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Abstract: This paper addresses detection of oestrus in dairy cows using methods from statistical
change detection. The activity of the cows was measured by a necklace attached sensor.
Statistical properties of the activity measure were investigated. Using data sets from 17 cows,
diurnal activity variations were identified for the ensemble and for the individual cows. A
diurnal filter was adapted to remove the daily variation of the individual. Change detection
algorithms were designed for the actual probability densities, which were Rayleigh distributed
with individual parameters for each cow. A generalized likelihood ratio algorithm was derived
for the compensated activity signal and detection algorithm was tested on 2323 days of activity,
which contained 42 oestruses on 12 cows in total. The application of statistical change detection
methods is a new approach for detecting oestrus in dairy cows and the results are shown to
outperform earlier approaches in respect to combined statistics of false alarms and missed
detections.

Keywords: animal husbandry; developments in measurement, signal processing; fault diagnosis
and monitoring.

INTRODUCTION

Early detection of oestrus in cows is very important for
modern highly efficient farmers. The reproductive cycle of
dairy cows is about 21 days, but typically varies from 18
to 23 days. Roughly speaking, insemination should take
place within 6-12 hours after ovulation. Visual detection
of oestrus is a difficult task and requires highly skilled
personnel. Even with experienced personnel, the success
rate in visual detection is relatively low, about 60%.
Modern dairy farms can have several hundred cows and
with labor being expensive in most European countries
there is less and less time for focusing on each individual
animal. Therefore there is a need for alternative reliable
and economical methods of oestrus detection.

There are several indicators (of varying importance) of
oestrus. Increased physical activity has often been pointed
out as one of the indicators of oestrus. Kiddy [1977] in-
vestigated the variation in physical activity as an indica-
tion of oestrus and found that on average the activity at
oestrus was about 4 times the normal activity. Schlunsen
et al. [1987] found that step activity in loose housing with
cubicles doubled during the oestrus.

Numerous studies have been conducted on the subject of
automatic oestrus detection in dairy cows. Many authors,
e.g. Moore and Spahr [1991], Liu and Spahr [1993] and

Roelofs et al. [2005], have used simple statistical tests
where a mean of recent activity is compared to an older
mean of activity. Analysis of time series where parameters
were updated by means of a Kalman filter was performed
by Maatje et al. [1997], Mol et al. [1997] and Mol et al.
[1999]. Further, Eradus et al. [1999], Mol and Woldt [2001]
and Firk et al. [2003b] detected oestrus by Fuzzy logic
methods.

Methods of automated oestrus detection have been re-
viewed by Eradus and Jansen [1999], Nebel et al. [2000]
and Firk et al. [2002]. Comparison of commercial systems
was done by Cavalieri et al. [2003] and Peralta et al. [2005].

Change detection and fault diagnosis based on likelihood
ratio tests have proven beneficial in many areas as error
detection tools, see e.g. Basseville and Nikiforov [1993],
Gustafsson [2000]. However, these methods have not been
used earlier for detection of oestrus in dairy cattle. The
reasons include the difficulties in real-time monitoring on
a large number of live animals, an instrumentation issue,
that is now being solved.

Activity sensor data were avialable from the Danish Cattle
Research Center in Foulum, Denmark. The data set com-
prised real-time monitoring of 111 cows over a six months
period. This paper scrutinizes activity sensor data and
suggest algorithms for the detection of oestrus in dairy
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cows using likelihood hypothesis tests. Specifically, this
paper describes analysis of activity data and the prepro-
cessing necessary to derive a residual for change detection,
compensating for diurnal variation in data. Properties of
different residuals are discussed and through identifying
probability distribution properties, a dedicated change de-
tection and hypothesis test algorithm is derived. Results
from tests of the detection algorithm are presented and
the properties are compared with those published on other
methods from the literature.

1. DATA

The data consist of measurements of activity on cows
in a loose housing with cubicles. The activity data were
recorded at the Danish Cattle Research Center over a
period of 6 months (“the study period”).The activity was
measured by means of commercial activity tags placed on
the cows neck. The activity sensors ALPRO R© by DeLaval
return an activity index for each hour.

The original dataset consisted of data for 111 cows. Data
from 82 cows which had either received a medical treat-
ment during the study period or had long time periods
of missing data observations were discarded. The reason
for discarding data for cows that had received medical
treatment was to eliminate possible effects on the activity
resulting from identified diseases. Of the remaining 29
cows, 17 were pregnant during the entire study period and
did hence not go into oestrus. This leaves a group of 12
cows of which 9 became pregnant during the study period.
Each of these were inseminated once or more during the
study period. Data belonging to the 12 cows, that were
inseminated was used for testing the detection algorithm.

Data belonging to the 17 cows that were categorized as
pregnant during the study period were considered as being
normal behaving, as they received no medical treatment
and did not go into oestrus in the study period. Data
belonging to these cows was used for identification of
data properties for normal behaviour, e.g. distribution
properties, autocorrelation, power spectrum and etc..

To validate the method we took the following approach:
Oestrus occurs around the time of ovulation. The pre-
cise time of ovulation can not be measured in practice.
Therefore we have to base the evaluation on observable
quantities known to be related to the time of ovulation.
Visual inspection of the acitivity level of the cows is one
such option which is based on that cows have a higher
activity level around the time of ovulation. A better solu-
tion to the issue would be to find assumed oestrus cases
from milk progesterone measurements. This is more or
less the accepted “gold standard” for identifying oestrus
cases Friggens et al. [2008]. Unfortunately milk proges-
terone measurements were not available for this study,
hence visual observations were used. Additional assumed
oestrus cases were chosen in the period 18-23 days after
a performed insemination if the assumed oestrus case in
question was followed by an insemination or a registered
observation 18-23 days later.

For the purpose of this study the exact time of assumed
oestrus is determined as the middle of a 24[h] window that
has the greatest activity sum in a 48[h] space around the
day of insemination. This is found by evaluating

Table 1. Number of days of activity data and
number of assumed oestruses for cows which

were inseminated.

Cow No. No. of Activity Days No. of oestrus ref.

34 195 1
224 195 2
244 195 1
307 195 1
334 195 7
353 178 2
371 195 2
373 195 4
494 195 4

1198 195 3
1246 195 9
1253 195 4

Total 2323 42
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Fig. 1. Activity index for cow no. 1246.

kot= arg max
kr−24≤j≤kr+24

j+ 24
2

∑

i=j− 24
2

y(i) (1)

where kot is the estimated time of assumed oestrus, kr is
the sample number at midnight the day before assumed
oestrus and y(i) is the activity index at sample i. The
estimated time of assumed oestrus is used to plot the
assumed oestruses in graphs and to have a time reference
to use for comparison of different versions of the algorithm
with respect to how fast the detection algorithm is.

Table 1 shows the number of days of activity data and
the number of assumed oestruses for each cow in oestrus
as well as the total days of activity data and the total
number of assumed oestruses for the 12 “cows in oestrus”.

As an example of the activity data, Fig. 1 shows a plot
of the activity data for cow no. 1246 which belongs to the
group of cows that were inseminated once or more during
the study period. The activity index is shown as black dots
and assumed oestruses are shown as dashed vertical lines.

A histogram of a cow which had no insemination during
the study period (cow no. 358) is shown in the figure on
the left in Fig. 2. The histogram shows that the activity
data are right skewed with considerable point mass in zero.
Hence, a transformation, e.g. a logarithmic transforma-
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Fig. 2. Activity histogram and histogram of log(activity +
1) for cow no. 358.

tion, of data does not produce normally distributed data
either (see Fig. 2).

2. PROBLEM

This section assigns the derivation of the change detection
algorithm and the elimination of periodic oscillations in
the activity signal. The elimination of the periodic oscilla-
tions is described in 2.1 and the derivation of the change
detection algorithm is described in 2.2.

2.1 Residual Generator

Because cows move around, rest, eat, sleep, interact with
other individuals and etc., some sort of diurnal variations
in the activity signal can be expected. These variations
are unwanted in the signal as the decision system is to
detect other kinds of variations in the activity signal
i.e. increased activity in connection with oestrus. These
diurnal variations were modelled and eliminated by means
of a regression model where the diurnal variations were
expressed by trigonometric functions.

The frequencies used to describe the diurnal variations
were found by identifying the frequencies where the ac-
tivity carries higher power in a power spectral density
plot. A significance test of the compensation of the chosen
frequencies was performed.

Modelling of Diurnal Oscillations Power spectral den-
sity plots showed that the activity data for the 17 pregnant
cows in most cases had increased power at frequencies
corresponding to periods of 24, 12, 8, 6, 4.8 and 4 hours.
Fig. 3 shows the power spectrum of the activity for cow
no. 358.

A cows daily activity is described as a linear model by the
following expression.

y(k) = µ + A1 cos(ω1k) + B1 sin(ω1k) + . . . (2)

+Am cos(ωmk) + Bm sin(ωmk) + ε(k)

where µ is the mean activity and ε is the noise component.
On vector form it becomes.

Y = Φθ + ε (3)

where

Φ = [1 cos(ω1k) sin(ω1k) . . . cos(ωmk) sin(ωmk)] (4)

and
θT = [µ A1 B1 . . . Am Bm] (5)

The model coefficients are found by using the least squares
method where the cost function JN (θ) = 1

2
εT ε is mini-

mized. The estimated coefficients are found as

θ̂ =
(

ΦT Φ
)−1

ΦT Y (6)
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Fig. 3. Power spectrum of activity for cow no. 358.

This leaves us to the residual

ε̂ = Y − φθ̂ (7)

The significance of each estimated coefficient in the model
is investigated by an F-test. The F-test is used under
the assumption, that the residuals are uncorrelated, are
normally distributed and that the variance is constant.
While these assumptions are not formally met the F-test
still gives indication of the importance of each component
in the model. Starting with only the intercept, pairs
of components of the form (Am cos(ωmk), Bm sin(ωmk))
where m = (n − 1)/2 were added to the model.

Let J(θ̂a) be the cost function for the current model

and let J(θ̂b) be the cost for the model with a pair of
components added. Then the F-statistic for adding this
pair of components becomes

g =
J(θ̂a) − J(θ̂b)

J(θ̂b)
× N − nb

nb − na

(8)

where N is the number of observations and na and nb

are the number of coefficients in the current model and in
the model with a pair of components added, respectively.
Under the hypothesis that the pair of components do
not contribute significantly the statistic g has an F-
distribution g ∼ F (nb − na, N − nb) and the hypothesis
is rejected if

g > fF
1−α(nb − na, N − nb) (9)

where fF
1−α is a quantile in the F-distribution at α = 0.01.

The results of the F-test performed on activity data for
the 17 cows that were pregnant during the study period
are shown in Table 2. Here nsign. corresponds to the
number of cows where the reduction in the cost function
is significant and ncows corresponds to the total number
of cows regarded in the test. It can be seen from Table
2 that the addition of components corresponding to each
frequency in the model results in a significant reduction
in the cost function for all of the tested cows except
for the addition of components for periods of 8[h] and
4[h]. In these two latter cases the reduction in the cost
function is significant for 83% and 78% of the tested cows,
respectively. It is therefore concluded that the estimation
of components for all the tested frequencies is significant
for a majority of the tested cows and should therefore be
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Table 2. Significance test of estimated coeffi-
cients in the regression model at 99% quantile

ˆ̄g σ̂g Quantile
nsign.

ncows
n T[h]

197.67 107.27 4.61 1.00 3 24
55.27 35.99 4.61 1.00 5 24, 12
12.64 8.26 4.61 0.83 7 24, 12, 8
69.45 38.03 4.61 1.00 9 24, 12, 8, 6
29.60 15.71 4.61 1.00 11 24, 12, 8, 6, 4.8
15.34 9.88 4.61 0.78 13 24, 12, 8, 6, 4.8, 4

included in the regression model that is used in this study.
The on-line version of the regression model that was used
in the study includes a recursive least squares estimator
with a forgetting factor. In the recursive version the model
coefficients are for each cow found as

θ̂(k) = θ̂(k − 1) + K(k)
(

y(k) − Φ(k)θ̂(k − 1)
)

(10)

where

K(k) = P(k)ΦT (k) (11)

and

P(k) =

(

P(k − 1) − P(k − 1)ΦT (k)Φ(k)P(k − 1)

λ + Φ(k)P(k − 1)ΦT (k)

)

1

λ
(12)

where P (k) has to be non singular. The on line calculation
of the residual is therefore

ε̂(k) = y(k) − Φ(k)θ̂(k) (13)

Identification of Residual Distribution Properties His-
tograms of the residuals for the 17 pregnant cows show
that the activity residuals for normal behaviour can be
described by a Rayleigh density function shifted to match
the mean value µ = 0. Fig. 4 shows a histogram and a
shifted Rayleigh density function for a cow that belongs
to the group of “normal cows”.
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0.000
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0.015

Residual histogram for cow no. 358
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Fig. 4. Residual histogram and an approximated Rayleigh
density function for cow no. 358.

The shifted Rayleigh density function has the form

pµ0 (ε(k)) =
ε(k) + s

√

π
2

s2
exp

[

−
(

ε(k) + s
√

π
2

)2

2s2

]

(14)

for

ε(k) ≥ −s

√

π

2
, s > 0

where s is the shape parameter and is found as

s =

√

σ2

2 − π
2

(15)

where σ2 is the variance. This leads to the density function

pµ0(ε(k)) =
(4 − π)

(

ε(k) +
√

σ2π√
4−π

)

2σ2
(16)

× exp






−

(

ε(k)
√

4 − π +
√

σ2π
)2

4σ2







for ε(k) ≥ −
√

σ2π√
4 − π

, σ2 > 0

On-line variance estimation of the residual variance is done
by an exponential estimation. In order to avoid influence
from an increased variance in connection with an oestrus
case the variance estimation uses a delayed signal. The
variance estimation is written as

σ̂2(k) = σ̂2(k − 1) +
1

T (k)

(

ε(k − Dd)
2 − σ̂2(k − 1)

)

(17)

for ll + Dh < k < l

σ̂2(k) = σ̂2(k − 1) for l < k < l + Dh (18)

T (k) = λT (k − 1) + 1 (19)

where Dd is the estimation delay, l is the time of the actual
oestrus detection, ll is the time of the last oestrus detection
and Dh is the number of samples where the estimation is
halted after a detection.

As an ovulation is not expected to last longer than 24 hours
the delay is chosen as Dd = 24. The number of samples
where the estimation is halted after a detection is chosen
as Dh = 72.

2.2 Likelihood Ratio Test
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Fig. 5. Histograms of normal and oestrus activity and ap-
proximated Rayleigh and gaussian density functions
for the 9 oestrus cases for cow no. 1249.

Activity data belonging to cows that were inseminated
during the study period were observed with respect to the
change in activity during oestrus by classifying the data
into data belonging to normal activity and data belonging
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to oestrus cases. This was done by extracting 24[h] of
data around kot (see (1)) for each assumed oestrus out
of the data series. A histogram of the data belonging to
each assumed oestrus was plotted in front of a histogram
for the data belonging to normal activity. Fig. 5 shows
such histograms for cow no. 1246 which had 9 assumed
oestruses during the study period. The histograms of the
data belonging to normal activity is shown in light gray
and the histograms belonging to each assumed oestrus are
shown in black. The figure shows additionally a Rayleigh
density function for the normal activity and a gaussian
density function for the oestrus activity. Both density
functions are plotted with the estimated variance of the
normal activity.

By observing e.g. Fig. 5 it is concluded that a generalized
likelihood algorithm (GLR) is a suitable algorithm for the
likelihood ratio test. The GLR algorithm has a decision
function that maximizes with respect to the change in
mean, with µ1 as the mean under deviant behaviour, and
the time j for the on-set of fault of the form.

g(k) = max
1≤j≤k

max
µ1

Sk
j (µ1) (20)

The decision function where the normal activity is de-
scribed by a shifted Rayleigh density function and oestrus
activity is described by a gaussian density function was
derived as

g(k) = max
k−M≤j≤k

k
∑

i=j

(log





2σ̂2(i)
√

2πσ̂2(i)(4 − π)

(

ε(i) +

√
πσ̂2(i)√
4−π

)





−









ε(i) +

k
∑

q=j

ε(q)

σ̂2(q)

k
∑

q=j

1
σ̂2(q)









2

2σ̂2(i)
+

(

ε(i)
√

4 − π −
√

πσ̂2(i)

)

4σ̂2(i)
) (21)

g(k) = 0 for ε(k) < −

√

σ2(k)π
√

4 − π
(22)

where the fault occurrence time is restricted to the last M
samples. As an oestrus case is not expected to last longer
than 24[h] M is determined as M = 24[h]. A detection is
initiated if g(k) > h where h is the detection threshold.

An oestrus detection is in this study classified as being
successful if the detection takes place within 24 [h] before

and after an assumed oestrus case. Mean time to detect ( ˆ̄T )
is defined as the time delay between an assumed oestrus
and the time of detection.

3. RESULTS

Firk et al. [2002] classified the detections as true positives
(TP) for successful detections and false positives (FP) for
false detections. They classified non-detected oestrus cases
as false negatives (FN) and inspections outside of oestrus
with no detections as true negatives (TN). Number of
true negatives are in this study defined as days outside
of oestrus without a detection. Sensitivity, specificity and
error rate are defined in e.g. Firk et al. [2002] and shown
in Table 3. Error rate is referred to as error ratio in this
study.

The detection algorithm was tested on activity measure-
ments belonging to the 12 cows that were in oestrus during

1.4 8.4 15.4 22.4 29.4 6.5 13.5 20.5 27.5 3.6 11.6
0

10
20
30
40
50
60
70

Decision Function and Oestrus Detections for Cow No.1246 With Detection Threshold r = 13

D
e

c
is

io
n

 F
u

n
c
ti
o

n

5.6 12.6 19.6 26.6 3.7 10.7 17.7 24.7 31.7 7.8 15.8
0

10
20
30
40
50
60
70

D
e

c
is

io
n

 F
u

n
c
ti
o

n

9.8 16.8 23.8 30.8 6.9 13.9 20.9 27.9 4.10 11.10 19.10
0

10
20
30
40
50
60
70

Time[day.month]

D
e

c
is

io
n

 F
u

n
c
ti
o

n

Fig. 6. Decision function for cow no. 1246.

Table 3. Summary of detection results

Sensitivity [%] Specificity [%] Error ratio [%]

TP
TP+FN

× 100 TN−FP
TN

× 100 FP
TP+FP

× 100

36
36+6

× 100 = 85.7 2323−6
2323

× 100 = 99.7 6
36+6

× 100 = 14.3

Table 4. Detection results

Cow No. h Sensitivity Specificity Error ratio ˆ̄T [h]

34 10 0.0 100.0% - -
224 9 100.0% 100.0% 0 −2
244 7 100.0% 100.0% 0 0
307 6 100.0% 100.0% 0 3
334 13 71.4% 100.0% 0 2.2
353 18 100.0% 100.0% 0 5
371 6.5 100.0% 99.5% 33.3% 4
373 5.5 75.0% 98.5% 50.0% 5
494 9 100.0% 100.0% 0 1

1198 20 66.7% 99.5% 33.3% −5.5
1246 13 100.0% 100.0% 0 3.22
1253 9.5 75.0% 99.5% 25.0% 7.33

the data period. The activity data was compensated for
diurnal variations, using functions (10)-(13). and a deci-
sion value for each sample of measurement was calculated
using the decision function in (21). The detection threshold
was chosen manually for each cow. A more sophisticated
version of the detection algorithm where the threshold is
chosen automatically has not been developed yet, as the
data sample used for this study is not sufficiently large for
such a development.

Fig. 6 shows the decision function from the test performed
on data for cow no. 1246. The activity index is shown as the
solid dark gray line, detections are shown as dash-dotted
vertical lines in black and assumed oestruses are dashed
vertical lines in light gray.

A summary of detections results for the entire group of
cows studied are shown in Table 3. The detection results
for each of the 12 cows are shown in Table 4. Mean time to
detect was found as ˆ̄T = 2.42. Comparison of the detection
results in Table 3 with that of other authors reveal that
the algorithm treated in this study performs very well with
respect to detection ratio (sensitivity) and to number of
false detections in particular.
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Other authors that have used activity as the sole measure-
ment are e.g. Firk et al. [2003b] and Roelofs et al. [2005].
Firk et al. [2003b] achieved sensitivity up to 94% with an
error ratio of 53%. The best results presented with respect
to error ratio had error ratio of 21% and sensitivity of 71%.
Roelofs et al. [2005] achieved sensitivity up to 87% with
an error ratio of 40%.

Several authors have combined multiple traits in their
detection algorithms in order to obtain better detection re-
sults, e.g. Mol et al. [1997] and Firk et al. [2003a]. Mol et al.
[1997] combined measurements on activity, milk yield,
milk temperature, electrical conductivity and concentrate
leftovers. They achieved sensitivity up to 95% with a
specificity of 94%. The specificity is the result of 1488 false
detections in 24219 inspections (inspections made twice
a day). Their best results with respect to specificity was
98% (680 false detections in 34863 inspections) combined
with a sensitivity of 82.5%. Firk et al. [2003a] combined
measurements on activity with period from last oestrus.
When considering cows with and without information on
previous oestrus cases, the result was a sensitivity of 88.9%
and an error ratio of 23.8%.

4. CONCLUSION

Using data sets from about 29 individuals, and compensat-
ing for diurnal activity variations for individual animals,
statistical change detection theory was applied on oestrus
detection in diary cows. The detection algorithm was
tested on 2323 days of activity, which contained 42 oestrus
cases in 12 cows. The results were found to outperform
earlier approaches in respect to combined results of false
alarm and missed detection statistics when tuning detec-
tion parameters to individuals. However, further studies
on a larger number of cows is needed.

Other forms of likelihood ratio tests, i.e. a change in
activity described by a dynamic profile, were tested but
did not result in improvements with respect to number
of successful oestrus detections nor with respect to the
number of false detections.
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