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Abstract: This paper presents a control design method applied to diesel engines equipped with
a Variable Geometry Turbocharger (VGT) and an Exhaust Gas Recirculation (EGR) valve. The
objective of this control is to reduce gas pollution to the fixed rate norms imposed by Euro v
and Euro vi, Arnold et al. [2006] (Transport and E. E. Federation [2004] and Umweltbundesamt
[2003]) without loosing the torque power of the controlled Turbocharged Diesel Engine (shortly,
TDE). To achieve this, we propose to control Air Fuel Ratio (AFR) and EGR Fraction. But
these variables are not accessible for measurements, Jankovic et al. [2000]. Therefore the gas
pressure in the intake manifold and the compressor mass flow rate are preferred. Those outputs,
however, lead to a non-minimum phase system. To avoid this, another choice of outputs is
proposed which, together with a dynamic extension, yields a linearizable system with trivial
zero dynamics, to which we apply Nonlinear Continuous-time Generalized Predictive Control.
Simulation results are presented to highlight efficiency of the controller.

1. INTRODUCTION

In order to comply with more constraining antipollution
standards, Arnold et al. [2006] (see Transport and E. E.
Federation [2004] and Umweltbundesamt [2003] therein)
and Cook et al. [2007], automobile constructors introduce
in some diesel engines two actuators: the EGR valve and
the VGT. The former permits recirculation of exhaust gas
into the intake manifold while the latter the compensation
of the amount of fresh air due to the important amount of
recirculated exhaust gas in the intake manifold. But some
drawbacks have to be underlined: an important reduction
of the amount of fresh air leads to an increase in particulate
emissions and possibly visible smoke whereas a low amount
of EGR fraction leads to an increase in NOx emissions.
For this, a stoichiometric mixture (which is a mixture that
contains chemically exact mass of air to burn all the fuel
injected) is preferred in the cylinder. For Diesel fuel, the
stoichiometric AFR is around 14.6, Jankovic et al. [2000].

To render these two actuators more efficient, during the
diesel engines combustion, several control design methods
have been proposed: Constructive Lyapunov control de-
sign, Jankovic et al. [2000], Indirect passivation, Larsen
et al. [2000], Passivation, Larsen and Kokotovic [1998],
Polynomial control, Ayadi et al. [2004], Dynamic feedback
linearization, Plianos and Stobart [2007], Optimal nonlin-
ear Control, Plianos et al. [2007], Predictive Control, Otner
and del Re [2007] and Ferreau et al. [2007].

In this paper, we propose unconstrained Nonlinear Con-
tinuous-time Generalized Predictive Control NCGPC to
control both actuators, that is, to track desired values of
them.

The paper is organized as follows: Section 2 presents
the full seventh-order and the reduced third-order TDE
models while Section 3 unconstrained NCGPC of a MIMO-
square system. In Section 4, the application to TDE is
presented. Simulation results are presented in Section 5 to
demonstrate the effectiveness of this approach applied to
the extended fourth-order TDE model.

2. DIESEL ENGINE DESCRIPTION

Many models of diesel engines have been proposed since
the early 60’s (Borman [1964], Ledger et al. [1973]). For
sake of simplicity, we use the model proposed and validated
through experiments in Jankovic et al. [2000].

2.1 Full order TDE model

The full-order TDE model is a seventh-order one described
as follows in Jankovic et al. [2000]. The change of masses
of gas in the intake and exhaust manifolds is derived as

ṁ1 = Wc + Wegr −We

ṁ2 = We −Wegr −Wt + Wf .

Similarly, the change of the pressures in the intake and
exhaust manifolds is obtained from the first law of ther-
modynamics as:

ṗ1 =
γR

V1
(WcTc + WegrTegr −WeT1)

ṗ2 =
γR

V2
((We + Wf )Te −WegrT2 −WtT2).

Because of a lean combustion, the exhaust from the engine
is not entirely burned gas. Then, the dynamics of fractions
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of burned gas F1 and F2 respectively in the intake and
exhaust manifolds are derived as

Ḟ1 =
Wegr(F2 − F1)−WcF1

m1

Ḟ2 =
We[15.6(1− F1) + (AF + 1)F1]/(AF − 1)−WeF2

m1
.

The dynamics ω̇tc of the turbocharger are derived from
Newton’s second law:

ω̇tc =
1

Jtcωtc
(ηmPt − Pc).

The nomenclature of the variables is as follows:

Nomenclature
Variable Description
EGR Exhaust Gas Recirculation
AFR Air Fuel Ratio

N Engine speed
F1 Intake manifold burned gas fraction
F2 Exhaust manifold burned gas fraction
m1 Mass of gas in the intake manifold
m2 Mass of gas in the exhaust manifold
p1 Gas pressure in the intake manifold
p2 Gas pressure in the exhaust manifold
Pc Compressor power
Pt Turbine power
We Total mass flow rate into the engine
Wc Compressor mass flow rate
Wt Turbine mass flow rate
Wf Fuel mass flow rate

Wegr EGR mass flow rate
V1 Intake manifold volume
V2 Exhaust manifold volume
T1 Intake manifold temperature
T2 Exhaust manifold temperature
Tc Compressor temperature
Te Temperature of the exhaust from the engine

Tegr EGR temperature
ωtc Turbocharger speed
Jtc Turbocharger moment of inertia
ηc Compressor isentropic efficiency
ηt Turbine isentropic efficiency
ηm Turbocharger mechanical efficiency
γ Specific heat ratio
R Specific gas constant

2.2 Reduced order TDE model

In the sequel, the parameters of the model k1, k2, kc, ke,
kt, τ and ηm are identified from the seventh-order mean
value nonlinear model of TDE at a constant speed of 1600
rpm and a fueling rate of 7.2 kg/h. In order to simplify the
studied system, the seventh-order TDE model is reduced
to a third-order model one, under the specific following
hypothesis, Jankovic et al. [2000]:

• the fractions of intake and exhaust manifolds burned
gas, F1 and F2, are difficult to measure and then they
are not considered in the model,

• for the same reasons the intake and exhaust burned
gas masses fraction, m1 and m2, are ignored,

• the turbocharger dynamics are modelled as a first-
order lag power transfer with a time constant τ .

Neglecting the external disturbance Wf yields the follow-
ing third-order model:

ṗ1 = k1(Wc + u1 − kep1) +
Ṫ1

T1
p1

ṗ2 = k2(kep1 − u1 − u2) +
Ṫ2

T2
p2

Ṗc =
1
τ

(ηmPt − Pc),

where the compressor (resp. turbine) air mass flow is
related to the compressor (resp. turbine) power as follows:

Wc = Pc
kc

pµ
1 − 1

(1)(
resp. Pt = kt

(
1− 1

pµ
2

)
u2

)
. (2)

Despite the fact that the real inputs are EGR valve and
VGT openings, the considered inputs are, in this study,
for sake of simplicity, u1 = Wegr and u2 = Wt.

In the sequel, Ṫ1 and Ṫ2 are assumed to vanish because
their corresponding measured signals T1 and T2 have very
slow variations. This gives, Jankovic et al. [2000]:

ṗ1 = k1(Wc + u1 − kep1)
ṗ2 = k2(kep1 − u1 − u2)

Ṗc =
1
τ

(ηmPt − Pc).
(3)

Replacing Wc and Pt by their expressions (1) and (2) and
denoting K0 = ηm

τ kt yields the system:
ẋ = f(x) + g1(x)u1 + g2(x)u2, (4)

where

f(x) =


k1kc

Pc

pµ
1 − 1

− k1kep1

k2kep1

−Pc

τ

 , (5)

g1(x) =

[
k1

−k2

0

]
and g2(x) =

 0
−k2

K0

(
1− p−µ

2

)
 . (6)

2.3 Vector output choice

The output of to-be-controlled variables consists of the
input manifold pressure p1 and the compressor mass flow
rate Wc instead of the AFR and EGR fraction because
the latter are not measurable in a vehicle, Jankovic et al.
[2000]. The choice of p1, as the first component of the
vector output, is motivated by the fact that if one controls
the amount of fresh air in order to have a stoichiometric
mixture with the exhaust recirculated gas, the control
of EGR fraction is consequently done. The AFR can be
deduced from the following relation AFR = (1−F1)(Wc +
Wegr/Wf ), Jankovic et al. [2000]. We thus consider the
nonlinear system (3) (equivalently, (4)-(6)) with the vector
output:

y =
[

p1

Wc

]
(7)
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and the goal is to track desired constant values p1d of p1

and Wcd of Wc. In the sequel, we suppose that all the
components (p1, p2, Pc) of the state x are accessible for
measurements and, moreover, that they belong to the set
Ω, Jankovic et al. [2000], defined by

Ω = {(p1, p2, Pc) : 1 < p1 < pmax
1 ,

1 < p2 < pmax
2 , 0 < Pc < Pmax

c }, (8)

where the maximal values pmax
1 , pmax

2 , Pmax
c follow from

physical limits of the TDE.

3. UNCONSTRAINED NONLINEAR
CONTINUOUS-TIME GENERALIZED PREDICTIVE

CONTROL NCGPC

Consider the square-MIMO (m×m) nonlinear system

ẋ = f(x) +
m∑

j=1

gj(x)uj

y = (h1(x), . . . , hm(x))t,

(9)

where x ∈ Rn, u ∈ Rm and y ∈ Rm are the vectors state,
control, and output, respectively.

To simplify the exposition, the standard geometric nota-
tion for Lie derivatives is used in this paper. For a real-
valued function h on Rn and a vector field f on Rn, the
Lie derivative of h along f at x ∈ Rn is given by:

Lfh(x) =
n∑

i=1

∂h

∂xi
(x)fi(x).

Inductively, we define

Lk
fh(x) = LfLk−1

f h(x) =
∂Lk−1

f h

∂x
(x)f(x),

with L0
fh(x) = h(x).

3.1 Vector relative degree

A system of the form (9) has a vector relative degree
(ρ1, · · · , ρm) if:

(i) for any x ∈ Rn

Lgj
Lk

fhi(x) = 0,

for all 1 ≤ i ≤ m, all 1 ≤ j ≤ m, and all 0 ≤ k < ρi − 1;

(ii) the m×m matrix (decoupling matrix)

A(x) =

 Lg1L
ρ1−1
f h1(x) · · · Lgm

Lρ1−1
f h1(x)

...
...

Lg1L
ρm−1
f hm(x) · · · Lgm

Lρm−1
f hm(x)

 (10)

is nonsingular for all x ∈ Rn (see, e.g., Isidori [1995]).

3.2 Unconstrained NCGPC

The goal is to find a control law such that the output y(t)
of the system (9) tracks asymptotically a given reference
signal ω(t). Unconstrained predictive control consists of
deriving a control law by minimizing a receding horizon
performance index, in a finite prediction horizon time
without taking into account constraints on the vectors
state, input and output. The receding horizon performance
index is given as

J =
m∑

i=1

Ji, (11)

with the expression of Ji equal to, Demircioglu and
Gawthrop [1992],

Ji =
1
2

∫ Ti

0

[êi(t + τi)]2dτi,

where
êi(t + τi) = ŷi(t + τi)− ω̂i(t + τi).

Above, Ti is the prediction horizon time corresponding to
the i-th component of the vector output, ŷi(t + τi) and
ω̂i(t + τi) denote, respectively, the i-th component of the
predicted vector output and that of the vector reference
signal for any τi belonging to [t, t + Ti].

Finally, the vector control law is derived under the follow-
ing conditions, Chen [2001]:

A1: the zero dynamics exist and are asymptotically stable;

A2: all states are available for measurements;

A3: the system has a vector relative degree (ρ1, · · · , ρm);

A4: the vector output y(t) and the vector reference signal
ω(t) are sufficiently many times continuously differentiable
with respect to time.

3.3 Error Prediction

In order to predict the error between the vector output and
vector reference, one uses the Taylor series development
at time t = τi, up to a chosen order li > ρi. Note that
this order of development is important for stability of the
closed-loop system, Chen et al. [1999] and Chen et al.
[2003]. We then have the following relation:

êi(t + τi) =
li∑

k=0

e
(k)
i (t)

(t + τi − t)k

k!
+ Ri(τi),

where Ri(τi) represents higher order terms (h.o.t.) of êi(t+
τi). Rewriting the expression êi(t + τi) in a matrix form
and neglecting the h.o.t., leads to:

êi(t + τi) = ti(τi)ei, (12)

where ti(τi) =
[

1 τi . . .
τ li
i

li!

]
and

ei =



y
(0)
i − ω

y
(1)
i − ω̇

...
y
(ρi)
i − ω(ρi)

y
(ρi+1)
i − ω(ρi+1)

...
y
(ρi+ri)
i − ω(ρi+ri)


+

[
0i(ρi×1)

Di(x, ūri)

]
.

The terms Di(x, ūri) above, depending on x and ūri =
(u, u̇, . . . , u(ri)), result from successive derivations of the i-
th component of the vector output y. The integer li = ρi +
ri is the order of development in Taylor series of the i-
th error component and ri the order of derivation of the
vector control law, see Chen et al. [2003].

Denote by Mi the matrices

Mi =
∫ Ti

0

ti(τi)tti(τi)dτi,

of dimension (li + 1)× (li + 1) and by M ′
i (resp. M ′′

i ) (ri+
1) × (li + 1) matrices (resp. (ri + 1) × (ri + 1) matrices)
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resulting from simplifications of the matrix Mi during
the minimization of the receding horizon performance
index (11), see Chen [2001]. Define the matrix

B = diag{M ′′
1 , · · · ,M ′′

m}−1diag{M ′
1, · · · ,M ′

m},
and denote by L[j] its j-th row. Finally, put W =
[ω1, . . . , ω

(l1)
1 , . . . , ωm, . . . , ω

(lm)
m ]t and

Ȳ = [h1, . . . , L
l1
f h1, . . . , hm, . . . , Llm

f hm]t.

Now the vector control law u = u(x(t), t) is defined by

u = (A(x(t)))−1

 L[1](B)
...

L[(m−1)(ri+1)+1](B)

 [
W (t)− Ȳ (x(t))

]
,

where A(x) is the decoupling matrix (10), supposed to be
invertible (assumption (A1)). Observe that the choice of
the rows L[j](B) of B implies that the right hand side of
the above formula depends on x(t) and t only (and not on
u and its time derivatives).

4. APPLICATION TO DIESEL ENGINE

The control design method presented above is now applied
to the reduced order model of TDE. First, the vector
relative degree is calculated and then the zero dynamics
are examined. It turns out that they are unstable. We
thus propose a new choice of to-be-controlled output which
leads to a system that is exactly linearizable via a dynamic
extension and possesses trivial zero dynamics. Finally,
a vector control law is calculated for the dynamically
extended system.

4.1 Vector relative degree

For the third-order model TDE (4)-(6) and (7), the vector
relative degree exists and equals (ρ1, ρ2) = (1, 1) for all
(p1, p2, Pc) ∈ Ω. The decoupling matrix is:

A(x) =

 k1 0

−µkck1Pcp
µ−1
1

(pµ
1 − 1)2

−K0kc
p−µ
2 − 1
pµ
1 − 1

 .

The sum of the vector relative degree’s components is
equal to 2 which is less than 3, the dimension of the
state space of system (4)-(6). Therefore one-dimensional
zero dynamics exist. An examination of their stability is
necessary before deriving the vector control law.

4.2 Zero dynamics

Since the goal is to track the reference signal (ω1, ω2)t,
which consists of desired fixed values p1d and Wcd of the
respective components of the output y = (p1,Wc)t, define

yd = [ p1 − p1d,Wc −Wcd ]t .

The zero dynamics are obtained by applying the control
annihilating identically the vector output yd(t) and thus
are given by

ṗ2 = k2Wcd

[
1−

(pµ
1d − 1)

ηmktkc(1− p−µ
2 )

]
, (13)

which are unstable. Indeed, (13) has a single equilibrium

point p2e =
[
1− p1d−1

ηmktkc

]− 1
µ

and the eigenvalue of the

linearization of (13) at p2e is positive (see Fig. 1 and 2).
To avoid dealing with unstable zero-dynamics, we propose
another choice of outputs and a dynamic extension.

Fig. 1. Third-order TDE with p20 = 1.6 bar: unstable zero
dynamics (escaping in finite time towards p1 = 1)

Fig. 2. Third-order TDE with p20 = 1.8 bar: unstable zero
dynamics (going towards +∞ with an asymptotically
constant velocity)

4.3 Change of the vector output and Dynamic Extension
of TDE

Change of the vector output. We will overcome the prob-
lem of unstable zero dynamics by changing the output (7)
such that the modified system has trivial zero dynamics.
This can be achieved by keeping the first component
y1 = p1 (or y1d = p1−p1d) and choosing the second output
component y2 = h(x), where x = (p1, p2, Pc), such that,
indeed, Lg2h = 0. Resolving this equation gives

h(x) = Pc +
K0

k2

[
p2 −

1
1− µ

p1−µ
2

]
,

and thus we consider the new output ỹ(t) of to-be-
controlled variables defined by

ỹ(t) =

 p1

Pc +
K0

k2

[
p2 −

1
1− µ

p1−µ
2

]  . (14)

In the next subsection we will show that the system (4)-(6)
with the output (14) has, indeed, trivial zero dynamics.
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As we specified, our problem is to track desired constant
values p1d of p1 and Wcd of Wc. A natural question is
thus how to reformulate the problem in terms of the
components of the new output ỹ, given by (14), in order
to achieve a solution of the original tracking goal. Notice
that Wc, Pc, and p1 are linked via the relation Wc =
Pc

kc

pµ
1−1

and hence the desired tracking values p1d and Wcd

determine uniquely the desired value Pcd of Pc via

Wcd = Pcd
kc

pµ
1d − 1

.

Notice that given any fixed p1d and Pcd, there exists a
unique point xe = (p1e, p2e, Pce), satisfying p1e = p1d and
Pce = Pcd, and unique control values ue = (u1e, u2e) such
that the right hand side of (4)-(6) has an equilibrium at
xe when the controls are evaluated at ue. We will define
the desired tracking value hd of h, the second component
of the new output ỹ (given by (14)), as

hd = h(xe) = Pcd +
K0

k2

[
p2e −

1
1− µ

p1−µ
2e

]
.

Now a crucial observation is that when the new output ỹ(t)
tracks asymptotically the constant value (p1d, hd) and the
overall system approaches the equilibrium point xe, then
the original output y(t) tracks asymptotically the desired
values (p1d,Wcd), see Dabo et al. [2008] for more details.

Dynamic Extension of TDE. In this section we will
follow notions of geometric nonlinear control (see, e.g.,
Isidori [1995]). The system (4)-(6) with the output (14)
has the decoupling matrix

Ã(x) =

 k1 0

−µkck1Pcp
µ−1
1

(pµ
1 − 1)2

0

 , (15)

which is not invertible, and thus the system has no a vector
relative degree. We can, however, construct a suitable
dynamic extension with a well defined relative degree. To
this end, put z = u1, ż = v1 and apply the new vector
control [v1, v2]t, where v2 = u2. This yields the following
nonlinear system:

ṗ1 = k1(Wc + z − kep1)
ṗ2 = k2(kep1 − z − v2)

Ṗc =
1
τ

(ηmPt − Pc)
ż = v1.

(16)

The extended system (16) with the output (14) has the
vector relative degree equal to (ρe

1, ρ
e
2) = (2, 2) and the

invertible decoupling matrix

Ae(x) =


k1 k1kcK0

1− p−µ
2

pµ
1 − 1

K0(p−1
2 − 1) µk2K0(z − kep1)p

−µ−1
2

+
K0

τ
(p−µ

2 − 1)

 . (17)

The system is thus dynamically I-O decouplable and has
trivial zero dynamics (since the sum of the components
of its vector relative degree is ρe

1 + ρe
2 = 2 + 2 = 4,

the dimension of the state space of the extended system).
Notice that the original system (4)-(6), with the output
(14), has trivial zero dynamics too because the latter does
not depend on invertible endogenous feedback.

Fig. 3. NCGPC controller with dynamic extension

Another way of looking at the extension procedure that
we propose is to observe that the system (3) (equiva-
lently, (4)-(6)) is not static feedback linearizable because
the distribution D = span{g1, g2} is not involutive. It
is, however, flat, Fliess et al. [1995] (that is, dynamic
feedback linearizable) since any 3-dimensional system with
noninvolutive distribution D = span{g1, g2} is so and the
components p1 and h, given by (14), of the new output ỹ
are actually flat outputs (linearizing outputs of the system
(4)-(6)).

4.4 Vector control law for TDE

In this section we apply the NCGPC control, described
in Section 3, to the extended system (16) with the out-
put (14). As we have just checked, the assumptions (A1)
and (A3) are satisfied (indeed, the vector relative degree
is (ρe

1, ρ
e
2) = (2, 2) and the zero dynamics are trivial) and

so are (A2) and (A4). We choose l1 = l2 = 3 and the
predictive horizons T1 = 2, T2 = 1. As the reference signals
ω1 and ω2 we take smooth concatenations of three constant
values 1.87× 105 bar, then 1.33× 105 bar, and 1.87× 105

bar again (for ω1) and 6.98× 105 (no physical unit), then
5.01× 105, and 6.98× 105 again (for ω2). The control law
is

u(x(t), t) = (Ae(x(t)))−1

[
L[1](B)
L[3](B)

] [
W (t)− Ȳ (x(t))

]
,

where h1 = p1, h2 = h, W = (ω1, . . . , ω
(3)
1 , ω2, . . . , ω

(3)
2 )t,

and Ȳ = (h1, . . . , L
3
fh1, h2, . . . , L

3
fh2)t; one calculates

L[1](B) = [ 3.75 3 1 0 04 ] and L[3](B) = [ 04 15 6 1 0 ],
where 04 = [ 0 0 0 0 ].

5. SIMULATION RESULTS

Simulation results are carried out via Simulink with the
version V 7.0 of Matlab. Fig. 4 and Fig. 5 show the
effectiveness of the NCGPC controller.

6. CONCLUSION

The technique of Nonlinear Continuous-time Generalized
Predictive Control NCGPC is applied to a 3-dimensional
model of Turbocharged Diesel Engine TDE. To avoid
dealing with unstable zero dynamics of that model, we
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Fig. 4. Extended TDE model: output p1 and reference ω1

Fig. 5. Extended TDE model: output h and reference ω2

propose a new choice of outputs such that the modified
system has trivial zero dynamics. Then we construct a
dynamic extension in order to have a well defined vector
relative degree. Therefore the extended system satisfies
all hypothesis (A1)-(A4) of Chen [2001] and the NCGPC
can be applied. The fact that the extended system is
(dynamically) linearizable and has trivial zero dynamics
considerably simplifies calculation and implementation of
the NCGPC controller. Future works will aim at compar-
ing NCGPC controller and Exact Dynamic Linearization
applied to Turbocharged Diesel Engine TDE.
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