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Abstract: Model-based development was introduced to implementation design of automotive electronic 
controllers. The goals and issues of implementation design were discussed, and a model-based approach 
of processor-in-the-loop simulation was proposed as a method to meet the design goals. An application 
example of electronic throttle control of automotive engines was demonstrated with the processor-model.  

 
1. INTRODUCTION 

 
Model-based development (MBD) applies to a whole 
spectrum of development activities. In basic design, where 
control system concepts are proposed and proved, there are 
number of successful MBD practices (e.g., Mutz et al., 2002). 
MBD is also useful for implementation designs, where 
automotive controllers are actually designed in complete 
detail; control software is generated and validated, 
microcontrollers are chosen to execute the control codes, 
electronic circuits are developed and examined for sensor 
interfaces, actuator drivers, communication busses, and so 
forth. A better part of these implementation designs has been, 
however, carried out though conventional non-MBD 
processes due presumably to the lack of practical modeling 
means of microcontrollers and control software. The advance 
in processor modeling technology now allows us to apply 
MBD to implementation designs (Saikalis et al., 2006, 
Ishikawa et. al., 2007). In this paper we first point out the 
design issues in the implementation process of automotive 
controllers, and then discuss how the MBD method resolves 
them. To demonstrate the implementation MBD, a whole 
system of an electronic throttle control of automotive engines 
was modeled with a virtual microcontroller, and its system 
behavior, control signals and software run were analyzed.  
 

2. IMPLIMENTATION DESIGN 

2.1 Development process 

Development process of control systems begins with a basic 
(upstream) design for a given set of system requirements, 
then proceeds to implementation design (downstream). Basic 
design is responsible for establishing a control system 
architecture and control strategies to meet the system 
requirements. On the other hand, the goal of implementation 
design is not to improve control performance but to realize 
specified performance in a real world. Implementation design 
also ensures reliable system operation and achieves the 
lowest cost. 
 
In a modern MBD approach control designs are formulated 
into executable specifications in the form of signal-flow 

diagrams and/or state-transition charts. Once a control design 
is proved in basic design, then it is implemented into an 
electronic control unit (ECU) for mass-production. An 
automatically generated object code bridges basic and 
implementation designs. The control code embedded in the 
microcontroller in the ECU interacts with the control plant 
and achieves the specified control functions. 
 
2.2 Implementation issues 
 
Ideal implementation design should not change the control 
system behavior at all, and the system performance must be 
maintained as achieved in the basic design. The most 
important goal of the implementation design is to ensure 
correct and accurate execution of the control algorithms that 
are established in the basic design. Control code execution in 
the ECU is not always identical to the one on the PC used for 
the basic design, however. The embedded microcontroller in 
the ECU often uses coarser data expression and runs at 
slower speed in computing, and thus can yield a subtle 
difference in control code execution. 
 
Implementation design is also responsible for meeting 
reliability requirements of the control systems. ECUs have 
such potential causes of system malfunctioning and total 
system down as circuit component failure, loss of contact in 
wiring harnesses, timing jitter in control signals, and so on. 
Cutting the cost of an ECU is also very important goal in 
implementation design, too. Due to cost pressure ECU 
engineers may cling to an out-of-date microcontroller that 
could be easily overloaded with ever-inflating modern 
control software.  
 

3. PROCESSOR-IN-THE-LOOP SIMULATION 
 

The implementation issues raised above can be better 
approached if a whole control system, including an ECU and 
its microcontroller, is modeled into a virtual system. 
Virtualization of control systems brings us an obvious benefit 
of visualization; it allows us to examine every nook and 
cranny of a control system as closely as needed. Visualization 
is extremely useful, in particular, for execution analysis of 
control codes because today’s single-chip microcontrollers 
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permit very limited access to trace data for debugging. In-
circuit emulation to track microcontroller operations, a 
conventional hardware-based system development method, is 
becoming less useful as microcontrollers integrate more 
functions and run at higher clock speed. Once an ECU is 
integrated into an electro-mechanical system, its internal 
operation becomes very difficult to monitor. 
 
Control engineers have been using numerous tools to 
generate executable specifications of control strategies, to 
simulate electronic circuits, and to model sensors, actuators 
and control plants. The advance in simulation technology has 
finally linked the missing connection between these hardware 
models and the control software; a virtual processor 
simulating a microcontroller executes the object code of 
control software, and the software precisely interacts with the 
control hardware as they do in the real world. In Fig. 1, we 
built a virtual embedded mechatronic system of automotive 
engine throttle control. In this demonstration, the control 
plant was modeled with Saber (Synopsis), and the 
microcontroller was virtualized with CoMET (VaST). These 
simulation tools were interfaced with each other to realize a 
co-simulation environment. Fig. 2 and 3 show the observed 
signals in the co-simulation. 

Fig. 1. Processor-in-the-loop simulation 

Pedal

Position
Sensor

Valve 

Position
Se

 
nsor 

Mechanical 
(Springs,  
Gears, etc.） 

DC 
Motor

H-B
Driver 

ridge

A/D
(H8S)

CPU 
(ARM

Timer
(H8S)

PID C
Software

ontrol
 

Plant Model (Saber) 

odeObject CController M
(CoMET

odel
) 

Interrupt
Ha

 
ndler 

(ARM) 

Data Bus (ARM) 

 
4. DISCUSSION 

 
To examine control operations of the mechatronic system, we 
looked at the response of valve rotation in the throttle control 
demonstration. To study the behavior of a PID controller, we 
looked into the control commands that the processor model 
generated. To verify the control code execution, we checked 
the task switching by tracing the program counter value. To 
analyze the system reliability, we injected a failure to, e.g., 
the H-bridge driver and observed the consequence. Thus, the 
virtual approach allowed us to conduct numerous what-if 
scenarios to complete the implementation design. 
 
The microcontroller shown in the Fig. 1 does not actually 
exist. It is a hybrid of two commercial chip designs (ARM 
processor and Renesas H8S peripherals). The virtual 
microcontroller demonstration suggests an idea of 
application-in-the-loop simulation approach to test new 
processor cores and/or peripheral functions in a given control 
system.  
 

5. CONCLUSIONS 
 

A processor-in-the-loop simulation was demonstrated as a 
method of model based development for implementation 
design of electronic controllers. The virtual approach should 
also be useful for microcontroller development as 
application-in-the-loop simulation.  
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