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Abstract: This paper addresses a stability analysis problem and synthesis problem for
pendulum-like systems with multiple nonlinearities. A method for analysing the Lagrange
stability of a pendulum-like system with multiple nonlinearities is proposed. In order to study
the synthesis problem, the paper develops an Extended Strict Bounded Real Lemma for unstable
systems. A sufficient condition for Lagrange stabilization is proposed in terms of an algebraic
Riccati equation with a sign infinite solution. An algorithm is given to solve the algebraic Riccati
equation for a Lagrange stabilizing solution and thus gives a control law to stabilize the system
in the sense of Lagrange stability.
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1. INTRODUCTION

Nonlinear control theory has been an extremely active
area of research motivated by the fact that in many
practical control and estimation problems, the dynamics
of the system are affected or even dominated by nonlinear
effects. Also, nonlinearity can bring beneficial features to
the system. For a large range of system configurations,
a variety of research methods have been proposed to
address stability analysis and controller design problems.
This paper studies pendulum-like systems with multiple
nonlinearities. The nonlinearities are restricted to a sector
bound.

As described in Leonov et al. (1996), pendulum-like sys-
tems are a wide class of systems with infinite equilibria and
a generalization of the mathematical pendulum system.
Pendulum-like systems have many applications in phase
locked loops and oscilliation theory as pointed out by Duan
et al. (2007). Frequency-domain criteria for stability prop-
erties, such as Lagrange stability, dichotomy and gradient-
like stability have been established by Leonov et al. (1996).
Also, Duan et al. (2007),Wang et al. (2004),Yang et al.
(2004) and Duan et al. (2004) studied the controller design
problem and robustness analysis using the LMI methods.
However, all of these papers studied systems with only
a single nonlinearity. There are practical pendulum-like
systems containing more than one nonlinearity. The theory
of stability analysis and synthesis of such systems has
not been studied to date. This paper will focus on these
problems. We extend the existing results on Lagrange
stability of pendulum-like systems with a single nonlinear-
ity to systems with multiple nonlinearities. As a special
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case of nonlinear systems with multiple nonlinearities,
systems with repeated nonlinearities have been studied by
D’Amoto et al. (2001), Kulkarni and Safonov (2002), and
Mancera and Safonov (2005) although these results have
not involved Lagrange stability.

In Theorem 13.4 by Leonov et al. (1996), a frequency do-
main condition for the Lagrange stability of a pendulum-
like system with a single nonlinearity has been proposed.
This paper extends this result to the systems with multiple
nonlinearities. A similar frequency-domain condition for a
system with multiple nonlinearities being Lagrange stable
is presented. When the multiple pendulum-like nonlin-
earities reduce to repeated nonlinearities, the conditions
reduce to the form of the circle criterion.

The strict Bounded Real Lemma in Petersen et al. (1991)
and Chen and Tu (1995) requires that the system matrix
A be stable so that it is not applicable to unstable
systems. This paper proposes an Extended Strict Bounded
Real Lemma which only requires the pair (A,B) to be
stabilizable.

The Lagrange stabilizability of nonlinear systems is de-
fined and conditions for Lagrange stabilizability are also
proposed. In our approach, the controller design problem is
transformed into solving a Riccati equation while ensuring
the closed-loop system matrix has n − 1 eigenvalues with
negative real parts. Built on the Extended Strict Bounded
Real Lemma, the result is proved to be a sufficient condi-
tion for the system to be Lagrange stabilizable.

An algorithm is proposed to solve the Riccati equation
arising in our approach. The algorithm ensures that the
number of eigenvalues with positive real parts of the solu-
tion coincides to the number of eigenvalues with negative
real parts of the closed-loop system matrix.
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2. LAGRANGE STABILITY OF PENDULUM-LIKE
SYSTEMS WITH MULTIPLE NONLINEARITIES

The pendulum-like system considered here is a nonlinear
system with two nonlinearities

ẋ = Px + q1ξ + q2ξ̃

σ1 = r1x

σ2 = r2x (1)

ξ = φ (t, σ1)

ξ̃ = φ̃ (t, σ2)

where P is a constant n × n matrix, q1, q2, rT
1 and rT

2

are n-vectors and the functions φ, φ̃ : R+ × R → R
are continuous and locally Lipschitz continuous in the
second argument. In the sequel, we will show how this
can be generalized to nonlinear systems with any number
of nonlinearities. Also we assume

det P = 0 (2)

and

φ (t, σ1 + ∆) = φ (t, σ1) , t ∈ R+, σ1 ∈ R,

φ̃ (t, σ2 + ∆) = φ̃ (t, σ2) , t ∈ R+, σ2 ∈ R. (3)

We further assume that φ (·) , φ̃ (·) satisfy the sector con-
ditions,

µ1 ≤
φ (t, σ1)

σ1
≤ µ2, t ∈ R+, σ1 6= 0 (4)

µ̃1 ≤
φ̃ (t, σ2)

σ2
≤ µ̃2, t ∈ R+, σ2 6= 0 (5)

where µ1, µ2, µ̃1 and µ̃2 are given non-zero constants
such that µ1 ≤ µ2, µ̃1 ≤ µ̃2 and we exclude the case of
µ1, µ2, µ̃1, µ̃2 = 0. In this section, the Lagrange stability
of the system (1) will be discussed.

Definition 1. (Leonov et al. (1996)) If all the solutions of
system (1) are bounded, then the system (1) is said to be
Lagrange stable.

Note that conditions (4) and (5) can be respectively
rewritten as the conditions

(

µ−1
1 φ (t, σ1) − σ1

)T (

µ−1
2 φ (t, σ1) − σ1

)

≤ 0 (6)
(

µ̃−1
1 φ̃ (t, σ2) − σ2

)T (

µ̃−1
2 φ̃ (t, σ2) − σ2

)

≤ 0 (7)

To simplify the discussion, we further restrict our discus-
sion to the case when

µ = −µ1 = µ2, µ̃ = −µ̃1 = µ̃2. (8)

Let σ =

[

σ1

σ2

]

, ξ̄ =

[

ξ

ξ̃

]

. If system (1) is re-written as

ẋ = Px + q̄ξ̄;

σ = r̄x (9)

then we have σ (s) = χ (s) ξ̄ (s) where σ (s) and ξ̄ (s) are
the Laplace Transforms of σ (t) and ξ̄ (t), respectively.
Also,

χ (s) = r̄ (sI − P )
−1

q̄ (10)

is the transfer function matrix of the system (9), where

r̄ =

[

r1

r2

]

and q̄ = [ q1 q2 ]. Given constants τ1 > 0, τ2 > 0

and define

χ̃ (s) =





τ
1
2
1 0

0 τ
1
2
2



χ (s)





τ
−

1
2

1 0

0 τ
−

1
2

2



 , (11)

then the following theorem is presented:

Theorem 1. The system (1,2,3,4,5) is Lagrange stable if
there exist constants λ > 0, τ1 > 0 and τ2 > 0 satisfying
the following conditions:

(1) The matrix P +λI has n−1 eigenvalues with negative
real parts;

(2) The following frequency domain inequality holds:

χ̃T (jω − λ) χ̃ (jω − λ) ≤

[

µ−2I 0
0 µ̃−2I

]

(12)

for all ω ≥ 0.

In order to prove Theorem 1, the definition of positively
invariant set and two lemmata are given first.

Proof of Theorem 1: Define

G
(

σ, ξ̄
) △
= τ1

(

µ−1
1 ξ − σ1

)T (

µ−1
2 ξ − σ1

)

(13)

+τ2

(

µ̃−1
1 ξ̃ − σ2

)T (

µ̃−1
2 ξ̃ − σ2

)

for system (1).

We write (13) as a quadratic form

G
(

σ, ξ̄
)

= (14)






σ1

σ2

ξ

ξ̃







T 





τ1 0 −τ1α1 0
0 τ2 0 −τ2α2

−τ1α1 0 τ1β1 0
0 −τ2α2 0 τ2β2













σ1

σ2

ξ

ξ̃







where α1 =
µ
−1

1
+µ

−1

2

2 , α2 =
µ̃
−1

1
+µ̃

−1

2

2 , β1 = µ−1
1 µ−1

2 and

β2 = µ̃−1
1 µ̃−1

2 .

Let M =







τ1 0 −τ1α1 0
0 τ2 0 −τ2α2

−τ1α1 0 τ1β1 0
0 −τ2α2 0 τ2β2






.

The matrix M can be partitioned as M =

[

M11 M12

M21 M22

]

where M11 =

[

τ1 0
0 τ2

]

, M22 =

[

τ1µ
−1
1 µ−1

2 0
0 τ2µ̃

−1
1 µ̃−1

2

]

,

M12 = M21 =

[

−τ1
µ
−1

1
+µ

−1

2

2 0

0 −τ2
µ̃
−1

1
+µ̃

−1

2

2

]

. Applying (8)

gives M12 = M21 = 0, M22 =

[

−τ1µ
−2 0

0 −τ2µ̃
−2

]

.

Using the fact that σ is related to ξ̄ as in (9), (10), (11),
we can write

G
(

χ (s) ξ̄ (s) , ξ̄ (s)
)

=

[

χ (s) ξ̄ (s)
ξ̄ (s)

]T [

M11 M12

M21 M22

] [

χ (s) ξ̄ (s)
ξ̄ (s)

]

(15)
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It follows that

G
(

χ (s) ξ̄ (s) , ξ̄ (s)
)

=

ξ̄T (s) χT (s) M11χ (s) ξ̄ (s) + ξ̄T (s)M22ξ̄ (s) (16)

This can be further written as

G
(

χ (s) ξ̄ (s) , ξ̄ (s)
)

= ξ̄T (s) (17)

·

(

χT (s)

[

τ1I 0
0 τ2I

]

χ(s) −

[

τ1µ
−2I 0
0 τ2µ̃

−2I

])

ξ̄(s)

From (12) and the definition of χ̃(s), it follows that





τ
−

1
2

1 0

0 τ
−

1
2

2



χT (jω − λ)

[

τ1 0
0 τ2

]

χ (jω − λ)

·





τ
−

1
2

1 0

0 τ
−

1
2

2



 ≤

[

µ−2I 0
0 µ̃−2I

]

(18)

Pre- and post-multiplying by





τ
−

1
2

1 0

0 τ
−

1
2

2





−1

in (18) gives

χT (jω − λ)

[

τ1I 0
0 τ2I

]

χ (jω − λ) ≤

[

τ1µ
−2I 0
0 τ2µ̃

−2I

]

.(19)

Let s = jω. Applying (19) to (17) implies

G
(

χ (jω − λ) ξ̄ (jω) , ξ̄ (jω)
)

≤ 0. (20)

Thus, the condition of Theorem 1.10.1 in Leonov et al.
(1996)) is satisfied where the matrix P is replaced by
P + λI. Applying (Yakubovich-Kalman Theorem 1.10.1
in Leonov et al. (1996)) to (20) implies that there exists a
Hermitian n × n matrix H such that

ℑ
(

x, ξ, ξ̃
)

= 2xT H
[

(P + λI)x + q̄ξ̄
]

+ G
(

σ, ξ̄
)

≤ 0. (21)

It follows that the set {x|xT Hx < 0} is positively invariant
(See page 145 of Leonov et al. (1996)) for the system (1).

Suppose x(t, t0, x0) is a solution of (1). Let d be an
eigenvector of P corresponding to its zero eigenvalue, such

that

[

r1

r2

]

d = ∆. Since (1) is pendulum-like with respect

to Υ = id, i ∈ Z, d 6= 0, it follows that

x(t, t0, x0) − id = x(t, t0, x0 − id), t ≥ t0, i ∈ Z(22)

Since the set {x|xT Hx < 0} is positively invariant for (1),
the interior

Ωi
△
= {x|(x − id)T H(x − id) < 0}

of a quadratic cone {x|(x−id)T H(x−id) ≤ 0} is positively
invariant for (1). For an arbitrary x0 ∈ Ω, it follows that
x0 − id ∈ Ω0. Then by virtue of the positive invariance of
Ω0, we have

x(t, t0, x0 − id) ∈ Ω0 (∀t ≥ t0, t0 ∈ R).

Using (22), we then have that

[x(t, t0, x0)−id]T H[x(t, t0, x0)−id] < 0 (∀t ≥ t0, t0 ∈ R).

Since G(x, ξ̄) is non-positive for all x ∈ Rn, ξ̄ ∈ R, we
obtain

2xT H [P + λI]x ≤ − (r̄x)
2

if taking ξ̄ = 0 in

2xT H(Px + Qξ̄) ≤ −2λxT Hx − G(σ, ξ̄). (23)

Note that since χ(s) is non-degenerate, the pair (P +
λI, r̄) is observable. Then, it follows from Lemma 2.6.2
in Leonov et al. (1996)) that H has one negative and n−1
positive eigenvalues. Now, let x = d, ξ̄ = 0 in (23). Hence
dT Hd < 0.

For an arbitrary i ∈ Z, define the set

Υi
△
= Ωi ∩ Ω−i.

The set Υi is positively invariant as both Ωi and Ω−i are
positively invariant.

Because of our condition on the spectrum of H, there exists
a vector h 6= 0 such that

{x|hT x = 0, x 6= 0} ⊂ {xT Hx > 0}. (24)

Now, we need to establish this fact and prove that
x(t, t0, x0) is bounded. The rest of this proof can follow the
proof of Theorem 2.6.1 of Leonov et al. (1996). For sim-
plicity, it is omitted here. Thus the theorem is proved. 2

Remark 1. This theorem extends the result obtained in
Theorem 2.6.1 (Leonov et al. (1996)) to the case of
pendulum-like nonlinear systems with multiple nonlinear-
ities.

Remark 2. If µ = µ̃, then condition (12) has a form
χ̃T (jω − λ)χ̃(jω − λ) ≤ µ−2I . This appears in the form
of the circle criterion, so this result can be considered as
extending the circle criterion to the case of pendulum-like
nonlinear systems with repeated nonlinearities.

Remark 3. It is easy to extend the result to the case of m
(m ≥ 1) nonlinearities and obtain the following corollary:

Corollary 1. Let σ =
[

σT
1 · · · σT

m

]T
, ξ̄ =

[

ξT
1 · · · ξT

m

]T
,

Q = [ q1 · · · qm ], χ (jω) = R (jω − P )
−1

Q, R =







r1

...
rm







and χ̃ (jω) =











τ
1
2
1 · · · 0
...

. . .
...

0 · · · τ
1
2
m











χ (jω)











−τ
1
2
1 · · · 0

...
. . .

...

0 · · · −τ
1
2
m











, where

τ1, τ2, · · · , τm are given positive contants. Suppose there
exists a constant λ > 0 satisfying the following conditions:

(1) The matrix P +λI has n−1 eigenvalues with negative
real parts;

(2) The frequency domain inequality

χ̃T (jω − λI) χ̃ (jω − λI) ≤







(µ1)
−2

I 0
. . .

0 (µm)
−2

I







is satisfied.

Then the following pendulum-like nonlinear system is
Lagrange stable
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ẋ = Px + q1ξ1 + · · · + qmξm

σi = rix, i = 1, · · · ,m

ξi = φi (t, σi) , i = 1, · · · ,m (25)

where the components of q1 · · · qm and r1 · · · rm have com-
patible dimensions and the nonlinearities φ1, · · · , φm :
R+ × R → R are continuous and locally Lipschitz con-
tinuous in the second argument, satisfying the sector con-

straints −µi ≤
φi(t,σi)

σi

≤ µi, i = 1, · · · ,m. Also, we assume

det P = 0 and φ (t, σi + ∆) = φ (t, σi) , t ∈ R+, σi ∈ R, i =
1, · · · ,m.

3. EXTENDED STRICT BOUNDED REAL LEMMA

As presented in Petersen et al. (1991), the strict bounded
real lemma relates an H-infinity condition in the frequency
domain to the existence of a solution to an Algebraic
Riccati Equation. This idea is widely applied to controller
design for linear control systems. This paper will also
use this idea when the controller design for pendulum-
like systems is considered. However, in Theorem 2.1 by
Petersen et al. (1991) and Chen and Tu (1995), the strict
bounded real lemma requires that the system matrix
A is stable, while the systems considered in the paper
are normally unstable. In preparation for discussing the
synthesis problem for pendulum-like systems, we prove an
Extended Strict Bounded Real Lemma, in which matrix A
is not required to be stable.

Consider the system

ẋ (t) = Ax (t) + Bu (t)

z (t) = Cx (t) (26)

where the pair (A,B) is stabilizable.

We define the transfer function of (26) as G (s) =

C (sI − A)
−1

B and denote G∼(jω)
△
= G(−jω)T .

Theorem 2. Suppose that A has no eigenvalue on the jω-
axis and the pair (A,B) is stabilizable, then the Riccati
Equation

A∗X + XA − XBB∗X = 0 (27)

has a solution X ≥ 0 such that A − BB∗X is stable.

Proof of Theorem 2: As the Riccati equation (27) is a
special case of the Riccati equation in Theorem 2.1 of
Ran and Vreugdenhil (1988) with C = 0 and R̃ = I, (27)
has solution X ≥ 0 and all the eigenvalues of the matrix
A−BB∗X are in the closed left half of the complex plane.
Now, we further proof that the eigenvalues of the matrix
A − BB∗X are stable. We rewrite (27) as

(A − BB∗X)∗X + X(A − BB∗X) = −XBB∗X (28)

Suppose λ̃ and x are eigenvalue and the corresponding
eigenvector of A − BB∗X, respectively, i.e.,

(A − BB∗X)x = λ̃x.

Pre-and post-multiplying equation (28) by x∗ and x,
respectively gives

(

¯̃
λ + λ̃

)

x∗Xx = −x∗XBB∗Xx

As all the eigenvalues of A − BB∗X are in the closed left
half of the complex plane, the left side of this equation is

positive semidefinite. It follows that B∗Xx = 0. Further-
more, post-multiplying A − BB∗X by x gives

(A − BB∗X)x = Ax + BB∗Xx = Ax.

Hence, because A has no eigenvalue on the jω-axis, A −
BB∗X has no eigenvalue on the jω-axis, either. That is,
A − BB∗X is stable. This completes the proof. 2

Theorem 3. (Extended Strict Bounded Real Lemma) If A
is an unstable matrix without any eigenvalue on the jω-
axis and the pair (A, B) is stabilizable, then the following
statements are equivalent

(1) G (−jω)
T

G (jω) ≤ 1;
(2) The algebraic Riccati equation

AT H + HA + HBBT H + CT C = 0 (29)

has a solution H = HT ;

Proof of Theorem 3: (1)⇒ (2): As A has no eigenvalue
on the jω-axis, Theorem 13.34 by Zhou and Doyle (1998)
is applicable to the system (26) where we let s = jω.
Following Theorem 13.34 by Zhou and Doyle (1998),

we have G(jω)G∼(jω) = Ĝ(jω)Ĝ∼(jω) where Ĝ(s) =
N(s).Here, N(s)) is defined as in Theorem 13.34 of Zhou
and Doyle (1998). Therefore, G(jω)G∼(jω) ≤ I implies

Ĝ(jω)Ĝ∼(jω) ≤ I. As there exist a matrix X such that
A − BBT X is stable, it follows from Strict Bounded Real
Lemma (See Petersen et al. (1991)), Ĝ(jω)Ĝ∼(jω) ≤ I is
equivalent to the fact that the following algebraic Riccati
equation has a stabilizing solution Ĥ ≥ 0:

(A − BBT X)T Ĥ + Ĥ(A − BBT X) + ĤBBT Ĥ

+CT C = 0. (30)

Let H = Ĥ − X. Then substituting into (30) gives that

(A − BBT X)T (H + X) + (H + X)(A − BBT X)

+(H + X)BBT (H + X) + CT C = 0. (31)

Expanding the left side of the equality (31) gives that

(A − BBT X)T (H + X) + (H + X)(A − BBT X)

+(H + X)BBT (H + X) + CT C

= AT X + XA − XT BBT X + AT H + HA

+HBBT H + CT C = 0. (32)

Also from Theorem 13.34 by Zhou and Doyle (1998), there
exists a matrix X such that (27) holds. Therefore, the
above equality then implies that

AT H + HA + HBBT H + CT C = 0.

(2)⇒ (1): Define Ĥ = X + H then

(A − BBT X)T Ĥ + Ĥ(A − BBT X) + ĤBBT Ĥ

+CT C

= (A − BBT X)T (X + H) + (X + H)(A − BBT X)

+ (X + H) BBT (X + H) + CT C

= AT X + XA − XT BBT X

+AT H + HA + PBBT H + CT C. (33)
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As the pair (A,B) is stabilizable, it follows from Theorem
2 that the Riccati equation (27) holds and A − BBT X is
stable. As (29) holds, it follows that

(A − BBT X)T Ĥ + Ĥ(A − BBT X)

+ĤBBT Ĥ + CT C = 0. (34)

Now, Applying the result of the Strict Bounded Real
Lemma in Petersen et al. (1991), it follows that

Ĝ(−jω)T Ĝ(jω) ≤ 1.

From G(jω)G∼(jω) = Ĝ(jω)Ĝ∼(jω), it follows that item
(1) holds. This completes the proof. 2

Theorem 3 is applicable to the systems where the pair
(A,B) is stabilizable. As controllability of the pair (A,B)
implies its stabilizability, Theorem 3 is applicable to sys-
tems with controllable (A,B). If the pair (A,B) is uncon-
trollable, using the Kalman decomposition,(see Antsaklis
and Michel (2005)), an uncontrollable system can be split
into the controllable part and uncontrollable part. For an
uncontrollable (A,B), we have the following corollary of
Theorem 3:

Corollary 2. Suppose A is an unstable matrix without
any eigenvalue on the jω-axis and the pair (A, B) is
uncontrollable. If the algebraic Riccati equation

AT H + HA + HBBT H + CT C = 0 (35)

has a solution H = HT , then the following frequency
domain condition holds:

GT (−jω) G (jω) ≤ 1.

Proof: If Riccati equation (35) holds, the matrices A,
B have the partitions as in the Kalman decomposition,
e.g., see (Antsaklis and Michel (2005)) and C, H are
correspondingly partitioned as C = [ C1 C2 ] , H =
[

H11 H12

HT
12 H22

]

. Then we have

AT
1 H11 + H11A1 + H11B1B

T
1 H11 + CT

1 C1 = 0.

As the pair (A1, B1) is controllable, the conditions of
Theorem 3 are satisfied for the sub-system (A1, B1, C1).
So, we have Ḡ(−jω)T Ḡ(jω) ≤ 1 where Ḡ(jω) = C1(jωI−
A1)

−1B1. For the standard form in Kalman decomposi-
tion, e.g., see (Antsaklis and Michel (2005)), Ḡ(jω) =

G(jω). Therefore, G (−jω)
T

G (jω) ≤ 1. This completes
the proof. 2

4. CONTROLLER DESIGN FOR PENDULUM-LIKE
SYSTEMS WITH MULTIPLE NONLINEARITIES

In this section, controller design for pendulum-like system
with multiple nonlinearities will be considered. Also, we
will consider repeated nonlinearities as a special case where
µi = µ, i = 1, · · · ,m. In this section, the system to be
controlled is described by the state equations

ẋ = Px + Bu + Qξ̂;

z = Ex + u (36)

where det P = 0 and ξ̂ = [ ξ1, ξ2, · · · , ξm ]
T

and hence
there must be at least one of the system poles on the origin.

Note that the system (36) can be transformed into the
standard uncontrollable form in the Kalman decomposi-
tion, e.g., see (Antsaklis and Michel (2005)).

Hence, there exists a non-singular matrix Y which tran-
forms the system (36) into the form

ẋ = P̃ x + B̃u(t) + Q̃ξ̂;

z = Ẽx + u(t) (37)

where

P̃ =

[

P̃1 P̃12

0 P̃2

]

, B̃ =

[

B̃1

0

]

, Q̃ =

[

Q̃1

Q̃2

]

, Ẽ =

[

ẼT
1

ẼT
2

]T

(38)

and (P̃1, B̃1) is controllable. We further assume that

A1. The components of the matrices in (38) are such that

P̃1 ∈ R(n−1)×(n−1), B̃1 ∈ R(n−1)×1, P̃2 = 0. That is, the
system pole at the origin is uncontrollable.

In order to aid the discussion of the controller design
for the system (37), we consider the following modified
system:

ẋ = (P̃ + λI)x + B̃u(t) + Q̃ξ̂

z = Ẽx + u(t) (39)

where λ > 0, x ∈ Rn is the new state, u ∈ Rl, ξ̂ ∈ Rp

is the vector of nonlinearity inputs, and z ∈ Rl is the
controlled output. By adding a term λI to the matrix P̃ ,
the poles on the imaginary axis are moved to the right side
of the complex plane.

We make the following assumption on system (37) and
(39):

A2. P̃ + λI − B̃Ẽ has no purely imaginary eigenvalues.

Definition 2. The system (37) is said to be Lagrange
stabilizable if there exists a matrix K such that the closed-
loop system is Lagrange stable with control law u = Kx.

Using Theorem 1, it follows that a sufficient condition for
the system (37) to be Lagrange stabilizable is as follows:

(1) There exists a constant λ > 0 and a matrix K such

that the matrix P̃ + λI + B̃K has n − 1 eigenvalues
with negative real parts;

(2) The following frequency-domain condition holds:

χ̂(−jω)T χ̂(jω) ≤ I (40)

where χ̂(jω) = (Ẽ +K)(jω− P̃ −λI − B̃K)−1Q̄ with

Q̄ = V −1 · Q̃ with V =







µ1 · · · 0
...

. . .
...

0 · · · µm







Theorem 4. Suppose assumptions (A1-A2) are satisfied
and the Riccati equation

(P̃ + λI − B̃Ẽ)T H + H(P̃ + λI − B̃Ẽ)

−HB̃T B̃H + HQ̄Q̄T H = 0 (41)

has a nonsigular solution H = HT such that H11 = HT
11 >

0, where H11 ∈ R(n−1)×(n−1) is the (1, 1) block of the

matrix H =

[

H11 H12

HT
12 H22

]

. Then, the closed-loop system of
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(37) is Lagrange stable with the required control law is

given by u(t) = −(B̃T H + Ẽ)x(t).

Remark 4. When H is singular, (41) is not useful for
judging the Lagrange stability of system (37). Selecting
a different value of λ can lead to a nonsingular H.

Proof: From (41), it follows that

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)T

H11

+H11

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)

+ H11B̃1B̃
T
1 H11

+(H11Q̄1 + H12Q̄2)(H11Q̄1 + H12Q̄2)
T = 0 (42)

As (H11Q̄1 + H11Q̄2)(H11Q̄1 + H12Q̄2)
T ≥ 0, (42) implies

that

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)T

H11

+H11

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)

≤ −H11B̃1B̃
T
1 H11 (43)

Pre-multiplying (43) by x∗H−1
11 and post-multipling H−1

11 x
gives

x∗H−1
11

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)T

x

+x∗

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)

H−1
11 x

≤ −x∗B̃1B̃
T
1 x (44)

The pair (P̃1, B̃1) being controllable implies that (P̃1 +

λI, B̃1) is controllable. Let λ̃ be an eigenvalue of the ma-

trix H−1
11

(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)T

. Then we have
(

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)T

x = H11λ̃x. As H11 is

non-singular and λ̃ must not equal zero, the matrix P̃1 +
λI − B̃1Ẽ1 − B̃1B̃

T
1 H11 is not singular, either. Therefore,

(

B̃T
1

P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11

)

has full rank and hence

the pair
(

B̃T
1 , P̃1 + λI − B̃1Ẽ1 − B̃1B̃

T
1 H11

)

is observable

according to Corollary 4.3.4 in Lancaster and Rodman
(1995). Following Lemma 2.6.2 in Leonov et al. (1996)),
it follows that the number of positive eigenvalues of H11

coincides with the number of eigenvalues of P̃1 + λI −
B̃1Ẽ1−B̃1B̃

T
1 with negative real parts. As H11 is a positive

definite matrix, P̃1 + λI − B̃1Ẽ1 − B̃1B̃
T
1 H11 is a negative

definite matrix, i.e., its eigenvalues are all less than zero.
Therefore, the eigenvalues of P̃ +λI +B̃K has n−1 eigen-
values with negative real parts while the other eigenvalue
λ > 0.

As the Riccati equation (41) can be written as

(P̃ + λI − B̃Ẽ − B̃T H)T H + H(P̃ + λI − B̃Ẽ − B̃T H)

+HB̃B̃T H + HQ̄Q̄T H = 0 (45)

Applying Corollary 2 to (45) and taking −B̃T H as C in
(35) implies

(

−BT H(jω − P̃ − λI − B̃E − B̃B̃T H)−1Q̄
)T

·
(

−BT H(jω − P̃ − λI − B̃E − B̃B̃T H)−1Q̄
)

≤ I (46)

That is, the inequality (40) holds. Therefore, the closed-
loop of system (39) is Lagrange stable. This completes the
proof. 2

Remark 5. The Riccati equation (41) can be written as a

Lyapunov equation H̄(P̃ +λI − B̃Ẽ)T +(P̃ +λI − B̃Ẽ)H̄

− B̃T B̃ + Q̄Q̄T = 0, on the condition that H is nonsigu-
lar.This fact will help solve the Riccati equation.
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