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Abstract: The paper reviews some approaches to the decentralized control of a swarm of
unmanned vehicles, and then proposes a new algorithm capable of managing collisions between
vehicles and with obstacles. The swarm goal is to achieve a desired shape and position in space,
formalized using an abstraction based approach. Formation statistics are defined in analogy
with phisical bodies: center of mass position and inertia moments. Each agent elaborates its own
estimate of these variables using a consensus algorithm capable of tracking a ramp reference,
in order to reduce tracking errors. Gyroscopic and damping terms are added to the control law
in order to avoid collision between vehicles and with obstacles. The obstacle avoidance terms
appear in the control law only in the presence of obstacles or nearby vehicles; thus system
dynamics change during the system evolution. This behavior was modeled as a hybrid system
and proof of stability is given, under mild conditions, using the Common-Lyapunov function
approach. The proposed methodology is validated through extensive numerical simulation.

Keywords: Swarm behaviour and multi-agent systems; Cooperative perception.

1. INTRODUCTION

Several approaches for swarm control have been proposed
in recent years. Leader-Follower techniques [1] assume the
presence of a swarm leader, which may be a physical
vehicle or a ground-based station serving as a reference
for all the agents, which move autonomously following
some kind of geometrical law. The main drawback is the
intrinsic dependance of the swarm health on the leader’s
health. Other approaches use Artificial Potential Functions
([2],[3]), which specify attraction and repulsion forces that
each agent of a swarm computes depending on its neigh-
bors location. Some authors assume that each agent knows
the complete swarm state (e.g. all other agents positions
and velocities), and this may be unrealistic with sparsely
distributed swarms and limited communication ranges due
to limited power consumption. Cohesion of the swarm can
be demonstrated but the swarm shape cannot be easily
controlled. The Virtual Structure approaches [4] define a
set of geometrical constraints for the swarm so that the
resulting agent formation is single and stiff. Within this
framework, determination of the trajectories of the swarm
is computational intensive, and must be performed in a
centralized way. The central control system may be sub-
stituted by a virtual leader (VL), which follows the desired
trajectory; additional geometrical constraints with respect
to the VL are used to drive the swarm. The Behavior
based techniques [5] address the intrinsic complexity of
coordination of a swarm of unmanned vehicles by defining
a set of basic tasks, which determine simple behaviors (e.g.
move toward goal, avoid the nearest obstacle, maintain
formation, etc.). Each agent performs its own tasks inde-
pendently resulting into a so called Emergent Behavior of
the swarm, which should be somehow related to the actual
desired swarm behavior. Fully decentralized estimation

and control is exploited by Consensus based approaches
[6] where each agent state is driven to converge to a
common swarm value (e.g. velocity, direction, position).
This class of control systems has been employed to solve
rendez-vous, flocking and coverage problems. Analysis of
convergence and stability of equilibrium points are usually
performed using graph theory. Consensus algorithms may
be employed for distributed estimation of swarm variables
[7] to be used as feedback for a swarm control system. The
goal of Abstraction based techniques ([7],[9]) is to reduce
the complexity of swarm coordination by introducing a
set of abstract swarm variables, which encode its shape
and position. This approach disregards agents’ positions
as long as the swarm has the desired shape. Collisions
between agents and with obstacles are not considered so
far.

The aim of the paper is a decentralized control system
capable of managing collisions with obstacles and between
vehicles. The swarm goal is to achieve a desired shape
and desired position in space. This is specified using
an abstraction based approach, which defines formation
statistics in analogy with physical bodies: center of mass
position and inertia moments, for instance. Defining for-
mation statistics, which are representative of the desired
formation shape and position is a non trivial task, thus a
technique for easy computation of formation statistics is
given. Afterwards, each agent elaborates its own estimate
of these variables using a consensus algorithm. A consen-
sus algorithm capable of tracking a ramp reference was
developed, in order to reduce tracking errors, and control
saturation. The proposed decentralized control law curves
the vehicle trajectory when the vehicle gets near to an
obstacle or another vehicle; an additional braking term is
employed to reduce vehicle velocity inversely proportional
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to the obstacle distance. The obstacle avoidance terms
appear in the control law only in the presence of obstacles
or nearby vehicles. This dynamic behavior was modeled
as a hybrid system and its stability was studied using the
Common-Lyapunov function approach.

2. PROBLEM STATEMENT

The paper proposes a decentralized control scheme for a
swarm of vehicles capable of achieving desired formation
statistics and of avoiding obstacles and collisions within
the swarm itself. The swarm is composed of n agents with
positions p1, ..., pn. Each agent’s position vector has the
dimensionality of the motion space under consideration,
and in this work planar motion is assumed, thus the i-th
vehicle position is: pi = [pix piy]T .

The swarm statistics are defined via an abstraction-based
approach, introduced in [7], which employs the inertia
moments of the swarm as shape variables to be tracked
by the control system. The statistics are represented by
the swarm moment vector f(p) ∈ ℜl , which uses a C2

vector moment generating function φ : ℜm → ℜl:

f(p) =
1

n

n
∑

i=1

φ(pi) (1)

Each agent is modeled by a double integrator. It knows the
desired swarm moment vector, represented by the vector
f∗ ∈ Im(f), and measures its position and velocity. The
agent’s control input is vehicle acceleration.

The communication network, over which the vehicles may
exchange information, is assumed to be distance depen-
dent, i.e. each agent can communicate with its neighbors
only if the relative distance is less than some specified
communication radius. This is one of the commonly used
model for describing the time-varying topology in mobile
sensor networks, and accomplishes quite well with the
mode of operation of commercial wireless radio modems.

In order to achieve the goal, each vehicle must estimate
the current swarm statistics. This is done using a dynamic
consensus algorithm capable of tracking the mean values
of the vector moments of all the agents, under the assump-
tions that the networks is connected and undirected.

Collisions between obstacles and other agents will be
taken into account using a gyroscopic correction term and
appropriate braking forces [10] and [11].

3. MOMENT STATISTICS

The moments of a set of unit mass points in a plane are
defined as:

Mab =
1

n

n
∑

i=1

pa
ixpb

iy, a, b ≥ 0

where a + b is the order of the moment. Even if moments
can provide an exact formation description, we are inter-
ested in low order moments through which we specify a
family of formations. We will focus on first and second
order moments, since they give the minimum number of
statistics sufficient for specifying pose, orientation and

shape of the swarm. Under this assumption, the vector
moment generating function is:

φ(pi) = [pix piy p2

ix pixpiy p2

iy]T (2)

The formation statistics are:

µx =
1

n

n
∑

i=1

pix µy =
1

n

n
∑

i=1

piy

M2x =
1

n

n
∑

i=1

p2

ix M2y =
1

n

n
∑

i=1

p2

iy

Mxy =
1

n

n
∑

i=1

pixpiy

(3)

The first-order moments µx and µy specify the pose of the
swarm, i.e. the center of mass. Through Mxy is possible to
define the orientation as the rotation of the reference frame
centered in the center of mass for which the formation
satisfies:

n
∑

i=1

xrel
i yrel

i = 0 (4)

The relative variables can be written as:

[xrel
i yrel

i ]T = RT (pi − µ). (5)

θ =
1

2
atan

(

2
∑n

i=1
(pix − µx)(piy − µy)

∑n

i=1
(pix − µx)2 − (piy − µy)2

)

(6)

where θ is restricted to be between [−π
2
, π

2
], and µ =

[µx, µy]T .

The shape of the swarm is assumed to be independent
from its pose; geometric considerations can be made using
relative second-order moments:

a1 =
1

n

n
∑

i=1

(xrel
i )2

a2 =
1

n

n
∑

i=1

(yrel
i )2

(7)

These relative abstract variables provide a bound for the
region occupied by the agents, as derived in [9]:

|xrel
i | ≤ √

na1

|yrel
i | ≤ √

na2

(8)

It is then possible to determine a spanning rectangle,
centered in µ, and with sides given by 2

√
na1 and 2

√
na2.

These measures are expressed in the relative frame. There-
fore, using the equivalence in (5) a convenient expression
for calculating inertia moments has been derived:

M2x =
1

2
(2µ2

x + a1 + a2 + (a1 − a2) cos 2θ)

M2y =
1

2
(2µ2

y + a1 + a2 − (a1 − a2) cos 2θ)

Mxy = (µxµy + (a1 − a2) sin θ cos θ)

(9)

From (9) we can come back to the relative shape variables
using the following:

θ =
1

2
atan

(

2n(Mxy − µxµy)

n(M2x − µ2
x − M2y + µ2

y)

)

(10)
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a1 = (M2x − µ2

x) cos2 θ

+ (M2y − µ2

y) sin2 θ

+ (−µxµy + Mxy) sin2 θ (11)

a2 = (M2y − µ2

y) cos2 θ

+ (M2x − µ2

x) sin2 θ

+ (−µxµy − Mxy) sin2 θ (12)

Using (9) is possible to obtain rigid translations by select-
ing (a1, a2, θ) and deriving the corresponding second-order
moments.

4. CONSENSUS ESTIMATION

Dynamic consensus algorithms are used to estimate the
swarm current moment vector. A consensus algorithm
allows the internal variables of all agents to converge to
a common value in a decentralized way. Following [8] we
distinguish between static and dynamic consensus; in the
static case the consensus is achieved at the average of the
initial values of all agents variables. On the other hand, a
dynamic consensus algorithm requires an additional input
variable for each agent; the problem is then to track the
average of the input values with the consensus variables.
Consensus algorithms are based on the topology of the
underlying communication/sensing graphs. A graph is
defined as a set of nodes and arcs. The adjacency matrix
(A) is a n × n matrix whose ij − th entry is 1 if the edge
(i,j) is included in the graph, and 0 otherwise. The diagonal
degree matrix is defined as follows:

Dii =
∑

j

Aij .

The Laplacian matrix is defined in terms of the adjacency
matrix and the diagonal degree matrix:

L = D − A.

In the following we will assume a connected and undirected
graph. A static consensus algorithm is the following:

ẋi =
∑

j∈Ni

(xj − xi)

where Ni is the set of neighbors of agent i. The whole
system dynamics can be stated using the Laplacian matrix:

ẋ = −Lx

where x = [x1, ..., xn]
T
. The convergence of this algorithm

can be stated as follows

lim
t→∞

xi(t) =
1

n

n
∑

i=1

x(0)

and its proof uses properties of the Laplacian matrix of an
undirected and connected graph, [8].
Tracking performance of dynamic algorithms depends on
time variation of the input signal z(t) = [z1(t) ... zn(t)]T .
The dynamic algorithm proposed in [8] is capable of
reaching consensus equilibrium on any signal that has a
steady-state value (i.e. Z(s) has all its poles in the left-
half plane and at most one pole in zero). The resulting
system dynamics are given by:

ẋ = −Lx + ż (13)

and consensus is achieved when

lim
t→∞

(xi(t) −
1

n

∑

j

zj(t)) = 0.

The LTI system can be described by the MIMO transfer
function matrix:

Hxz = s(sI + L)−1.

Using step references as commands to the swarm may often
result in saturation of vehicle maneuvering capabilities;
providing commands in terms of ramps instead of steps has
several advantages; the most notable is that it reduces the
actual tracking error, thus reducing the amount of control
required by the decentralized autopilots, yielding better
overall performance. Using a transfer function matrix of
the form

Hxz =
s2

(s + α)2

(

s2

(s + α)2
I + L

)−1

, α > 0

it is possible to reach consensus state on ramp inputs. The
Laplacian matrix of an undirected graph is symmetric and
admits spectral decomposition

L =
n

∑

i=1

λiPi

where λi are the eigenvalues of L and Pi orthogonal
projections onto mutually orthogonal eigenspaces. For a
connected graph the following conditions are satisfied:

(1) λ1 = 0
(2) P1 = 1

n
11T

(3) λi > 0, ∀i > 1

The input to error transfer function can be derived as:

E(s) = X(s) − 1

n
11T Z(s) → Hez = Hxz −

1

n
11T

using the above conditions, it is possible to write Hez as:

Hez =
∑

i>1

s2

(1 + λi)s2 + 2αλis + α2λi

Pi

where all terms in the summation are stable. From the final
value theorem e(t) → 0 as t → ∞, if Z(s) is an arbitrary
signal with at the most two poles in s = 0.
We can then derive the algorithm to run in each vehicle:

(1 + |Ni|)ẍi =
∑

j∈Ni

ẍj + 2α
∑

j∈Ni

(ẋj − ẋi)

+ α2
∑

j∈Ni

(xj − xi) + z̈ (14)

the input signal is the vehicle’s acceleration. From an
implementation point of view the agents now need to
transmit not only the consensus variable x but also ẋ and
ẍ.

The improvement in estimation is shown in Figure 1 and
Figure 2 with the comparison of the maximum and min-
imum estimation errors of the two first order moments
(µx, µy) using consensus algorithm described by (13) (dot-
ted line) and (14) (solid line). Simulations were performed
using 25 vehicles with a fixed communication topology,
where agent i is connected to agents i − 1 and i + 1 if
i 6= 1, n; agents 1 and n had only one neighbor, agent 2
and n − 1 respectively. The control law used is given in
(16) and described in more detail in the next section.
The reference signal is a ramp on the center of mass
position; second order moments were computed keeping
a1 and a2 constant, and using (9).
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Fig. 1. Ramp inputs, µx minimum and maximum estima-
tion error
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Fig. 2. Ramp inputs, µy minimum and maximum estima-
tion error

5. CONTROL

The global control objective is defined by the minimization
of a suitable potential function, Ξ : ℜmn → ℜ, of the form:

Ξ = [f(p) − f∗]T Γ[f(p) − f∗] (15)

where Γ ∈ ℜl×l is chosen such that Ξ(p) has the unique
global minimum in f(p) = f∗.
Each agent will follow the gradient of Ξ(p), estimating
the global moment vector f(p) using consensus algorithms.
The applied control law is the following:

p̈i = −Biṗi − [Dφ(pi)]
T ∆i[Dφ(pi)]ṗi

− [Dφ(pi)]
T Γ[xi − f∗] (16)

where the first and second terms are damping terms and
xi is the estimate of the global moment vector f(p) done
by agent i and Dφ(·) defines the l × m Jacobian matrix
of φ. The second damping term is needed to prove the
boundness of the involved signals and will be discarded
during simulations.
The consensus algorithm proposed in [7] is:

ẇi = −γwi +
∑

j∈Ni

(xj − xi)

xi = wi + φ(pi)
(17)

where φ(pi) is the vector moment generating function.
Looking at the derivative of x the algorithm is the same as
in (13), except for the forgetting factor γ that takes into
account the events of an agent leaving the formation or
joining of a new agent:

ẋ = ẇ + φ̇(p) = −γw − Lx + φ̇(p)

where z(t) = φ(p(t)).
The closed-loop system can be described in terms of

(p, ṗ, E), where E = [e1, ... en]T is the column vector
whose elements are the estimate error of each agent. In
[7] a proof of the boundness of each trajectory of system
(16)-(17) is provided using two Lyapunov functions, V and
U , and then summing them in a convenient way:

V (p, ṗ) = ṗT ṗ + nΞ(p)

U(E) = Tr(EET )

Ψ(p, ṗ, E) = V + (1 + ν)U, ν > 0

(18)

The derivative of Ψ is non-increasing along trajectories in
time, in fact:

Ψ̇ ≤ −
n

∑

i=1

[ṗT
i [Bi + BT

i ]ṗi + νǫ|ei|2], ǫ > 0 (19)

where the Bi terms had been chosen to verify [Bi +
BT

i ] > 0 ∀i.

6. OBSTACLE AVOIDANCE

In order to avoid obstacles and collisions with other agents,
gyroscopic and braking forces were added ([10],[11]). Gy-
roscopic forces are used as steering forces that curve the
trajectories when an obstacle is in the detection shell of
the agent. Steering forces alone are generally not sufficient
for collision avoidance, thus braking forces terms are added
when obstacles or other vehicles are in close proximity.
Each agent has its own detection shell, within which it
can sense obstacles and neighboring agents. The detection
shell will be part of the ball of radius rs centered at
the agent position; more precisely the area within the
angles (∠ṗi−αs, ∠ṗi+αs). Reaction behaviors will depend
on rs and αs. Agents only react to the nearest obstacle
within their detection shell so, if there are no obstacle the
gyroscopic and braking forces are set to zero. Gyroscopic
forces are orthogonal to the velocity vector, while braking
forces are damping terms acting in the opposite direction
of the velocity vector. The resulting obstacle avoidance
force is given by:

FOA = FG + FB

The turning direction is chosen depending on the approach
angle, i.e. the angle between the velocity vector of the
agent and the vector from the agent to the nearest point
of the obstacle (denoted as nva); in order to have an
escape behavior the gyroscopic force must produce an
infinitesimal rotation around the vector nva × ṗi. This
yields:

FG = S(nva, ṗ)ṗ

FB = −D(nva)ṗ

(20)

where the matrix D is symmetric and positive-definite, and
the matrix S is skew-symmetric. The latter implies:

< S(nva, ṗ), ṗ >= 0 ⇒ FG ṗ = 0

that is the force is in fact orthogonal to the velocity vector.
The magnitude of the braking force is selected so as to
generate infinite force as distance tends to zero.

The structure can be therefore described by a hybrid
system with three states:
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Fig. 3. Control system hybrid dynamics

• Normal (N)
• Turn Left and Brake (TLB)
• Turn Right and Brake (TRB)

as shown in Figure 3.

The control inputs for the three states are:

p̈i = −Biṗi + g(pi, ṗi, xi) (N)
p̈i = −Biṗi − Dṗi + SLṗi + g(pi, ṗi, xi) (TLB)
p̈i = −Biṗi − Dṗi + SRṗi + g(pi, ṗi, xi) (TRB)

(21)

where g(pi, ṗi, xi) is the sum of the gradiental and second
damping term of equation (16).

Boundness of all signals can be found for each subsystem,
as done in [7] for the Normal subsystem (equations (18)
and (19) show this result). This is a necessary, but not
sufficient, condition for the boundness of all signals of
the resulting system subject to arbitrary switching. The
problem can be solved using the Common Lyapunov
Function approach. Recall the definition:

A positive definite continuously derivable (C1) function
V : ℜn → ℜ is a Common Lyapunov Function for the
family of systems described by

ẋ = fp(x), x ∈ ℜn, p ∈ P

(where P is the index set of all subsystems) if there exists
a continuous positive definite function W (x) : ℜn → ℜ for
witch is verified

∂V

∂x
fp(x) ≤ −W (x) < 0, ∀x 6= 0, ∀p ∈ P.

A sufficient condition for the boundness of all signals of
the switched system is the existence of a Common Lya-
punov Function. Finding one function for all subsystems
gives us a measure of the loss of energy in a monotonic way;
i.e. we can assure that during switching, the Lyapunov
function is still decreasing.

From (21) and using the properties of matrices in (20):

D > 0 SL + ST
L = SR + ST

R = 0 (22)

we can see the Lyapunov function in (18) as Common
Lyapunov Function for the family of systems in (21).
The derivatives of the Lyapunov function for the three
subsystems are:

Ψ̇N ≤ −
n

∑

i=1

[ṗT
i [Bi + BT

i ]ṗi + νǫ|ei|2]

= −W (p, ṗ, E) (23)
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Fig. 4. Sample obstacle avoidance maneuver

Ψ̇TLB = Ψ̇TRB

≤ −
n

∑

i=1

[ṗT
i [Bi + BT

i + D + DT ]ṗi + νǫ|ei|2]

≤ −W (p, ṗ, E) (24)

7. NUMERICAL RESULTS

A simulation was performed using 20 agents with a full
connected topology. The objective of the simulation is to
test the abstraction based approach with the added obsta-
cle avoidance terms, instead of weighting the estimation
performance. The control law and the consensus algorithm
are defined in equations (16) and (17).
From the analysis of the time evolution of the global func-
tion Ξ(p) (Figure 5) is possible to evaluate the behavior of
the swarm. A larger value of this function corresponds to
larger errors of the current moment vector. Figure 6 shows
the tracking error history of the five absolute abstract
variables (µx, µy, M2x,Mxy,M2y), and the evolution of the
relative abstract variables (a1, a2).
From the numerical simulation, we can extract the follow-
ing information:

• t ≤ 3s the system evolves in order to reach the desired
statistics f∗ = [0 0 3 0 3]T ;

• 3 < t ≤ 6s the system is subjected to a ramp
command on the center of mass and tracks it with
an finite error; the errors on second order moments
are still decreasing;

• 6 < t ≤ 17s the agents are subjected to the obstacle
avoidance forces; near the obstacle the second order
moments are greater than desired (error is negative)
to avoid the obstacle, while the motion of the center
of mass slows down (error is positive). When leaving
the obstacle region, the errors decrease;

• 17 < t ≤ 21s the agents are subjected to a ramp com-
mand on the center of mass and the errors decrease;

• t > 21s the system evolves in order to reach the
desired statistics (µ = [17 17], a1 = a2 = 3, θ = 0).

Figure 7 shows the evolution of the minimum distance
between any two agents: while approaching the obstacle
it decreases, and increases when the swarm is leaving the
obstacle.
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8. CONCLUSIONS AND FUTURE WORK

The problem of decentralized control of swarms was ad-
dressed using an abstraction based approach. Summary
statistics based on inertia moments were considered, and
a general expression for calculating the absolute second
order moments proposed. A new algorithm capable of
reaching consensus on ramp inputs was proposed and con-

vergence verified for undirected and connected communi-
cation/sensing topologies. Obstacle avoidance terms were
added to the control law; boundness of all signals of the
resulting switching systems was proved using a Common
Lyapunov Function for all the subsystems.
Implementation of the proposed law on real vehicles poses
several implementation issues; for instance: selection of
sensors and communication systems, stability and perfor-
mance in presence of sensor noise, communication occlu-
sions due to obstacles or other vehicles, realistic vehicle
dynamics etc. All of these are topics of current research
and will be discussed in an upcoming paper [12].
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