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Abstract: An increasing number of control systems in modern automotive vehicles is based on
measurements of signals describing vehicle dynamics. Correspondingly, a large number of sensors
is required. To spare on weight and even more important on costs, car manufacturers require
joint processing of sensors, i.e. the individual sensors related to certain control systems should
become part of a sensor network. In the paper at hand the possibilities and shortcomings of
such an approach are examined from a sensor monitoring and estimation perspective. Especially,
redundant and model based failure detection are considered. The focus is on signals and sensors
related to vehicle dynamics and the corresponding question of fall back strategies in case of
sensor failure. Corresponding problems are addressed with the introduction of a new sensor
network architecture.

1. INTRODUCTION

Starting with the ABS system (anti lock braking system)
more than 25 years ago, the number of vehicle control
systems is still increasing. These systems are typically
based on sensor information and the sensors in turn have
to be supervised in order to guarantee correct system per-
formance. This is especially true for safety critical systems,
i.e. systems that actively influence vehicle movement.

Typical examples are all restraint systems (airbags), active
front steering (AFS), and VDC systems (vehicle dynamics
control systems van Zanten et al. [1998]). These examples
have in common that the main functionality is based on
signals related to vehicle dynamics. Furthermore, these
systems together comprise almost all relevant sensor sig-
nals from vehicle dynamics and therefore are considered
as the basis for the following discussion.

1.1 Considered Control Systems

VDC systems use signals to derive the drivers intent
(steering wheel angle, brake pressure, engine torque).
Based on a comparison with the actual vehicle motion
(yaw rate, lateral acceleration, velocity) corrective actions
by means of controlled braking of individual wheels can be
initiated by the system. Since this intervention is safety
critical, the underlying measurements related to lateral
dynamics (i.e. steering wheel angle, yaw rate, and lateral
acceleration) closely have to be monitored for possible
faults van Zanten [2006].

AFS systems can actively influence the steering angle at
the wheels. A typical technical realization is a planetary
gear set inserted in the steering linkage. The system action
again depends on the actual vehicle motion (yaw rate,
lateral acceleration, velocity). Clearly also in this case
erroneous system action due to sensor faults must be
avoided.

Restraint systems differ from the previous mentioned
systems in the sense that they are only active once,
i.e in case of an accident. However, sensor faults with
the consequence of airbag activation at the wrong time
surely must be detected. Airbag activation due to collisions
requires fast acceleration sensors (typical sampling rate:
1 ms) with data transmission on special buses. Therefore
joint processing with the comparatively slow systems VDC
and AFS (10 − 20 ms sampling rate) is not possible.

Here, we consider second generation restraint systems
aiming at rollover accidents (ROS - rollover systems). The
scope of the associated curtain airbag is to take care of
that the occupants stay inside the vehicle in course of a
rollover accident. Necessary sensor information are lateral
(ay) and vertical (az) acceleration and the roll rate ωx

(for details see Kröninger et al. [2004]). For this system
the corresponding dynamics and also the rage of the used
sensors is compatible to AFS and VDC systems.

1.2 Combined Sensor Monitoring and Signal Estimation

Functional benefits by combination of vehicle control sys-
tems is considered in Schwarz [2006]. Here, the potential
for sensor monitoring and estimation is examined. Having
more than one of the mentioned systems available implies
redundancy either for the yaw rate sensor (ωz) or the
lateral acceleration sensor (ay). Although from a technical
point of view sensors could be spared in these situations,
this option is not realized up till now due to liability
concerns of the possibly different manufacturers of the
considered control systems.

Joint processing of sensor signals is an alternative to pro-
vide some additional functionality. Sensor redundancy, for
example, offers the possibility of fast failure detection (see
Hillenbrand et al. [2007] for an application in vehicle dy-
namics monitoring). Furthermore enhanced model based
supervision and better signal estimation is possible if a
variety of sensor signals is available. A detailed discussion
of possible benefits is given in Rehm and Hofmann [2004].
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The corresponding algorithms are in principle known (see
Ding et al. [2004], Halbe [2007] for supervision and Kiencke
and Nielsen [2000], Hillenbrand et al. [2007] for estima-
tion). New is the question what happens if these algo-
rithms are combined within a sensor signal processing
network.

As an example consider velocity estimation: vehicle veloc-
ity is essential for model based monitoring of the yaw rate.
However, the yaw rate is needed to estimate velocity. This
circular reasoning surely has to be avoided in a central
sensor processing unit (CSPU). This point is examined in
the following section.

Although central sensor signal processing has clear ad-
vantages, there also is a drawback, namely the indirect
coupling of the systems using estimated or supervised
signals from the CSPU. Especially the question of fall
back strategies in the case of a detected failure is open.
Clearly not all systems should shut down in this case. This
point is addressed by the introduction of an hierarchical
architecture for a CSPU in the third section of the paper
at hand.
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Fig. 1. Scheme of the single track model.

2. ANALYSIS OF SUPERVISION ALGORITHMS

In this section we examine the logic behind model based
failure detection for vehicle dynamics sensors. The em-
ployed models are based on the single track model Wong
[2001]. Relevant parameters and the idea of a simplification
towards a single track model is depicted in in Figure 1.

As a minimal sensor basis of a CSPU we consider the
sensors used by a VDC system. This assumption is based
on the fact that these system are almost standard in upper-
middle-class vehicles (in Europe). The corresponding sen-
sors are wheel turn rates (ωi, i = 1(1)4), steering wheel
angle (δS), lateral acceleration (ay), and yaw rate (ωz).
The angle at the front wheels δR can be computed from
the transmission of the steering linkage (δS = iSδR with
constant transmission factor iS), or is available from an
AFS system. Vehicle velocity v is estimated in the VDC
system with a Kalman filter on the basis of the mentioned

signals and further inputs from the motor management
van Zanten et al. [1998].

The main problem of model based supervision in vehicle
dynamics is that the employed models typically are not
valid in all driving situations. Especially the following
models for δS , ay, ωz are not valid if the side slip an-
gle β (angle of the velocity vector with respect to the
longitudinal axis of the vehicle, see Fig. 1) or the rate

of change β̇ are not “small” (typical situation: skidding).
The corresponding driving situations are termed unstable
in the following.

Table 1. Supervision by means of single track
model.

residual 1: residual 2: residual 3:
ωz , δS ay , δS ay , ωz

ωz-sensor defect x x

ay-sensor defect x x

δS-sensor defect x x

tires saturated x x

non-even road x x x

vehicle unstable x x x

Sensor monitoring typically includes three different layers
Isermann [1997]. Model based supervision is considered
the third layer. The first layer contains sensor build-in
test procedures which basically check sensor hardware
for failures Henry and Clarke [1993]. Signal-individual
tests for signal plausibility (physical limits) and signal
characteristics (e.g. periodicity or statistical properties)
make up the second layer (see also Basseville and Nikiforov
[1993]).

In context of the supervision of the VDC sensors we only
consider the first layer for the wheel turn rates, i.e. for the
model based supervision layer the ωi are already cleared by
tests on the hardware level. The reason is that their digital
measurement principle is not affected by slowly growing
offsets as it is the case for ay and ωz.

The following models are used for model based supervision
of the remaining signals δS , ay, and ωz Ding et al. [2004].

(1) Relation between yaw rate and steering angle:

δS =
(lV + lH) · is

v
ωz (1)

(2) Relation between lateral acceleration and steering
angle:

δS =
(lV + lH) · is

v2
ay (2)

(3) Relation between lateral acceleration and yaw rate:

ay = vωz (3)

All three models require a horizontal road. Additionally
the first and second model are based on the assumption
of non-saturated tires (no combined lateral and longitu-
dinal slip, maximal 30% use of the tire friction potential
Pasterkamp [1997]).

A rather simple evaluation of model based fault detection
can be realized based on logic tables where the effect of one
sensor fault, ı.e the deviation form the model, is captured
by certain fault indicators (termed residuals). The idea is
that not every indicator is sensitive to every sensor fault.
Thus a sensor fault identification is possible provided that
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the logic table is invertible and that it is appropriate to
assume that only one fault may happen over some time
interval.

The result for the model equations (1,2,3) is given in
Table 1. The residual patterns show that an identification
of an ωz and ay failure is possible while a δS failure cannot
be separated from a non-valid model assumption. Note
also that the velocity is assumed to be fault free. This
implies that velocity estimation is possible without the
information from δS , ay, and ωz. This will be an important
point for the supervision architecture in the next section.

Since failure detection for the steering angle obviously is a
problem, also the detection of failures based on the steering
angle is questionable. Therefore kinematic relations are
used to express ay and ωz in terms of the wheel turn rates
ωi. The result is given in Table 2.

Table 2. Supervision by means of wheel veloc-
ities.

residual 1: residual 2: residual 3:
ωz(ωi) ay(ωi) ay , ωz

ωz-sensor defect x x

ay-sensor defect x x

non-even road x x

vehicle unstable x x x

slip (longitudinal) x x

In this case it is not possible to differentiate between a ay

failure and a non-valid model (road is not horizontal). The
combination of both concepts leads to Table 3. Evidently
there is no principle improvement with respect to failure
detection. In practice fault detection based on wheel turn
rates can be realized with faster detection rates than the
single track model based approach.

Table 3. Supervision by means of wheel veloc-
ities

res. 1: res. 2: res. 3: res. 4: res. 5:
ωz , δS ay , δS ay , ωz ωz(ωi)ay(ωi)

ωz-sensor defect x x x

ay-sensor defect x x x

δS-sensor defect x x

tires saturated x x

non-even road x x x x

vehicle unstable x x x x x

slip (longitudinal) x x

2.1 Invariant based approach

In Rehm and Otterbein [2005] a generalized single track
model is considered. As one result it turns out that

δS = iS(lV + lH)

(

ωz

v
+

ay

v2
c

)

(4)

holds independent from road inclination (vc: characteristic
velocity). However, stable driving is required, i.e. the
previous assumptions for the side slip angle must hold
true for (4) being valid. The idea to incorporate this
formula into the supervision logic is not to supply further
possibilities to differentiate sensor faults but to detect
driving situations where the supervision models are in
principle not valid. With (4) as basis for an additional
residual one gets Table 4.

Table 4. Supervision with an invariant relation

res. 1: res. 2: res. 3: res. 4.
ωz , δS ay , δS ay , ωz ay , ωz , δS

ωz-sensor defect x x x

ay-sensor defect x x x

δS-sensor defect x x x

tires saturated x x x

non-even road x x x

vehicle unstable x x x x

As expected it is still not possible to extract the informa-
tion on a defect steering wheel sensor. However, it is now
possible to distinct the case “non-even road” from unstable
driving. This may be useful to reduce false alarm rates.

2.2 Additional Vehicle Control Systems: ROS system

In this case the VDC sensors are complemented by an
additional ay sensor and a roll rate sensor (ωx). The
ay sensor can be used for redundant supervision, i.e. a
deviation between the two sensor can be used to detect a
fault. A subsequent comparison of the measured data with
data from a model, e.g. Eq. (3) can be used to identify the
faulty sensor (implementation details considering noise are
given in Hillenbrand et al. [2007]). However, at this stage
the required signals for (3) i.e. ωz and v should already be
checked as fault free.

The ωx sensor allows for an estimation of the roll angle.
One possibility is to combine a kinematic model (vx

longitudinal component of vehicle velocity v)

ωx =
d

dt

(

ay − ωzvx

g

)

(5)

with an identified linear second order model (input: ay,
output: roll angle, see also Hillenbrand et al. [2007]).

With this angle information we can explicitly characterize
the “non-even road” condition (except for the minor
problem of changing bank angles) and thus we might
expect that an improvement with respect to monitoring
within the VDC sensors is possible. However, Table 5
shows that this is not the case. Additional to the previous
residuals, two residual (res. 5, res. 6) based on ωx are
introduced. Residual 5 is based on (5) and Residual 6
on the second order relation between roll angle and ay.
As before we cannot differentiate between steering angle
failure and saturated tires. Unexpected is that is not
possible anymore to detect a yaw rate failure since the
corresponding residual pattern is the same as for unstable
driving.

The reason for this unexpected behavior is that lifting the
non-even road condition implies the usage of models re-
placing (1,2,3) with the angle information being included.
Thus the corresponding residuals are also affected by an ωx

failure and in turn we have the residual patterns in Table 5.
Also considering a two step approach for supervision does
not alter this result. Thus the ωx signal is not useful for
supervision of the VDC signals ay, δS , and ωz. However,
the estimated roll angle is of great interest for the VDC
system since it allows for more adequate control action in
case of vehicles with high center of mass.
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Table 5. Supervision with estimated roll angle

res. 1: res. 2: res. 3: res. 4: res. 5: res. 6:
ωz , δS ay , δS ay , ωz ay , ωz , δS ωx, ay , ωz ωx, ay

ωz-sensor defect x x x x x

ay-sensor defect x x x x x x

δS-sensor defect x x x

ωx-sensor defect x x x x x

tires saturated x x x

bank angle not const. x

vehicle unstable x x x x x

2.3 Additional Vehicle Control Systems: AFS system

With the AFS system we get additional possibilities for
redundancy supervision, namely for ay and ωz. With
respect to the δR sensor (angle of the front wheels) of
the AFS system the situation is more subtle. This is no
redundancy for the δS sensor of the VDC system, since
direct linkage of the steering angle to the front wheels is
interrupted in order to introduce the AFS control input.

3. FAULT DETECTION ARCHITECTURE

The previous section showed that the combination of ve-
hicle dynamics sensor signals in a CSPU comprises model
based supervision, supervision for redundant sensors, and
model based estimation. Furthermore the need to super-
vise groups of signals (namely ay, ωz, δS) became clear.
Suitable algorithms for these different tasks are known
from the literature.

However, a suitable processing architecture is open. This
architecture should fullfil three major requirements:

(1) No logical loops, i.e. supervision of a signal based on
non-supervised input information.

(2) Maximal availability of supervised sensor informa-
tion.

(3) Simple fall-back strategies in case of sensor failures.

We argue in the following that the concept given in
Figure 2 meets these requirements.

We consider the systems VDC, AFS, ROS as before
and additionally an ax sensor (longitudinal acceleration)
which is standard in all four-wheel drive vehicles. The
corresponding sensors are shown on the left hand side of
Figure 2. Signal processing is done “from left to right”.

The very first step is to provide a supervised velocity
signal (vx0). This is necessary since all subsequent mod-
els need velocity information. This supervised velocity
signal can be derived from wheel turn rates (considered
supervised a priori) although not with high accuracy van
Zanten et al. [1998]. Better estimates are possible when
additionally rigid body kinematics of the vehicle is taken
into account. However, the corresponding transformations
require ωz and δS Kiencke and Nielsen [2000] which are
not supervised at this point. The corresponding signal
is computed in a subsequent level and termed vx. One
possible approach to estimate vx is given in Imsland et al.
[2005].

In the next step supervision based on redundancy is re-
alized. In case of triple redundancy, detection and identi-
fication of the failure is directly possible Isermann [1997]

otherwise a combination with model based techniques is
necessary Hillenbrand et al. [2007]. A status flag indicates
the quality of the supervised signals. If redundancy moni-
toring is successful a signal gets the maximal quality value
at this point. If there are no multiple sensors for a signal
the redundancy block is void.

Afterwards joint supervision of ay, ωz, δS is realized (e.g.
Ding et al. [2005], Halbe [2007]). With supervised signals
ωz, δS available, it is possible to compute the higher
quality velocity signal vx. This signal can be used to
validate ax by means of numerical differentiation.

Furthermore, at this stage all signals necessary for signal
estimation (lateral velocity, lateral and longitudinal road
inclination) are available as supervised signals with inher-
ited quality flags. In the same way, in case of an indicated
failure, the corresponding information is inherited to all
subsequent processing units .

Based on the quality flags indicating the status of super-
vision of a signal, it is possible for the vehicle systems to
decide whether a secure function is possible or not.

Finally we remark that the proposed architecture is inher-
ently modular in the sense that necessary changes in case
of missing systems are immediately clear.

4. CONCLUSIONS

The supervision and estimation structure of sensors from
vehicle dynamics within a central signal processing unit
(CSPU) was examined.

It turned out that a joint treatment of certain groups
of signals (especially velocity, steering wheel angle, yaw
rate, and lateral acceleration) is mandatory in order to
avoid “supervision loops”. These structural results led to
an hierarchical architecture for such a CSPU. Two major
problems are solved by this novel concept:

1. The requirement to include a supervised velocity signal
in almost all algorithms for vehicle dynamics sensor mon-
itoring is met by an gradual velocity estimation in two
steps.

2. The question of fall-back strategies in case of sensor
failures. A signal quality flag indicating the supervision
status of a signal is updated in course of the hierarchical
processing. In case of degradation all subsequent process-
ing units relying on the respective signal adapt the quality
flag information for their output signal.

Furthermore the modular structure of the proposed archi-
tecture allows for an easy extension in case of additional
sensors.
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Fig. 2. Architecture for supervision and estimation

This open structure may not only be useful for the primary
application (driver plus vehicle) but also as a structural
sensor concept for the much larger sensor equipment
in autonomous vehicles. Looking in the future, further
applications may be sensor processing for vehicles in
platoons or within the more general context of inter vehicle
communication.
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