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Abstract: In this paper we show how to compute the reachable space for uncertain nonlinear
continuous dynamical systems by using guaranteed set integration. We introduce two ways to do
so. The first one is a full interval method which handles whole domains for set computation and
relies on Taylor series and interval analysis. The second one relies on the theory of monotone
dynamical systems and can be used with cooperative systems only but makes it possible to
bracket the uncertain nonlinear system between two nonlinear dynamical systems where there
is no uncertainty. In most cases, the bracketing systems derived are piecewise differentiable
functions, hence cannot be directly integrated via interval Taylor models. Our contribution
resides then in the use of hybrid automata to model the bounding systems. We give examples
which show the potentials of both approaches in presence of parameter and input uncertainties.
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1. INTRODUCTION

Hybrid systems are complex dynamical systems which in-
volve the interaction of discrete and continuous dynamics.
They are often components of safety-critical systems, it is
then necessary to have a thorough and guaranteed insight
on the properties of the system, such as performance,
safety or stability. The verification of these properties
can be achieved through reachability analyses, some of
which require an explicit computation of the hybrid state
space, i.e. the set of all trajectories of the hybrid system
starting from a possible initial set and under all admissible
disturbances and variations in parameter values. A key
issue when computing the reachable space of a the hybrid
dynamical system lays in the calculation of the continuous
reachable space for each mode, which boils down to the
computation of reachable space for uncertain continuous
dynamical systems. The reachable space is then defined as
follows

R([t0, t]; X0) =











x(τ), t0 ≤ τ ≤ t |
(ẋ(τ) = f(x,p, τ))

∧(x(t0) ∈ X0 ⊆ [x0])
∧(p ∈ P ⊆ [p])











(1)

Several methods have been developed recently for the
explicit computation of the reachable space. When the
continuous dynamics are linear, these methods compute
over-approximations of the reachable sets by combining
time discretization, numerical integration and computa-
tional geometry. They use various representations for the
reachable sets such as polytopes [Chutinan and Krogh,
2003], zonotopes [Girard, 2005] or ellipsoids [Kurzhanski
and Varaiya, 2005]. Some other methods proceed with
hybrid abstractions [Lefebvre and Guéguen, 2006]. When
the continuous dynamics are modelled with a non-linear

differential equation, the computation of the reachable set
becomes much harder which forms one of the main obsta-
cle in safety verification of hybrid systems [Lefebvre and
Guéguen, 2006]. Most computationnal methods rely on an
hybridization of the continuous-time models, i.e. the use
of simple piecewise affine approximations of the analysed
system on cells defined on the state space [Asarin et al.,
2007]. Unfortunately, these reachability computations are
tractable only for systems where the dimension of the
continuous state component is small.

In this paper, we will show that the computation of
reachable space for uncertain nonlinear dynamical systems
can be achieved via guaranteed set integration, i.e. a
guaranteed computation of the flow pipes. Hence, we will
investigate two methods capable of dealing with nonlinear
dynamics. The first one is a full interval method which
handles whole domains for set computation and relies on
Taylor series and interval analysis (see the review by Ne-
dialkov et al. [1999]). Interval Tayor models have already
been used for computing the reachable space of nonlin-
ear continuous dynamical systems in the context of the
verification of hybrid systems [Henzinger et al., 2000] but
no parameter uncertainty were considered. Nevertheless,
we will show that interval Taylor methods can be used
with undertain systems in some cases. The second one
relies on comparison theorems and the theory of quasi-
monotone dynamical systems, mainly developed by Hirsch
after the seminal work of Müller, Kamke and Krasnoselskij
(see [Hirsch and Smith, 2005] and the references therein).
Our method can be used with cooperative systems only but
makes it possible to bracket the uncertain system between
two dynamical systems where there is no uncertainty. In
most cases, the bracketing systems derived are piecewise
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differentiable functions, and hence cannot be directly inte-
grated via interval Taylor models. Our contribution resides
then in the use of hybrid automata to model the bracket-
ing systems. This means that the reachable space of an
uncertain system is computed by running in a guaranteed
way, two hybrid systems involving no uncertinaty which
characterize the boundaries of the reachable space. We will
show how to build these hybrid systems and how to run
them in a guaranteed way. The organisation of the paper is
as follows. Section 2 introduces guaranteed set integration.
Section 3 recall how to compute a reachable space via set
integration. Section 4 shows how to compute the reachable
of cooperative uncertain continuous systems using hybrid
automata. Examples are given in section 5.

2. GUARANTEED SET INTEGRATION

2.1 Interval analysis

Interval analysis was initially developed to account for
the quantification errors introduced by the floating point
representation of real numbers with computers and was
extended to validated numerics (see [Jaulin et al., 2001]
and the references therein). A real interval [a] = [a, ā]
is a connected and closed subset of R. The set of all real
intervals of R is denoted by IR. Real arithmetic operations
are extended to intervals. Consider g : Rn 7−→ Rm ;
the range of this function over an interval vector [a] is
given by g([a]) = {g(u) | u ∈ [a]}. The interval function
[g] : IR

n 7−→ IR
m is an inclusion function for g if

∀[a] ∈ IRn, g([a]) ⊆ [g]([a]). An inclusion function of
g can be obtained by replacing each occurrence of a real
variable by the corresponding interval and each standard
function by its interval counterpart. The resulting function
is called the natural inclusion function, which performance
depends on the formal expression for g. Given a bounded
set E of complex shape, one usually defines a box or
a paving, i.e. a union of non-overlaping boxes, E which
contains the set E: this is known as an outer approximation
of it. Likewise, one also defines an inner approximation
E which is contained in the set E. Hence, we have the
following properties

(E ⊆ E ⊆ E) ∧ (vol(E) ≤ vol(E) ≤ vol(E)) (2)

where vol(.) is the volume of a set.

2.2 Guaranteed set integration using interval Taylor models

Consider the following differential equation:
{

ẋ(t) = f(x,u,p, t),
x(t0) ∈ X0 ⊆ [x0] ⊂ D, u ∈ U, p ∈ P0 ⊆ [p]

(3)

with t0 ≥ 0. The function f , possibly nonlinear, is assumed
to be at least k−times continuously differentiable in a
domain D ⊆ Rn. The objective is to compute interval
vectors [xj ], j = 1, . . . , nT , that are guaranteed to contain
the solution of (3) at t1, t2, . . . , tnT

. Effective methods for
solving such a problem are based on Taylor expansions, see
[Nedialkov et al., 1999] and the references therein. These
methods are usually one-step methods which proceed with
two phases:

(1) they first verify existence and uniqueness of the
solution using the fixed point theorem and the Picard-
Lindelöf operator, compute an a priori enclosure [x̃j ]

such that x(t) ∈ [x̃j ] for all t ∈ [tj , tj+1] and adapt
integration step size hj if necessary in order to keep
the relative width of the solution’s enclosure smaller
than a given threshold ;

(2) then they compute a tighter enclosure [xj+1] of the
solution of (3) at tj+1 as

[xj+1] = [xj ] +

k−1
∑

i=1

hi
jf

[i]([xj ]) + hk
j f

[k]([x̃j ]) (4)

which corresponds to a Taylor expansion of order k
where [x̃j ] is used to compute the remainder term.

The coefficients f [i] are the Taylor coefficients of the
solution x(t) which can be computed either numeri-
cally by automatic differentiation or analytically via
formal methods.

The enclosures thus obtained are said validated which is
in contrast with conventional numerical integration tech-
niques which derive approximations with unknown global
error and where the accumulation of both truncation and
round-off errors may cause the computed solution to devi-
ate widely from the real one. When using interval Taylor
models it is then possible to control the global truncation
error since it is directly connected to the width of the solu-
tion enclosure. Unfortunately, the wrapping effect, i.e. the
overestimation due to the bracketing of a set of any shape
by a box makes the explicit scheme (4) width-increasing
and thus not suitable for numerical implementation. To
solve such a drawback, one uses usually mean value forms,
matrices preconditioning and linear transform [Nedialkov
et al., 1999]. A more general scheme has been developed
in [Nedialkov et al., 2001] where the interval method
is founded on the Hermite-Obreshkoff expansion series
where the sought enclosure appears both implicitly and
explicitly. In practice, apart for some particular cases such
as affine uncertain stable systems, the above techniques
derive usefull enclosures only if the ODE under study
involves no uncertain variable. Indeed, when the widths
of the initial state or the parameter interval vectors are
large, or when one proceeds with numerical integration
over a long period of time, the enclosure [xj+1] usually
becomes very pessimistic and thus useless, notwithstand-
ing all the techniques used to circumvent the wrapping
effect in interval computations. In the next subsection, we
indicate how to solve this problem when the system under
study is a monotone dynamical system.

2.3 Guaranteed set integration with the theory of monotone
dynamical systems

A monotone dynamical system is just a dynamical system
on an ordered metric space which has the property that
ordered initial states lead to ordered subsequent states.
The application of monotone methods and comparison
arguments in differential equations started in the early
1920s. A comprehensive monograph on this topic is the
one by [Hirsch and Smith, 2005].

Definition: the dynamical system is cooperative over D, if
all the off-diagonal terms of its Jacobian matrix are non
negative over D, i.e.

∀i 6= j, t ≥ 0, x ∈ D,
∂fi(x, t)

∂xj

≥ 0 (5)
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Property : If a system of ODE is cooperative then the dy-
namical system is monotone and it is possible to compute
an inclusion function for the solution of the ODE.

Theorem 1. [Walter and Kieffer, 2003]: Let us consider two
cooperative systems

ẋ = f(x,p,p,u, t) (6)

ẋ = f(x,p,p,u, t) (7)

which satisfy the condition

∀p ∈ [p,p], ∀x ∈ D, u ∈ U, ∀t ≥ t0,

f(x,p,p,u, t) ≤ f(x,p,u, t) ≤ f(x,p,p,u, t)
(8)

Moreover, if there exist two initial conditions such that

∀p ∈ [p,p], x(p,p, t0) ≤ x(p, t0) ≤ x(p,p, t0) (9)

then the solution of (3) satisfies

∀t ≥ t0, [x(t)] ⊆ [x(t),x(t)] (10)

Now, the bracketing systems (6)–(7) involve degenerated
intervals only, therefore interval Taylor models can be
used for the guaranteed numerical evaluation of x(t) and
x(t) since the wrapping effect in interval computations
can be efficiently controlled by the methods we intro-
duced previously. The main difficulty is to obtain suitable
bracketing systems in the general case. However, when
the components of f are monotonic with respect to each
parameter, it is quite easy to define these systems [Kieffer
and Walter, 2006], while avoiding possible divergence that
may occur when both upper and lower components of a
parameter appear simultaneously in the same expression
of the components of the bracketing systems [Ramdani
et al., 2006].

Rule 1. Use of monotonicity property : Here we adapt the
idea introduced in [Kieffer and Walter, 2006]. Assume that

function f is differentiable w.r.t p. Define δ
i
(pk) as follows

δ
i
(pk) =

{

pk if ∂fi

∂pk
≥ 0

p
k

if ∂fi

∂pk
< 0

(11)

where inequalities must hold for all p in [p,p], all x in D,

all u in U and all t ≥ t0; and δ(p) = [δ
i
(p1), ..., δ

i
(pk), ...]T .

In a similar way, define δi(pk) as follows

δi(pk) =

{

p
k

if ∂fi

∂pk
≥ 0

pk if ∂fi

∂pk
< 0

(12)

and δ(p) = [δi(p1), ..., δ
i(pk), ...]T .

If system (3) is cooperative over D then the enclosing
systems (6)–(7) can be obtained as follows

ẋ(t) = f(x, δ(p),u, t); x(t0) = x0 (13)

ẋ(t) = f(x, δ(p),u, t); x(t0) = x0 (14)

2.4 How tight are the enclosures

An important issue when deriving enclosures for the solu-
tion of (3) as suggested in theorem 1 and by using rule 1
is how tight are the enclosures given by (13)-(14).

Now, the derived enclosures for the reachable space (1) are
tight if they give interval state vectors at each time t which
can be actually reached by system (3) with the given initial

and parameter intervals. Obviously, this is true if systems
(13)-(14) are feasible which in turn is true if there exists
p1 and p2 in [p,p] such that

ẋ(t) = f(x,p1,u, t); x(t0) = x0 (15)

and
ẋ(t) = f(x,p2,u, t); x(t0) = x0 (16)

In general, the derived enclosures will be not tight. How-
ever, when (i) the system under study is cooperative over
D and (ii) the bracketing systems are built using (13)-(14)
then the enclosures derived via the theory of monotone
dynamical systems will be at least tighter than the ones
obtained via interval Taylor models. Furthermore, if (iii)
conditions (15)-(16) hold too as well as conditions (i) and
(ii) then the enclosures derived via the theory of monotone
dynamical systems should be tight.

3. ENCLOSURES FOR THE REACHABLE SPACE

In this section, we will show how to compute the reachable
space by using set integration

For j = 0, . . . , nT − 1, define

∀t ∈ [tj , tj+1],

[x](t) = [xj ] +

k−1
∑

i=1

(t− tj)
if [i]([xj ]) + (t− tj)

kf [k]([ψj ])

(17)

Proposition 1.

j = 0, . . . , nT − 1,
if [ψj ] ⊇ [x̃j ] ⇒ ∀t ∈ [tj , tj+1], x(t) ∈ [x](t)

(18)

Proof 1. It suffices to write a Taylor series expansion at
time tj and use [x̃j ] as defined in section 2.2 for evaluating
the remainder term (see [Nedialkov et al., 1999]).

Define R as an over-approximation of a reachable space
R, as follows

∀t, t′ ∈ [t0, tnT
], R([t, t′]; [x](t)) ⊇ R([t, t′]; [x](t)) (19)

Proposition 2. The over-approximation R is given by

j = 0, . . . , nT − 1,
∀t ∈ [tj , tj+1], R([tj , t]; [xj ]) = ∪τ∈[tj ,t][x](τ)

(20)

and satisfies
j = 0, . . . , nT − 1,
∀t ∈ [tj , tj+1],R([tj , t]; [xj ]) ⊆ [x̃j ]

(21)

where [x̃j ] is defined in section 2.2.

Proof 2. Obvious from (18).

Define R([t0, t0]; [x0]) = [x0].

Proposition 3. An over-approximation of the reachable
space (1) is given by

j = 1, . . . , nT − 1, ∀t ∈ [tj , tj+1],
R([t0, t]; [x0]) = R([t0, tj ]; [x0]) ∪R([tj , t]; [xj ])

(22)

and satisfies
j = 1, . . . , nT − 1,

∀t ∈ [tj , tj+1],R([t0, t]; [x0]) ⊆ ∪i∈{0, j}[x̃i]
(23)

Proof 3. Obvious from (18) and proposition 2

It is clear that thanks to (17), (23) and (22), one can derive
explicit formulas which characterize the time-history of the
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boundaries of the reachable space. In practice however,
one can use instead of (22) the over-approximation (23)
obtained by using the a priori solutions [x̃j ] only.

4. COMPUTING THE REACHABLE SPACE USING
HYBRID AUTOMATA AS BRACKETING SYSTEMS

In this section, we address the case of uncertain mono-
tone dynamical systems for which the sign of the partial
derivatives ∂fi

∂pk
may vary over the time period under study;

therefore rule 1 cannot be directly used. Since it is still
possible to use the rule over each time interval where this
sign is constant, the idea retained in the sequel is to re-
gard both upper and lower bounding systems as piecewise
nonlinear ODEs and thus as hybrid dynamical systems.
They can be modeled by an hybrid automaton where the
hybrid state encompasses both a discrete time component
and continuous time state variables associated to it [Alur
et al., 1995]. The hybrid automaton which will model the
systems which bracket (3) is defined by :

H = (Q,E,D,U,F,T,R) (24)

where:

(1) Q is a finite set of the discrete components of the
hybrid states called modes or locations. For each
location corresponds two continuous-time systems
which provide the locally upper and lower solutions of
(3). These systems are built using the monotonicity
property, i.e. rule 1 and hence equations (13)-(14).

(2) E ⊆ Q×Q is the set of the transitions. It contains all
the possible commutations between the locally upper
(resp. lower) continuous systems which bracket (3).

(3) D is the state space of (3).
(4) U is the definition domain for the input of (3).
(5) F = F∪F where F = {fq, q ∈ Q} and F = {fq, q ∈ Q}

are the collections of the field vectors defined by the
upper and the lower systems which enclose locally the
state flow generated by (3).

∀q ∈ Q, fq : D × U −→ Rn (25)

∀q ∈ Q, fq : D × U −→ Rn (26)

(6) T = {te, e ∈ E} is the collection of switching time

instants. Define gi,k(.) = ∂fi

∂pk
(.). We assume that

functions gi,k are continuous. The set T is defined
as

T =







te ∈ [t0, tnT
] |

∃ k = 1, ..., np, ∃i = 1, ..., n,

∃p ∈ [p] | gi,k(x,u,p, te) = 0







(27)

That is to say that if the monotonicity of f with
respect to one of the parameters changes at te, a
transition e = (q, q′) ∈ E occurs and the bracketing
systems change too from {fq, fq} to {fq′ , fq′}.

(7) R = {Re, e ∈ E} is the collection of reset functions.
They initialize the field vectors fq′ (resp.fq′) after
the activation of a transition e = (q, q′): xq′(t0) =
Re(xq(te)) and xq′(t0) = Re(xq(te). Since system
(3) is monotone, reset functions are only needed to
instanciate the bounds for the parameter vector in
(13)-(14).

Now, in order to build {fq and fq} using rule 1 and hence
(13)-(14), we will split the experiment time period [t0, tnT

]

into a succession of integration time intervals [tj , tj+1]
where tj+1 = tj + hj and where integration time steps hj

are either chosen a priori or adapted on-line. Denote IM ,
the set of time intervals [tj , tj+1] over which no switching
occurs, i.e., all the components of the field vectors f of (3)
are monotonic with respect to each parameter.

IM = {[tj , tj+1] ⊂ [0, tnT
] | ∀e ∈ E, te /∈ [tj , tj+1]} (28)

Since the a priori solution [x̃j ] encloses the whole state
trajectory over [tj , tj+1], an inner approximation of the
set (28) can also be defined without loss of guarantee as
follows

IM =







[tj , tj+1] ⊂ [0, tnT
] |

∀i = 1, ..., n, ∀k = 1, ..., np,

0 /∈ [g]i,k([x̃j ],u, [p], [tj , tj+1])







(29)

Similarly, define the set IS of intervals where a switching
occurs, i.e.,

IS = {[tj , tj+1] ⊂ [0, tnT
] | ∃e ∈ E, te ∈ [tj , tj+1]} (30)

Since we have
[t0, tnT

] = IM ∪ IS (31)

then we can write without loss of guarantee

IS = [t0, T ] \ IM (32)

Now, we can use rule 1 and (13)-(14) over each time
interval [Im] ∈ IM in order to derive fm and fm and to
bracket all the possible solutions of the uncertain system
(3)

∀[Im] ∈ IM ,∀m ∈ Q,∀p ∈ [p],∀x ∈ D,∀u ∈ U,∀t ∈ [Im],
fm(x,p,p,u, t) ≤ f(x,p,u, t) ≤ fm(x,p,p,u, t)

(33)
where fm ∈ F and fm ∈ F.

One difficulty remains as the actual time instant, i.e., te in
(27), when the upper (resp. lower) hybrid system reaches
one of its switching time instant is unknown a priori. By
using a validated interval Taylor model integration method
we will be able to solve this problem in an efficient and
guaranteed way. It suffices to apply to the system (3)
a validated integration method over each time interval
[Is] ∈ IS in order to cross the switching time instant. By
doing so, we keep the guarantee property for the enclosures
without having to derive the actual time instant where
the commutation occurs. Note that since the widths of the
intervals [Is] are equal to an integration time step (i.e., hj)
the wrapping effect will be very small in the validated inte-
gration method. Eventually, the time intervals [Is] might
also be reduced. Finally, the methodology used for comput-
ing the upper (resp. lower) bracketing system is summa-
rized in the algorithm Hybrid-Bound-Monotone given
below. Note that the upper and lower solutions of (3)
can both be computed by using the same algorithm, it
suffices to set algorithm Bnd to return either the up-
per or the lower bound of the state vector, accordingly.
Algorithm Hybrid-Bound-Monotone finds the initial
discrete mode q at line 2 (algorithm Initialize) and then
selects the ODE fq which corresponds to this initial dis-
crete state at line 3 (algorithm Select-ODE). The latter
only implements rule 1. In the while loop, it integrates
the ODE fq until a transition occurs, which is detected
at line 6 by algorithm Switch-Cond. If this is the case
(boolean -transition- is true), algorithm Switch-Cond
also returns the new discrete state q′. In order to cross
the guard condition with guarantee, one integration step
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over [Is] = [t, t+h] is performed for the original uncertain
ODE f with a full interval validated method (algorithm
Interval-Integrate at line 9).

Algorithm Hybrid-Bound-Monotone
(in : t0, tnT

, f ,F, [x](t0), [p]; out : Bnd([x](t1)), ...,
Bnd([x](tnT

)), Bnd([x̃](t0)), ...,Bnd([x̃](tnT −1)))

(1) t := t0;
(2) q := Initialize(f , [x](t0), [p]);
(3) fq := Select-ODE(Bnd(F), q);
(4) while (t < tnT

) do
(5) {h, [x](t+ h), [x̃(t)]} :=

Integrate(fq,Bnd([x](t)], t);
(6) {-transition-, q′} := Switch-Cond([x̃(t)], fq);
(7) if(-transition-)then
(8) q := q′;
(9) [x](t+ h) :=

Interval-Integrate(f ,Bnd([x](t)), [p], t, h);
(10) fq := Select-ODE(F, q);
(11) endif
(12) t := t+ h;
(13) end

5. APPLICATIONS

In this section, all algorithms are developped in C++
and use the Profil/BIAS C++ class library for interval
computations.

Uncertain affine system The system analysed is taken
from Girard [2005] where the reachable space were com-
puted with zonotopes while assuming no parameter uncer-
tainty. To the contrary, in this paper we will compute the
reachable space while assuming parameter uncertainties.
The system is as follows

ẋ =











a1 a2 0 0 0
−a2 a1 1 0 0
0 0 a3 a4 0
0 0 −a4 a3 0
0 0 0 0 a5











x + u (34)

where parameters ai, i = 1, ..., 5 are subject to bounded
uncertainties with known bounds: a1 = [−1.1,−0.9],
a2 = [−4.1,−3.9], a3 = [−3.1,−2.9], a4 = [0.9, 1.1]
and a5 = [−2.1,−1.9]. Initial domain for state vector is
xi = [0.8, 1.2], i = 1, ..., 5 and input u is taken bounded,
i.e. ui = [−0.1, 0.1] i = 1, ..., 5. The reachable space as ob-
tained by interval Taylor models using the extended mean
value algorithm introduced by Rihm [1994] with k = 30
as order of the Taylor series expansion. The projection of
the reachable space onto the x1 × x2 subspace is given for
two values for the integration time step : h = 0.01 and as
h = 0.05, and are plotted on figure (1). It is clear that the
larger the integration time step the larger the overestima-
tion of the reachable space. Even though, interval Taylor
models make it possible to compute the reachable space of
uncertain affine systems even with fairly large integration
time step in a reasonable computation time. However,
when evaluated with larger domains for the parameter or
state vectors, the size of the enclosures diverges. One way
to address this issue would be to partition both parameter
and state vectors but then computation time will grow
exponentially.

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1  1.5

x
2

x1

h=0.05

h=0.01

Fig. 1. Reachable space of (34). Projection onto x1 ×
x2 subspace as obtained when integration time step
h = 0.01 (CPU time 0.63s, PIV 2Ghz) and h = 0.05
(CPU time 1.29s).

Monotone uncertain nonlinear system Consider the
thermal model of a material sample taken from [Ramdani
et al., 2006] submitted to a multi-harmonic signal. State
vector x ∈ R13 stands for temperature and t denotes time.
The state equation is as follows:






























































ẋ1 = α1(x2 − 2x1 + u0 + u(t))
ẋ2 = 2α1(x1 − (1 + ρ1

ρ2

)x2 + ρ1

ρ2

x3)

ẋ3 = 2(p0 + p1x3)(x4 − x3 + p2
δ2

ρ2

(x2 − x3))

ẋi = (p0 + p1xi)(xi+1 − 2xi + xi−1) i = 4, . . . , 9
ẋ10 = 2(p0 + p1x10)(x9 − x10 + p2

δ2

ρ2

(x11 − x10))

ẋ11 = 2α2(x12 − (1 + ρ3

ρ2

)x11 + ρ3

ρ2

x10)

ẋ12 = α3(x13 − 2x12 + x11)
ẋ13 = 2α3(x12 − (1 + ρ3

ρ4

)x13 + ρ3

ρ4

u0)

u(t) =
∑

l=1...5

ulsin(2l−1ω0t+ φ0)

(35)
Parameter vector p = [p0 p1 p2]

T is taken in the set P0 but
the other parameters are assumed perfectly known. P0 =
[0.7, 1.23]s−1× [0.01, 0.015]s−1K−1× [0.23, 0.64]mW−1K−1

and initial state vector domain is taken as X0i
=

[90, 110]◦C. When one uses a full interval method, i.e.
interval Hermite-Obreschkoff series with variable step con-
trol as implemented in the VNODE software [Nedialkov
et al., 2001], the computed enclosures diverge as long as pa-
rameter vector p is taken uncertain, even with very small
uncertainty. Since system (35) is cooperative and hence
monotone, we will use the hybrid bracketing technique
introduced in section 4. In order to build the automaton
(24) characterizing the bounding systems for (35), we need

to study the signs of the partial derivatives ∂fi

∂pk
. Note

that parameters p0, p1 and p2 appear in f3 and f10,
and parameters p0 and p1 appear in fi, i = 4 . . . 9. In
addition, the signs of the partial derivatives ∂fi

∂p0

and ∂fi

∂p1

are similar. Therefore the set Q of discrete modes contains
210 elements, but not all of them may be activated. Fig.2
shows the evolution of the discrete modes as obtained for
the upper and lower hybrid automata used for bracket-
ing the solutions of (35) as generated by the algorithms
Hybrid-Bound-Monotone, when both initial state vec-
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Fig. 2. Discrete mode evolution for the bounding sys-
tems automata, with X0i

= [9, 11]◦C and P0 =
[0.73, 1.23]s−1 × [0.23, 0.64]mW−1K−1. (continuous
line: upper system, dash-dot: lower system)

Fig. 3. Reachable space of (35). Projection onto x1 × x12

subspace. (CPU time 67.8s PIV 2Ghz)

tor and parameter vector are taken uncertain with large
uncertainties. Fig.3 shows the projection of the reachable
space for (35) onto x1 × x12 subspace. Obviously, even for
very large parameter boxes the hybrid bracketing method
does not diverge.

6. CONCLUSION

In this paper we have addressed the issue of computing
the reachable space for uncertain nonlinear continuous
dynamical systems. We have shown that reachable spaces
can be computed via guaranteed set integration. A first
approach uses interval Taylor models. It is capable of
handling efficiently affine uncertain systems only with
quite small uncertainty. A second approach applicable
to monotone (cooperative) systems uses hybrid automata
with no uncertainty as bounding systems. It can then
handle uncertain nonlinear systems with inputs even in
presence of large uncertainty in both initial state and
parameter vector. Further work will address the extension
of the second method to non-monotone systems.
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