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Abstract: Recently, the author has proposed a methodology for the design of nonlinear
observers based on the dissipative theory. This methodology offers a systematic approach to
the observer design providing great flexibility and generality. For example, several well known
observer design methods, as the High-Gain and the Lipschitz Observers, can be treated and
generalized in a unified manner by the Dissipative Approach. Moreover, different objectives in
observation can be also unified and generalized by the Dissipative Approach, as for example the
design of Unknown Input and Robust Observers. The objective of this paper is to show how
this methodology can be applied in the design of observers for bioprocesses and its advantages
for this kind of processes. An example illustrates the main ideas. Copyright c©2008 IFAC
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1. INTRODUCTION

Reaction systems is a class of nonlinear dynamical systems
that is widely used in areas such as chemical, biochemical
and biomedical engineering, biotechnology, ecology, etc.
(Robust) observation issues for this class of systems is
of fundamental importance due to the limited availability
of on-line sensors and the uncertainties related, in par-
ticular, to the mathematical model. It is not surprising
that there is an intensive research activity to design ob-
servers (or software sensors) for these systems (Bastin
and Dochain [1990], Dochain and Vanrolleghem [2001],
Dochain [2003]), and different methods for uncertain reac-
tion systems, besides the classical extended Kalman and
Luenberger observers, have been proposed ([see Dochain
and Vanrolleghem, 2001, for an overview]): Interval Ob-
servers (Gouzé et al. [2000]) are based on cooperative
systems theory; Adaptive Observers (Dochain [2003]) as-
sume that the uncertainties are represented by unknown
parameters; Asymptotic Observers (Bastin and Dochain
[1990], Dochain and Vanrolleghem [2001]) are based on the
mass and energy balances without requiring the process
kinetics; Practical and Parallelotopic Observers (Rapaport
and Gouzé [2003]) consider uncertainties as unknown in-
puts (UI) and converge practically (not exactly) to the
true state for a restricted class of systems with bounded
perturbations.

For reaction systems without uncertainties several meth-
ods have been applied to design observers, as the High-
Gain method (Gauthier et al. [1992]) and the Lipschitz
Method (Rajamani [1998]). For uncertain reaction sys-
tems, when there are only parametric uncertainties, adap-
tive observers can be used. However, if stronger structural
uncertainties are available the most successful method
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used to day are the asymptotic observers (Bastin and
Dochain [1990], Dochain and Vanrolleghem [2001]). In
the work (Moreno and Dochain [2008]) uncertainties are
represented by arbitrary unknown input signals to the sys-
tem, what represents a flexible way to characterize many
kinds of uncertainties, and they are able to show that the
asymptotic observers can be recovered and extended with
their approach. A highly satisfactory result is to be able
to explain, using observability/detectability arguments,
why (classic) asymptotic observers converge and why their
convergence rate is not assignable. Moreover, the robust
observers proposed in that work can be used in more gen-
eral situations and their convergence properties are com-
pletely derived from the robust observability/detectability
properties of the model.

However, due to the basic linear structure of the uncertain
systems considered in (Moreno and Dochain [2008]), it is
not possible to consider more general situations. For ex-
ample, if some reaction rates are known but others are un-
certain, this leads to a nonlinear structure with unknown
inputs, that cannot be treated with that approach. So a
natural extension of that work is to use unknown input
observer design methods for uncertain reaction systems,
and this is part of the objective of this paper.

The use of systems with unknown inputs for the repre-
sentation of the uncertain reaction system’s family leads
naturally to the study of observability and detectability
concepts for this kind of systems, and the construction and
existence conditions of Unknown Input Observers (UIO).
For linear time invariant (LTI) systems this is a very well
established topic (Hautus [1983], Hou and Müller [1994]),
and some advances in the design of UIOs for nonlinear
systems have been obtained recently by (Rocha-Cózatl
et al. [2005], Moreno [2000])
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Recently, the author has proposed (Moreno [2004, 2005])
a method to design nonlinear observers using dissipative
methods. One attractive feature of this Dissipative Design
is, on the one side, that it includes and generalizes many
current observer design methods, and on the other side,
that it is possible to design observers with unknown inputs
or known inputs in a unified framework. The aim of this
work is to show how the Dissipative Design Method can
be used to design observers for reaction systems with
or without uncertainties in a unified way. This can be
seen as a first step in a more general, and far-reaching
objective: to develop a methodology to design robust
observers for uncertain reaction systems, in which different
kinds of uncertainties are available as unknown constant
parameters, unknown (bounded) disturbances, unmodeled
dynamics, deterministic perturbations characterized by an
internal model, etc. We believe that the Dissipative Design
Method is able to reach these requirements, and this is part
of active research work.

The rest of the paper is organized as follows. The basic
ideas of the Dissipative Design Method of Nonlinear Ob-
servers are introduced in 2. A fairly general model of reac-
tion systems is given in Section 3 and the proposed design
strategy using the Dissipative Design is briefly introduced
here. An illustrative example of the design method is given
in Section 4.

2. DISSIPATIVE OBSERVER DESIGN

Motivated by the circle criterion design of nonlinear ob-
servers in Arcak and Kokotovic [2001] the author has pro-
posed in Moreno [2004, 2005] a methodology for designing
nonlinear observers for a class of nonlinear systems. This
method will be briefly reviewed in this section.

2.1 Preliminaries

In this work the stability properties of dissipative systems
will be used for the design of observers for systems that
can be represented as the feedback interconnection of a
dynamical linear time invariant (LTI) system in the for-
ward loop and a memoryless nonlinearity in the feedback
loop. From the dissipativity theory (Willems [1972], Hill
and Moylan [1980]) the following results are of relevance
here.

Consider the feedback interconnection

ẋ = Ax+Bu , x (0) = x0 ,
y = Cx ,
u = −ψ (t, y) ,

(1)

with x ∈ R
n, u ∈ R

q, y ∈ R
m, and quadratic supply rates

ω (v, w) = vTQv + 2vTSw + wTRw

=

[

v
w

]T [

Q S
ST R

] [

v
w

]

,
(2)

where v ∈ R
r, w ∈ R

s, Q ∈ R
r×r, S ∈ R

r×s, R ∈ R
s×s,

and Q, R symmetric.

Definition 1. The linear part (A,B,C) of system (1) is
said to be state strictly dissipative (SSD) with respect to
the supply rate ω (y, u), or for short (Q,S,R)-SSD, if there
exist a matrix P = PT > 0, and ǫ > 0 such that

[

PA+ATP + ǫP , PB
BTP 0

]

−

[

CTQC CTS
STC R

]

≤ 0 . (3)

For quadratic systems, i.e. m = q, passivity corresponds
to the supply rate ω (y, u) = yTu. If (A,B) control-
lable, (A,C) observable, then condition (3) is equiva-
lent, by the Kalman-Yakubovich-Popov Lemma (Khalil
[2002]), to the fact that the transfer matrix of Σ,

i.e. G (s) = C (sI −A)−1B, is strictly positive real
(SPR). Note that this definition assures the existence of
a quadratic positive definite storage function V (x) =
xTPx, and a positive definite loss function Z (x, u) =
(

KTx+WTu
)T (

KTx+WTu
)

+ ǫxTPx, such that along

any trajectory of the system V̇ (x (t)) = ω (y (t) , u (t)) −
Z (x (t) , u (t)).

Definition 2. The nonlinear part of system (1), a time-
varying memoryless nonlinearity ψ : [0,∞) × R

m → R
q,

u = ψ (t, y), piecewise continuous in t and locally Lipschitz
in y, such that ψ (t, 0) = 0, is said to satisfy a dissipative
condition in Γ with respect to the supply rate ω (u, y) (2),
or for short (Q,S,R)-D in Γ, if

ω (u, y) = ω (ψ (t, y) , y) ≥ 0 , ∀t ≥ 0 , ∀y ∈ Γ ⊆ R
m ,

where Γ is a subset of R
m whose interior is connected

and contains the origin. If Γ = R
m, then ψ satisfies the

dissipativity condition globally, in which case it is said that
ψ is dissipative with respect to ω, or for short, (Q,S,R)-D.

Remark 3. Note that the classical sector conditions (Khalil
[2002]) for square nonlinearities, i.e. m = q, can be rep-
resented in this form. If ψ is in the sector [K1,K2], i.e.

(y −K1u)
T

(K2u− y) ≥ 0, then it is (Q,S,R)-D, with
(Q,S,R) =

(

−I, 1

2
(K1 +K2) ,−

1

2

(

KT
1 K2 +KT

2 K1

))

. If

ψ is in the sector [K1,∞], i.e. (y −K1u)
T
u ≥ 0, then it

is
(

0, 1

2
I,− 1

2

(

K1 +KT
1

))

-D.

Remark 4. Classically the concept of dissipativity has
been defined globally. However, it is of interest to consider
the local (or non global) case, for which the local version
of dissipativity of a nonlinearity has been introduced.

For the interconnected system (1) a generalization of the
passivity and of the small gain theorems for non square
systems can be easily obtained, and it will be used in the
sequel.

Lemma 5. Consider the system (1). If the linear sys-
tem (C,A,B) is

(

−R,ST ,−Q
)

-SSD, then the equilibrium
point x = 0 of (1) is globally (locally) exponentially stable
for every (Q,S,R)-D (in Γ for some Γ ⊆ R

m) nonlinearity.

2.2 Dissipative design for certain nonlinear systems

Consider the class of systems described by a LTI sub-
system with a nonlinear perturbation term, connected in
feedback, i.e.

Σ :

{

ẋ = Ax +Gψ (σ, y, u) + γ (t, y, u) , x (0) = x0

y = Cx ,
σ = Hx ,

(4)
or that can be brought to this form by transformations,
and where x ∈ R

n is the state, y ∈ R
p is the measured

output, u ∈ R
m is the input, and σ ∈ R

r is a (not neces-
sarily measured) linear function of the state. γ (t, y, u) is an
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arbitrary nonlinear function of the input and the output.
ψ (σ, y, u) is a q-dimensional vector that depends on σ, y, u.
ψ and γ are assumed to be locally Lipschitz in σ, y, u, so
that existence and uniqueness of solutions is guaranteed.
It will be assumed that the trajectories of interest of Σ are
defined for all future times.

An observer for system (4) is a dynamical system Ω that
has as inputs the input u and the output y of Σ, and its
output x̂ is an estimation of the state x of Σ. A full order
observer for Σ of the form

Ω :















·

x̂ = Ax̂ +Gψ (σ̂ +N (ŷ − y) , y, u) + L (ŷ − y)+
+γ (t, y, u) , x̂ (0) = x̂0 ,

ŷ = Cx̂ ,
σ̂ = Hx̂ ,

(5)
is proposed, where matrices L ∈ R

n×p, and N ∈ R
r×p

have to be designed. Defining the state estimation error
by x̃ , x̂ − x, the output estimation error by ỹ , ŷ −
y, and the function estimation error by σ̃ , σ̂ − σ,
z , (H +NC) x̃ = σ̃ +Nỹ, and a new nonlinearity

φ (z, σ, y, u) , ψ (σ, y, u) − ψ (σ + z, y, u) , (6)

the dynamics of the error can be written as

Ξ :







·

x̃ = ALx̃+Gν , x̃ (0) = x̃0 ,
z = HN x̃ ,
ν = −φ (z, σ, y, u) ,

(7)

where AL , A + LC, and HN , H + NC. Note that
φ (0, σ; y, u) = 0 for all σ, y, u.

Remark 6. Note that when the plant Σ is LTI (at least
up to an output injection term), then φ = 0, and the error
dynamics Ξ is LTI and autonomous, i.e. it does not depend
on the plant state. The same is true if σ is dependent on
the output y, since in this case there exists a matrix such
that σ = Fy, and there exists an N such that HN = H +
NC = 0. In these both cases detectability of the pair
(A,C) is a necessary and sufficient condition to construct
an observer. However, in general, the error dynamics (7) is
not autonomous, but it is driven by the system (4) through
the linear function of the state σ = Hx. φ is therefore a
time varying nonlinearity, whose time variation depends
on the state trajectory of the plant.

The observer design consists in finding matrices L and N ,
if they exist, so that Ξ satisfies the conditions of Lemma 5.
For this it is necessary to assume that the nonlinear part
of (7) belongs to one or several sectors.

Assumption 1. φ in (7) is (Qi, Si, Ri)-dissipative (in Γ) for
some finite set of non positive semidefinite quadratic forms
ωi (φ, z) = φTQiφ + 2φTSiz + zTRiz ≥ 0, for all σ, y, u,
for i = 1, 2, · · · ,M .

It is clear that it is necessary that the quadratic forms
be independent. It is also easy to see that then φ is
∑M

i=1
θi (Qi, Si, Ri)-dissipative (in Γ) for every θi ≥ 0, i.e.

φ is dissipative with respect to the supply rate ω (φ, z) =
∑M

i=1
θiωi (φ, z).

Example 7. Consider a lower triangular nonlinearity

ψT (x, u) = [ ψ1 (x1, u) · · ·ψn−1 (x1, · · · , xn−1, u) , ψn (x, u) ]
(8)

with ψ (0, u) = 0 for all u. Assume that each component
is (globally) Lipschitz, uniformly in u (or for u in a
compact set). i.e.

∥

∥ψi

(

xi, u
)

− ψi

(

yi, u
)
∥

∥ ≤ ki

∥

∥xi − yi
∥

∥,
i = 1, · · · , n, where ki > 0 is the Lipschitz constant

of ψi, and xi = [ x1 · · · xi ]
T
. Defining φ (z, x, u) =

ψ (x, u)−ψ (x+ z, u) the Lipschitz condition on ψ implies
for each component of φ that

∥

∥φi

(

zi, xi, u
)
∥

∥ ≤ ki

∥

∥zi
∥

∥,
i = 1, · · · , n. Considering the Euclidean norm this implies

φ2
i (z1, · · · , zi, x1, · · · , xi, u) ≤ k2

i

(

z2
1 + · · · + z2

i

)

.

These inequalities show that φ is (Qi, Si, Ri)-dissipative
for all i = 1, 2, · · · , n, with (Qi, Si, Ri) =

(

−bib
T
i , 0, kiIi

)

,
where bi are the basis vectors of R

n, Ii = diag (Ii, 0n−i),
and Ip is the identity matrix of dimension p. �

In this case the design is as follows

Theorem 8. Suppose Assumption 1 is satisfied. If there are
matrices L, N and a vector θ = (θ1, · · · , θM ), θi ≥ 0, so
that the linear subsystem of Ξ is

(

−Rθ, S
T
θ ,−Qθ

)

-SSD,

with (Qθ, Sθ, Rθ) =
∑M

i=1
θi (Qi, Si, Ri), that is there exist

a matrix P = PT > 0, and ǫ > 0 such that
[

PAL +AT
LP + ǫP +HT

NRθHN , PG−HT
NS

T
θ

GTP − SθHN Qθ

]

≤ 0 ,

(9)
where AL = A + LC, HN = H +NC, then Ω is a global
(local) exponential observer for Σ, i.e. there exist constants
κ, µ > 0 such that for all x̃ (0) (in a vicinity of x̃ = 0)
‖x̃ (t)‖ ≤ κ ‖x̃ (0)‖ exp (−µt).

Remark 9. The proposed method generalizes and im-
proves several methods previously proposed in the liter-
ature. Some of them are (Moreno [2004]):

(i) The Circle criterion design: It is easy to see that this
method generalizes and improves the one proposed in
(Arcak and Kokotovic [2001]): our design is valid for non-
square systems, the nonlinearities are of general type, and
can be described by several sector conditions.
(ii) Lipschitz observer design: Proposed recently by Raja-
mani [1998], that is a generalization of the classical method
introduced by Thau [1973].
(iii) High-Gain observer design: The well-known high-gain
observer design (Gauthier et al. [1992]) is a special case of
the one proposed here.

2.3 Dissipative design for uncertain nonlinear systems

One alternative to model uncertain systems consists in
considering the uncertainties as completely unknown in-
puts to the system. The class of nonlinear systems consid-
ered for UIO design is

Σ :

{

ẋ = Ax+Gψ (σ, y, u) + γ (t, y, u) +Bw , x (0) = x0

y = Cx ,
σ = Hx ,

(10)
where w ∈ R

q is an arbitrary (even unbounded) unknown
input. w can model an arbitrary unknown disturbance act-
ing on the system, parametric uncertainty or unmodeled
dynamics. It will be assumed that the trajectories of Σ
exist and are well defined for all times, i.e. there are no
finite escape times. Without loss of generality it is assumed
that matrices B and C are of full rank.The objective is to
design an Unknown Input Observer (UIO) for system Σ
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(10), that is, a dynamical system that using the informa-
tion of the known input u (t) and the output y (t) produces
an state estimate x̂ (t), that converges asymptotically to
the actual state x (t) of Σ, i.e. lim

t→∞

(x̂ (t) − x (t)) = 0, in

spite of the lack of information on the unknown input w
and derivative(s) of output y.

Remark 10. Since w is an arbitrary unknown input and
an UIO of Σ is convergent independently of it, the same
UIO will work for any system of the form (10) with
w = G (x, u, w̃), where w̃ is a new unknown input. This
represents a generalization of the considered systems. Note
that the class of systems can be enlarged considering
that by means of unknown input, state and/or output
transformations some systems can be transformed to the
particular form given by (10).

The main result of Rocha-Cózatl and Moreno [2004],
Rocha-Cózatl et al. [2005] is a sufficient condition for the
existence of an UIO for the plant Σ (10).

Theorem 11. Suppose that Assumption 1 is satisfied, and
that there exist constant matrices P = PT > 0, L, N , S,
a vector θ = (θ1, · · · , θM ), θi ≥ 0, and a constant ǫ > 0,
such that (⋆ represent the symmetric terms)





PAL +AT
LP + ǫP +HT

NRθHN ⋆ ⋆

GTP − SθHN Qθ ⋆

BTP − SC 0 0



 ≤ 0 .

Then there exists an UIO for (10).

As it is shown in the references if this conditions are sat-
isfied there are state χ = Tx and output transformations
such that in the new coordinates the system has the form

χ̇1 = Ā11χ1 + Ā12χ2 + Ḡ1ψ (σ, y, u) + γ̄1 −BTPBw
(11)

χ̇2 = Ā21χ1 + Ā22χ2 + Ḡ2ψ (σ, y, u) + γ̄2 (12)

y1 = χ1 , y2 = C2χ2 , σ = H2χ2 .

Note that the states affected by the unknown input (χ1)
(11) are measured, and the estimation of the rest of the
states (12), that are unaffected by the unknown input (χ2),
can be performed as in the previous subsection.

Remark 12. Note that when there is no unknown input,
i.e. w = 0 or B = 0, the observer design reduces to
the certain case explained in the previous paragraph 2.2.
Accordingly, in this case the MI (11) reduces to the MI (9),
since then one can set B = 0 and S = 0. This feature of
the dissipative method is very appealing, since the design
of Observers with and without UIs is unified.

Remark 13. Although in the previous paragraphs it has
been assumed that the system and observer matrices
are constant, this is not necessary. As far as the MI
11 is satisfied with a constant matrix P , the design is
possible. Furthermore, one can extend the method by
allowing a time-varying matrix P at the cost of obtaining
a Differential MI in place of the algebraic MI (11).

2.4 Matrix Inequality

In general (9, 11) are nonlinear matrix inequality feasibil-
ity problems. Under some conditions they become Linear
Matrix Inequalities (LMI) feasibility problems, for which
solutions can be effectively found by several algorithms in
the literature (Boyd et al. [1994]). Note also that when (9,

11) are feasible, there exist in general several solutions for
L and N . Replacing ǫP by ǫI, (11) is a LMI in P , PL, ǫ,
S, θ but not in N , except when Rθ = 0 and Sθ = 0.

One possibility to solve (9, 11) by LMI algorithms is to
fix N at some value and to search for a solution. This can
be made recursively until a solution is found. A particular
situation arises when N = 0, so that the classical output
injection is made.

3. MODEL OF (UNCERTAIN) REACTION SYSTEMS
AND ROBUST OBSERVER DESIGN

A general state-space model of reaction systems is gener-
ally obtained from mass and energy balances (Bastin and
Dochain [1990], Dochain and Vanrolleghem [2001]) and
can be written in a compact and generalized form as:

ΣR :

{

ẋ = Kϕ (x) −D (t)x−Q (x) + F (t) ,
y = Cx .

(13)

where y ∈ R
m is the output vector, the state x ∈

R
n consists of component concentrations, volumes and

temperatures, K ∈ R
n×q is the constant stoichiometric

coefficient matrix, ϕ ∈ R
q is the reaction rate vector, D

is the (matrix) dilution rate, Q is the outflow rate vector,
F is the feedrate vector. For a single reactor D is a scalar
but it is a matrix when several reactors are considered.

In practice the model is usually uncertain, since the
parameters and nonlinearities of the system are difficult
to identify precisely and they may change over time. In
particular, the reaction rates are usually poorly known.
This makes the observation problem challenging. In order
to deal with these uncertainties a representation of all
possible behaviors of the system (13) is required. In a
previous work (Moreno and Dochain [2008]) the authors
have proposed to use state-affine systems with unknown
inputs, that is

ΣU :

{

ẋ = A (u, y)x+Bw + ψ (u, y) ,
y = Cx ,

(14)

where w ∈ R
p is a vector of (arbitrary) unknown inputs

representing uncertainties, u ∈ R
r is a vector of measured

inputs, and A (u, y) is a continuous matrix. In this form
they have been able to explain and generalize the well
known asymptotic observers, that have been shown to
be very useful in many practical situations (Bastin and
Dochain [1990], Dochain et al. [1992], Dochain and Van-
rolleghem [2001]). They are obtained when all the reaction
rates are considered uncertain, w = ϕ (x), but the rest
of the model is assumed to be known, i.e. the uncertain
system can be represented by (14) with A (u, y) = −D (t),
B = K, ψ (u, y) = F (t) −Q (x).

However, due to the basic linear structure of (14) it is not
possible to consider more general situations. For example,
if some reaction rates are known but others are uncertain,
this leads to a nonlinear structure as the one in (10),
when the uncertain reaction rates are modeled as unknown
inputs. It seems also natural to use (10) as a model for
an uncertain reaction system. The dissipative method can
then be used to design a robust observer. It is clear that
the classic asymptotic observers are a special case of this
approach. Moreover, the case that no uncertainties are
present in the model can be treated in the same framework.
This shows the great flexibility of the method.
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Example 14. Consider the case that in system (13) some
reaction rates (ϕk (x)) are well known but the rest is
unknown (ϕu (x)). If it is assumed that Q, D and F are
measured, and K is known, then the reaction system can
be written as

ẋ = Kkϕk (x) −D (t)x−Q (x) +Kuw + F (t) ,
y = Cx .

in which w = ϕu (x). This system has the structure of (10).

4. EXAMPLE

In order to illustrate the dissipative observer design
method proposed a simple biological reactor model will
be considered:

Ẋ = −D (t)X + µ (S)X ,

Ṡ = D (t) (Sin − S) −
1

Y
µ (S)X ,

(15)

where X is the biomass and S the substrate concentration,
µ is the growth rate, Y the yield coefficient, Sin is the
substrate concentration in the inflow and D is the dilution
rate. The observation problem consists in estimating the
substrate concentration S when the biomass concentration
X is measured. Two extreme conditions on the knowledge
of the reaction rate will be considered:
Case 1: The reaction rate µ is completely unknown.
Case 2: No uncertainty, i.e. the model is perfectly known.

4.1 Case 1: Unknown reaction rate

Case 1 is the standard situation for asymptotic observers,
where µ is treated as an unknown input (Bastin and
Dochain [1990], Dochain and Vanrolleghem [2001], Moreno
and Dochain [2008]). Since there is only one reaction rate
and one measurement in this example, the dissipative ap-
proach leads exactly to the classical asymptotic observer.
The variable Z = 1

Y X + S, whose dynamics is

Ż = −D (t)Z +D (t)Sin ,

is independent of the reaction rate µ. The asymptotic
observer

·

Ẑ = −D (t) Ẑ +D (t)Sin ,

converges asymptotically to the true value of Z, indepen-
dently of the value of µ, whenD is persistently exciting, i.e.

there exist α, T > 0 such that for all t ≥ 0,
∫ t+T

t
D(τ)dτ ≥

α. The convergence of the observer cannot be assigned and
depends on the behavior of D. The detectability analysis
of Moreno and Dochain [2008] shows that if µ is completely
arbitrary no better result can be obtained.

4.2 Case 2: Known reaction rate

For the following observer

·

X̂ = −D (t)X + µ
(

Ŝ +NeX

)

X + l1eX ,
·

Ŝ = D (t)
(

Sin − Ŝ
)

−
1

Y
µ

(

Ŝ +NeX

)

X + l2eX ,

(16)

where eX = X̂−X , eS = Ŝ−S are the observation errors,
the error dynamic is given by

·

eX = l1eX + φ (z, S)X ,
·

eS = −D (t) eS −
1

Y
φ (z, S)X + l2eX ,

z = eS +NeX ,
φ (z, S) = µ (z + S) − µ (S) .

(17)

It is illustrative to use (eX , z) as state variables of the error
instead of (eX , eS), i.e.

·

eX = l1eX + φ (z, S)X ,

ż = −D (t) z +

(

N −
1

Y

)

φ (z, S)X + lNeX ,
(18)

where lN = Nl1 + l2. In order to design the observer
the sector of φ has to be determined. For continuous
differentiable reaction rates µ this is easily done with the
help of the mean value theorem. Since

φ (z, S) =
dµ (S + γz)

dS
z, γ ∈ (0, 1) ,

it follows that φ (z, S) is in the sector [K1,K2], where K1

and K2 are the minimum and the maximum value of the
derivative of µ, respectively.

Two classical classes of growth rates will be considered:

i) The monotonic case: The typical form is the

Monod function µ (S) = µ0S
S+KS

, but other forms are
possible. In this case 0 < K1 < K2 < ∞. The strict
positiveness of K1 comes from the fact that in the
reactor S is bounded.

ii) The non monotonic case: The typical form is the

Haldane function µ (S) = µ0S
S2/Ki+S+KS

, but other

forms are possible. In this case K1 < 0 < K2 <∞.

It is possible to design the observer gains by solving the
Matrix Inequality (9), that, in general, has many solutions,
if it is feasible. Here, for illustrative purposes, a simple
storage function will be selected and the design parameters
will be selected to satisfy the corresponding inequality.

Consider as Lyapunov’s function candidate V (eX , z) =
1

2

(

e2X + θz2
)

. Its derivative along the trajectories of the
observation error 18 is

V̇ = l1e
2
X +Xφ (z, S) eX + θlNzeX − θD (t) z2+

+θX

(

N −
1

Y

)

φ (z, S) z .

The design is then as follows:

i) The monotonic case: Selecting l1 = λ1X , θ > 0,
lN = λNX and N < 1

Y , with λ1 large enough, then

V̇ < −ǫV so that the observer converges exponen-
tially fast, even when D = 0.

ii) The non monotonic case: Selecting l1 = λ1X ,
θ > 0, lN = λNX and N = 1

Y , with λ1 large enough,

then V̇ is negative definite, so that the observer
converges asymptotically fast, if it is assumed that
D (t) ≥ ǫ > 0.

Many more solutions can be found solving the Matrix
Inequality (9). These degrees of freedom can be used to
optimize certain performance criteria.
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Note that setting N = 1

Y and lN = 0 in the previous
observer, then the asymptotic observer is recovered!

In Figure 1 some simulations illustrate the behavior of the
designed observers. The growth rate is Monod and the
parameters of the plant: Y = 0.3, Sin = 10, µ0 = 0.2,
KS = 10, D = 0.4, X0 = 10, S0 = 5. For both observers
θ = 0.025, l1 = −3X , eX0 = 0.5, eS0 = 10 were used. For
the asymptotic observer N = 1/Y and lN = 0, and for the
dissipative observer N = 1/Y − 8, lN = −X/θ.
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Fig. 1. Simulation of the bioreactor and the estimation
errors of the asymptotic observer (continuous line)
and of the dissipative observer (dotted line).

It is clear that the convergence velocity of the error of
the unmeasured state (S) for the dissipative observer is
much faster than that of the asymptotic observer. This is
of course expected, since the model is perfectly known for
the first but not for the second one. The interesting point
here is that the dissipative observer methodology allows
for a unified design under different uncertainty conditions.

5. CONCLUSIONS

In this work it has been shown how the Dissipative De-
sign Method can be used to design observers for reaction
systems with or without uncertainties in a unified way.
Many important issues as the consideration of unknown
parameters, sensor noise, consideration of trade offs be-
tween robustness and observer performance, etc. have to
be addressed and this is part of active research work. We
believe that the Dissipative Design Method is a method-
ology able to reach these requirements.
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