R-HELA is
different from Barto and his colleagues’ actor-critic
architecture (Barto et al. 1983), which consists of a control
network and a critic network. The input to the TNFC model is
the state of the plant, and the output is a control action of the
state, denoted by f. The only available feedback is a
reinforcement signal that notifies the TNFC model only when
a failure occurs. An accumulator plays a role which is a
relative performance measure shown in Fig. 4. It accumulates
the number of time steps before a failure occurs. In this paper,
the feedback takes the form of an accumulator that determines
how long the experiment is still a “success”; this is used as a
relative measure of the fitness of the proposed R-HELA
method. That is, the accumulator will indicate the “fitness” of
the current TNFC model. The key to the R-HELA is
formulating a number of time steps before failure occurs and
using this formulation as the fitness function of the R-HELA
method.

RWNFS Model Builder

Accumlator

Plant

HELA method

RWNFS Model

Reinforcement
Signal

Chromosomes

fState

x

Fig. 4. Schematic diagram of the R-HELA for the TNFC.

In this paper, we use a number of time steps before

failure occurs to define the fitness function. The goal of the R-
HELA method is to maximize the fitness value. The fitness
function is defined by:

 Fitness Value (i) =TIME-STEP(i) (13)

where TIME-STEP(i) represents how long the experiment is a
“success” with the ith population.

5. ILLUSTRATIVE EXAMPLE

In this section, we compare the performance of the
TNFC model using the R-HELA method with an application.
The simulation was performed to balance the cart-inverted-
pendulum plant (Cheok et al. 1987). The initial parameters are
given in Table 1. The initial parameters are determined by
practical experimentation or trial-and-error tests.

Table 1: The initial parameters before training

Parameters Value Parameters Value
Population Size 54 [minw , maxw] [-20,20]

Crossover Rate 0.5 Mmax 12
Mutation Rate 0.3 Mmin 3

[minσ , maxσ] [0,2] λ 0.01

[minm , maxm] [0,2]

In this example, we shall apply the R-HELA method to

the classic control problem of the cart-inverted-pendulum
plant. This problem is often used as an example of inherently
unstable and dynamic systems to demonstrate both modern
and the classic control techniques (Cheok et al. 1987), or the
reinforcement learning schemes (Barto et al. 1983), and is now
used as a control benchmark. The cart-inverted-pendulum
plant is the problem of learning how to balance an upright
pole. The bottom of the pole is hinged to a cart that travels
along a finite-length track to its right or left. Both the cart and
the pole can move only in the vertical plane; that is, each has
only one degree of freedom.

There are four state variables in the system:θ , the angle
of the pole from an upright position (in degrees);θ& , the
angular velocity of the pole (in degrees/seconds); x , the
horizontal position of the cart's center (in meters); and x& , the
velocity of the cart (in meters/seconds). The only control
action is f, which is the amount of force (in Newtons) applied
to cart to move it toward left or right. The system fails when
the pole falls past a certain angle (± 24 is used here) or the
cart runs into the bounds of its track (the distance is 2.4 m
from the center to each bound of the track). The goal of this

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6533

control problem is to determine a sequence of forces applying
to the cart to balance the pole upright. The equations of
motion that we used are:

)()()1(ttt θθθ &Δ+=+ (14)

[]

)(cos))(3/4(

)()(

)(cos))(3/4(
))(sgn()(sin)()()(cos

)(cos))(3/4(
)(sin)(

)()1(

2

2

2

2

tlmlmm
lm

tmm

tlmlmm
txMttlmtft

tlmlmm
tgmm

tt

pp

p

pp

pp

cp

pp

p

θ

θμ

θ
θθθ

θ
θ

θθ

−+

+

−

−+
−+

−

−+
+

Δ+=+

&

&&

&&
 (15)

)()()1(txtxtx &Δ+=+ (16)
[]

)(
))(sgn(

)(
)(cos)()(sin)()(

)()1(
2

p

c

p

p

mm
tx

mm
ttttlmtf

txtx

+
−

+

−+
Δ+=+

&

&&&
&

μ

θθθθ
 (17)

where
l = 0.5 m, the length of the pole;

 m = 1.1 kg, combined mass of the pole and the cart;
mp = 0.1 kg, mass of the pole;
g = 9.8 m/s , acceleration due to the gravity; (18)

cM = 0.0005, coefficient of friction of the cart on the
track,

pM = 0.000002, coefficient of friction of the pole on
the cart,
Δ = 0.02(s), sampling interval.

The constraints on the variables are oo 2424 ≤≤− θ , -
2.4m ≤≤ x 2.4m, and -10N ≤≤ f 10N. A control strategy
is deemed successful if it can balance a pole for 100000 time
steps. The four input variables),,,(xx &&θθ and the output ft
are normalized between 0 and 1. The four normalized state
variables are used as inputs to the proposed TNFC model. The
fitness function in this example is defined in Eq. (13) to train
the TNFC model. A total of thirty runs were performed. Each
run started at the different initial state. The TNFC model
learned to balance the pole at the 54th generation averagely is
shown in Fig. 5. In this figure, each run represents that largest
fitness value in the current generation is selected before the
cart-pole balancing system fails. When the R-HELA method
is stopped, we choose the best strings in the population at the
final generation and test them on the cart-inverted-pendulum
plant. Fig. 6 shows the results of the probability vectors in
CGA. In this figure, the final average optima number of rules
is 4.

The simulation was carried out for thirty runs. The
successful results, which consist of the pole angle, cart
position and controller output, are shown in Fig. 5 (d)-(f).
Each line in Fig. 5 (d)-(f) represents each run with a different
initial state. The results shown in this figure are the first 1000
time steps in the 100,000 control time steps. As shown in Fig.
5 (d)-(f), the R-HELA successfully controlled the cart-
inverted-pendulum plant in thirty runs.

 (a) (b)

(c) (d)

(e) (f)

Fig. 5. The performance of time steps of (a) the R-HELA, (b)
the R-SE, and (c) the R-GA and control results of the cart-
inverted-pendulum plant using the R-HELA of (d) angle of
the pole, (e) position of the cart, and (f) control force.

Fig. 6. The probability vectors of ERS step in R-HELA.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6534

We also compare the performance of our system with
the reinforcement symbiotic evolution (R-SE) (Juang et al.
2000) and the reinforcement genetic algorithm (R-GA) (Karr
1991) was applied to the same problem. In the R-GA and the
R-SE, the population size was set to 200 and the crossover
and mutation probabilities were set to 0.5 and 0.3,
respectively. The R-SE and R-GA methods learned to balance
the pole at the 80th and 149th generations averagely are
shown in Fig. (b) and (c).

The GENITOR (Whitley et al. 1993), the SANE
(Symbiotic Adaptive Neuro-Evolution) (Moriarty et al. 1996),
the TDGAR (Lin et al. 2000), and the CQGAF (Juang 2005)
have been applied to the same control problem and the
simulation results are listed in Table 2. Table 2 shows the
number of pole-balance trials (which reflects the number of
training episodes required) and CPU time. In this experiment,
we used a Pentium 4 chip with a 1.5GHz CPU, a 512MB
memory, and the visual C++ 6.0 simulation software. As
shown in Table 2, the proposed R-HELA is feasible and
effective and obtains smaller CPU times than those of other
existing models.

Table 2. Performance comparison of various existing
models.
Method Mean Mean

(time)
Best

Best

(time)
Worst Worst

(time)
Whitley

et al.
1993

3814 104.65 519 51.68 9172 218.51

Moriarty
et al.
1996

2148 76.25 89 38.56 5482 178.34

Karr
1991

514 72.34 78 33.56 938 130.75

 Juang
et al.
2000

346 68.37 56 28.72 679 121.39

 Lin et al.
2000

287 61.34 49 21.78 512 116.91

 Juang
2005

213 52.92 47 18.67 489 107.64

R-HELA 198 28.47 12 6.31 314 81.83

6. CONCLUSIONS

In this paper, a TSK-type neuro-fuzzy controller (TNFC)
with the reinforcement hybrid evolutionary learning algorithm
(R-HELA) is proposed for dynamic control problems. The
proposed R-HELA has structure-and-parameter learning
ability. That is, it can determine the average optima number of
fuzzy rules and tune the free parameters in the TNFC. The
proposed learning method also processes variable lengths of
the chromosomes in a population. The computer simulation
has shown that the proposed R-HELA has a better
performance than the other methods.

ACKNOWLEDGEMENT

This work is supported in part by the National Science

Council, Taiwan. R. O. C. under Grant NSC 95-2221-E-009-

214 and NSC 95-2752-E-009-011-PAE.

REFERENCES

Arabas J., Michalewicz Z., and Mulawka J. (1994).
GAVaPS—A Genetic Algorithm with Varying
Population Size. Proceedings of IEEE International
Conference on Evolutionary Computation: 73–78,
1994.

Bandyopadhyay S., Murthy C. A., and Pal S. K. et al. (2000).
VGA-classfifer: Design and Applications. IEEE
Transaction on System, Man, and Cybernetics. Part B:
Cybernetics. 30: 890–895.

Barto A. G., Sutton R. S., and Anderson C. W. (1983).
Neuron Like Adaptive Elements that can Solve Difficult
Learning Control Problem. IEEE Transaction on System,
Man, and Cybernetics. 13 (5): 834-847.

Cordon O., Herrera F., Hoffmann F., and Magdalena L.
(2001). Genetic Fuzzy Systems Evolutionary Tuning and
Learning of Fuzzy Knowledge Bases. Advances in
Fuzzy Systems-Applications and Theory. 19. NJ: World
Scientific Publishing.

Cheok K. C. and Loh N. K. (1987). A Ball-Balancing
Demonstration of Optimal and Disturbance-
Accommodating Control. IEEE Contr. Syst. Mag. 54–
57.

Harik G.R., Lobo F.G. and Goldberg D.E. (1999). The
Compact Genetic Algorithm. IEEE Transactions on
Evolutionary Computation. 3 (4): 287-297.

Juang C. F., Lin J. Y. and Lin C. T. (2000). “Genetic
reinforcement learning through symbiotic evolution for
fuzzy controller design,” IEEE Trans on System, Man,
and Cybernetics. Part B: Cybernetics. 30 (2): 290-302.

Juang C. F. (2005). Combination of Online Clustering and Q-
value based GA for Reinforcement Fuzzy System design.
IEEE Transactions on Fuzzy Systems. 13 (3): 289–302.

Karr C. L. (1991). Design of an Adaptive Fuzzy Logic
Controller using a Genetic Algorithm. Proceedings of
the Fourth International Conference on Genetic
Algorithms: 450–457.

Lin C. T. and Lee C. S. G. et al. (1996). Neural Fuzzy Systems:
A Neuro-Fuzzy Synergism to Intelligent System,
NJ:Prentice-Hall.

Lee K.Y., Xiaomin B., and Park Y. M. (1995). Optimization
method for reactive power planning by using a modified
simple genetic algorithm. IEEE Trans.on Power
Systems. 10 (4): 1843-1850.

Lin C. T. and Jou C. P. (2000). GA-based Fuzzy
Reinforcement Learning for Control of a Magnetic
Bearing System. IEEE Transaction on System, Man,
and Cybernetics. Part B: Cybernetics. 30 (2): 276-289.

Michalewicz Z. (1999) Genetic Algorithms+Data
Structures=Evolution Programs. New York: Springer-
Verlag.

Moriarty D. E. and Miikkulainen R. (1996). Efficient
Reinforcement Learning through Symbiotic Evolution.
Mach. Learn., 22: 11–32, 1996.

Tanese R. (1989). Distributed Genetic Algorithm.
Proceedings of International Conference on. Genetic
Algorithms: 434–439.

Whitley D., Dominic S., Das R., and Anderson C. W. (1993).
Genetic Reinforcement Learning for Neuro Control
Problems. Mach. Learn. 13: 259–284., 1993.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6535

