
Model-Based Implementation Design of Automotive Controllers

Shigeru Oho*, Makoto Ishikawa*, George Saikalis**

*Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo
Japan (e-mail: shigeru.oho.ku@ Hitachi.com).

**Hitachi America, Ltd., Farmington Hills, MI48335

Abstract: Model-based development was introduced to implementation design of automotive electronic
controllers. The goals and issues of implementation design were discussed, and a model-based approach
of processor-in-the-loop simulation was proposed as a method to meet the design goals. An application
example of electronic throttle control of automotive engines was demonstrated with the processor-model.

1. INTRODUCTION

Model-based development (MBD) applies to a whole
spectrum of development activities. In basic design, where
control system concepts are proposed and proved, there are
number of successful MBD practices (e.g., Mutz et al., 2002).
MBD is also useful for implementation designs, where
automotive controllers are actually designed in complete
detail; control software is generated and validated,
microcontrollers are chosen to execute the control codes,
electronic circuits are developed and examined for sensor
interfaces, actuator drivers, communication busses, and so
forth. A better part of these implementation designs has been,
however, carried out though conventional non-MBD
processes due presumably to the lack of practical modeling
means of microcontrollers and control software. The advance
in processor modeling technology now allows us to apply
MBD to implementation designs (Saikalis et al., 2006,
Ishikawa et. al., 2007). In this paper we first point out the
design issues in the implementation process of automotive
controllers, and then discuss how the MBD method resolves
them. To demonstrate the implementation MBD, a whole
system of an electronic throttle control of automotive engines
was modeled with a virtual microcontroller, and its system
behavior, control signals and software run were analyzed.

2. IMPLIMENTATION DESIGN

2.1 Development process

Development process of control systems begins with a basic
(upstream) design for a given set of system requirements,
then proceeds to implementation design (downstream). Basic
design is responsible for establishing a control system
architecture and control strategies to meet the system
requirements. On the other hand, the goal of implementation
design is not to improve control performance but to realize
specified performance in a real world. Implementation design
also ensures reliable system operation and achieves the
lowest cost.

In a modern MBD approach control designs are formulated
into executable specifications in the form of signal-flow

diagrams and/or state-transition charts. Once a control design
is proved in basic design, then it is implemented into an
electronic control unit (ECU) for mass-production. An
automatically generated object code bridges basic and
implementation designs. The control code embedded in the
microcontroller in the ECU interacts with the control plant
and achieves the specified control functions.

2.2 Implementation issues

Ideal implementation design should not change the control
system behavior at all, and the system performance must be
maintained as achieved in the basic design. The most
important goal of the implementation design is to ensure
correct and accurate execution of the control algorithms that
are established in the basic design. Control code execution in
the ECU is not always identical to the one on the PC used for
the basic design, however. The embedded microcontroller in
the ECU often uses coarser data expression and runs at
slower speed in computing, and thus can yield a subtle
difference in control code execution.

Implementation design is also responsible for meeting
reliability requirements of the control systems. ECUs have
such potential causes of system malfunctioning and total
system down as circuit component failure, loss of contact in
wiring harnesses, timing jitter in control signals, and so on.
Cutting the cost of an ECU is also very important goal in
implementation design, too. Due to cost pressure ECU
engineers may cling to an out-of-date microcontroller that
could be easily overloaded with ever-inflating modern
control software.

3. PROCESSOR-IN-THE-LOOP SIMULATION

The implementation issues raised above can be better
approached if a whole control system, including an ECU and
its microcontroller, is modeled into a virtual system.
Virtualization of control systems brings us an obvious benefit
of visualization; it allows us to examine every nook and
cranny of a control system as closely as needed. Visualization
is extremely useful, in particular, for execution analysis of
control codes because today’s single-chip microcontrollers

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 1068 10.3182/20080706-5-KR-1001.3301

permit very limited access to trace data for debugging. In-
circuit emulation to track microcontroller operations, a
conventional hardware-based system development method, is
becoming less useful as microcontrollers integrate more
functions and run at higher clock speed. Once an ECU is
integrated into an electro-mechanical system, its internal
operation becomes very difficult to monitor.

Control engineers have been using numerous tools to
generate executable specifications of control strategies, to
simulate electronic circuits, and to model sensors, actuators
and control plants. The advance in simulation technology has
finally linked the missing connection between these hardware
models and the control software; a virtual processor
simulating a microcontroller executes the object code of
control software, and the software precisely interacts with the
control hardware as they do in the real world. In Fig. 1, we
built a virtual embedded mechatronic system of automotive
engine throttle control. In this demonstration, the control
plant was modeled with Saber (Synopsis), and the
microcontroller was virtualized with CoMET (VaST). These
simulation tools were interfaced with each other to realize a
co-simulation environment. Fig. 2 and 3 show the observed
signals in the co-simulation.

Fig. 1. Processor-in-the-loop simulation

Pedal

Position
Sensor

Valve

Position
Se

nsor

Mechanical
(Springs,
Gears, etc.）

DC
Motor

H-B
Driver

ridge

A/D
(H8S)

CPU
(ARM

Timer
(H8S)

PID C
Software

ontrol

Plant Model (Saber)

odeObject CController M
(CoMET

odel
)

Interrupt
Ha

ndler

(ARM)

Data Bus (ARM)

4. DISCUSSION

To examine control operations of the mechatronic system, we
looked at the response of valve rotation in the throttle control
demonstration. To study the behavior of a PID controller, we
looked into the control commands that the processor model
generated. To verify the control code execution, we checked
the task switching by tracing the program counter value. To
analyze the system reliability, we injected a failure to, e.g.,
the H-bridge driver and observed the consequence. Thus, the
virtual approach allowed us to conduct numerous what-if
scenarios to complete the implementation design.

The microcontroller shown in the Fig. 1 does not actually
exist. It is a hybrid of two commercial chip designs (ARM
processor and Renesas H8S peripherals). The virtual
microcontroller demonstration suggests an idea of
application-in-the-loop simulation approach to test new
processor cores and/or peripheral functions in a given control
system.

5. CONCLUSIONS

A processor-in-the-loop simulation was demonstrated as a
method of model based development for implementation
design of electronic controllers. The virtual approach should
also be useful for microcontroller development as
application-in-the-loop simulation.

REFERENCES

Mutz, M., Huhn, M., Goltz, U., and Kromke, C. (2002).
Model Based Systems Development in Automotive.
SAE Paper 03B-128.

Saikalis, G., Meyl, H., Oho, S., McCune, D.J, and Ishikawa,
M. (2006). Virtual Embedded Mechatronics System.
SAE Paper 2006-01-0861.

Ishikawa, M., McCune, D.J, Saikalis, G., and Oho, S. (2007).
CPU Model-based Hardware/Software Co-design for
Real-Time Embedded Control Systems. SAE Paper
2007-01-0776.

Time

Plant
Response
(Saber)

eration

alue)
alue)

alue)

MET)

Valve
Pedal

Valve (A/D VController
Op
(CoMET)

Pedal (A/D V

Motor Control Command (PWM V

Interrupt
Operation
Co((

Fig. 2. Plant Response and Controller Operation

Task
Status
(CoMET

Program
Counter
Value
(CoMET
)

Time
Fig. 3. Task Run Analysis

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1069

