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Abstract: In this paper, two classifiers are proposed to distinguish between bulking and non-
bulking situations in an activated sludge wastewater treatment plant, based on available image
analysis information. The first classifier consists of a simple linear classification function, while
the second classifier uses a highly nonlinear least squares support vector machine (LS-SVM)
to distinguish between both situations. It is shown that the nonlinear LS-SVM classification
function outperforms the linear classifier. Both exhibit identical misclassification rates, but fewer
samples are located in the uncertainty area when using the nonlinear classifier. However, this
better classification performance requires the identification of a substantial amount of model
parameters, while the linear classifier is, except for the threshold values, parameterless.

1. INTRODUCTION

With the decreasing amounts of available freshwater and
the ever increasing water pollution as a result of booming
industrial development, there is a great need for efficiently
working wastewater treatment systems. These systems are
a crucial part of the water cycle, where wastewater is
collected, purified, and -eventually- reused.

The most widely used wastewater treatment system is
the activated sludge system, where a complex mixture
of microorganisms is used to reduce the concentration of
pollutants present in the wastewater to acceptable lev-
els. The main problem in the operation of an activated
sludge system is the occurrence of sedimentation failure
[Wanner, 1994], which leads to an improper separation
of the biomass and treated (purified) water. This phe-
nomenon has a negative influence on the performance
of the wastewater treatment plant, in the worst case re-
sulting in the escape of biomass into and contamination
of the environment. Ultimately, when the sedimentation
problems persist, a complete loss of treatment capacity
of the plant may occur [Wagner, 1984]. Therefore, the
settleability of the activated sludge is closely monitored,
and remedying actions are taken if a bad settleability is
detected. However, these actions treat the symptoms of
bulking without solving the underlying causes and are,
therefore, non-preventive.

Because bulking is difficult to prevent, mathematical mod-
els capable of predicting the onset of bulking are required.
Currently, apart from sludge settleability measurements,
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characterized by the sludge volume index (SVI) 1 , occa-
sional microscopic observations of the sludge composi-
tion are used to monitor the ratio of flocs to filaments.
However, the on-site equipment for accurate microscopic
observations is often not available. In addition, perform-
ing adequate microscopic observations is laborious and
time-consuming. As a result, they are performed only
periodically. Even when accurate microscopic observations
are available, their interpretation is highly subjective,
and heavily dependent on the operator’s training level.
Therefore, an image analysis procedure for the objective
determination of various activated sludge characterization
properties was developed in the K.U.Leuven/BioTeC re-
search group [Cenens et al., 2002, Jenné et al., 2003, 2006].

For the modelling of activated sludge settleability using
image analysis information with black box models, the po-
tential of dynamic autoregressive exogenous (ARX) models
is intensively investigated [Smets et al., 2006]. While the
results during model identification are promising, the vali-
dation of these models on independent data sets often fails.
Because the correct classification of digital sludge images
in bulking and non-bulking situations is more important
than the correct prediction of the actual SVI value for
automated monitoring of an activated sludge wastewater
treatment system, a classifier for digital activated sludge
images is constructed in this paper.

In Section 2, the image analysis procedure used for the
analysis of the activated sludge images is briefly described.
Next, the experimental setup is detailed in Section 3,
after which the data set used for the construction of the
classifier is described in Section 4. The assessment of the
quality of a classifier is explained in Section 5. A simple
linear classification function is trained and validated in

1 The volume (in mL) occupied by 1 g of sludge after 30 minutes of
sedimentation. Bulking occurs when the SVI exceeds 150 mL/g.
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Section 6; a nonlinear classification function is constructed
in Section 7. Finally, conclusions are drawn in Section 8.

2. IMAGE ANALYSIS PROCEDURE

A novel image analysis procedure for the objective de-
termination of various activated sludge characterization
properties has been developed in the K.U.Leuven/BioTeC
research group [Cenens et al., 2002, Jenné et al., 2006].

After acquiring a digital activated sludge image using a mi-
croscope and digital camera, an image segmentation step
separates the individual objects visible in the image from
the background. Because the activated sludge images are
obtained using phase contrast illumination, the intensity of
the background is located between that of the flocs and the
filaments. Hence, a single threshold procedure is incapable
of separating flocs and filaments from the background in a
single operation. Therefore, a series of image operations is
performed on red and blue color layers of the digital image.
In the resulting image, flocs and filaments are darker than
the background, and they can be separated using a single
threshold procedure.

Once the objects are extracted from the image, they are
classified as flocs, filaments, or fragments using a series
of size-, shape-, and intensity-related criteria in the object
recognition step.

Finally, the morphological properties of the filaments and
flocs visible in the image are characterized numerically
using nine parameters. The aspect ratio AR, equivalent
diameter Deq, roundness R, form factor FF, convexity
C, solidity S, reduced radius of gyration RG, and fractal
dimension FD characterize the floc’s size and shape, while
the filament length FL provides a measure of the number
of filamentous bacteria present in the sludge.

3. EXPERIMENTAL SETUP

Four experiments are conducted on a lab-scale continuous
activated sludge system, consisting of a bioreactor vessel
with a working volume of 5.5 L used as aeration tank and
a custom-made glass cylindrical tank with a volume of
3 L as sedimentation tank. Using a peristaltic pump, the
settled sludge is recirculated from the sedimentation to the
aeration tank. A tap at the bottom of the sedimentation
unit is used for periodic sludge wasting. The experiments
have a duration of, respectively, 70, 38, 46, and 46 days.

At the start of each experiment, the aeration tank is
filled with activated sludge obtained from the municipal
wastewater treatment plant at Huldenberg (Belgium). The
sludge is taken from the recycle of the plant, and diluted
from 20 g/L to 3–5 g/L with clear effluent.

To ensure a sufficiently high oxygen concentration in
the aeration tank, compressed air is supplied abundantly
through aeration blocks. This results in a dissolved oxygen
concentration of 5–7 mg O2/L. In addition, this operation
mixes the medium homogeneously, eliminating the need
for any stirring devices.

A synthetic influent is used to feed the system at a flow
rate of 5 L/day. This synthetic influent contains acetate as
carbon source in the first experiment, and glucose in the
subsequent experiments.
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Fig. 1. Influent COD (–·–) and SVI (—) for the four
experiments.

To induce bulking, the Chemical Oxygen Demand (COD)
loading is abruptly switched between a low (250 mg/L)
and a high value (1000 or 2000 mg/L), except in the first
experiment, where the COD loading is increased in smaller
steps (from 200 to 1000 mg/L, passing through 350 and
700 mg/L). The exact influent COD profiles are given in
Figure 1.

Using daily SVI measurements, the settleability of the
activated sludge is monitored. The obtained SVI profiles
are also provided in Figure 1. In parallel, microscopic ob-
servations are combined with the image analysis procedure
to characterize the activated sludge composition.

4. RESULTING DATA SET

After the completion of the lab-scale experiments, a data
set of 200 data points is available, distributed over 4 sets
of, respectively, 70, 38, 46, and 46 data points. These four
experiments are used to construct training and validation
data sets. Experiments 1, 2, and 3 compose the training
set, and experiment 4 is used as validation data set.

For each data point, an SVI measurement is available, in
addition to the nine parameters provided by the image
analysis procedure. Based on the observations of Smets
et al. [2006], where poor model validation results were
observed, simple nonlinear transformations (i.e.,

√
x, x2,

and ln(x)) of these image analysis parameters are added to
the input variable set. Additionally, all possible multiplica-
tive and divisive combinations of the three most important
of these nonlinear transformations (i.e.,

√
FL,

√

Deq, and
ln (Deq)) are included. This results in 52 transformations
and/or combinations of image analysis parameters as pos-
sible classifier input variables.
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Fig. 2. ROC curve construction.

5. CLASSIFIER QUALITY ASSESSMENT

The quality of a binary classifier is commonly evaluated
through its receiver operating characteristic (ROC) curve
[Green and Swets, 1966, Swets et al., 2000].

An ROC curve is constructed by varying a classification
threshold t between −∞ and +∞, and comparing the
true positives fraction (TPF, defined as the fraction of
bulking images which are correctly classified), with the
false positives fraction (FPF, the fraction of non-bulking
sludge images which are misclassified as being bulking).

Initially, for a classification threshold value t of −∞, TPF

and FPF are both equal to one, as all digital sludge images
are classified as bulking. When the threshold t is increased,
as illustrated in Figure 2(a), FPF initially decreases faster
than TPF, until both are zero. This leads to the ROC
curve shown in Figure 2(b).

For two inseparable classes with identical histograms, TPF

and FPF are always equal, resulting in an ROC curve
equal to the diagonal of Figure 2(b). If both classes are
perfectly separable, the FPF reaches zero while the TPF

is still equal to one. This results in an ROC curve following
the left and upper edges of the ROC plot.

Hence, the area under the ROC curve (AuC) numerically
expresses the separation quality of a classifier. An AuC

value of 0.5 corresponds with a worthless classification,
whereas an AuC of 1 is obtained for a perfect separation.

Instead of TPF and FPF, the sensitivity and specificity are
commonly used to express the classification performance
for a given threshold t.

sensitivity , TPF (1)

specificity , 1 − FPF (2)

The optimal classification threshold t is commonly ob-
tained from the ROC curve as the value of t for which
sensitivity and specificity are equal. If a misclassification
biased towards preventing either false positives or false
negatives is required, the classification threshold t can be
adjusted downwards or upwards, respectively.

6. LINEAR CLASSIFICATION FUNCTION

6.1 Description

The simplest method for the classification of sludge images
corresponding with a bulking situation, is to impose a
single threshold on the classification parameter x.

ŷ = sign (x − t) (3)

All images for which the classification parameter x exceeds
the specified threshold t yield a ŷ of +1, and are classified
as bulking. A value of -1 for ŷ predicts a sludge image
obtained from non-bulking sludge.

To decrease the misclassification rate, the single threshold
is generalized to a double-threshold procedure.

ŷ = sign
(

sign (x − tl) + sign (x − tu)
)

(4)

An activated sludge image with a classification parameter
value x lower than the lower threshold tl is identified as
non-bulking, with a ŷ value equal to -1. Similarly, a value
of x higher than the upper threshold tu leads to a ŷ value
of +1, and the classification of the image as bulking. If
the classification parameter x is located in the uncertainty
area between both thresholds tl and tu, ŷ is exactly zero,
and no classification is made.

As can be seen, the only parameter(s) in the linear classi-
fier is/are the threshold values t, or tl and tu, for the single-
threshold and double-threshold procedure, respectively.

6.2 Construction

For the selection of the optimal classification variable
x, each of the available image analysis parameters is
considered. After constructing the ROC curve for all
potential classification variables, the corresponding AuC is
computed. A maximal AuC value of 0.97, indicating a very
good classifier performance, is obtained for

√

FL · Deq,
which is therefore retained as the optimal classification
variable x. The corresponding ROC curve is shown in
Figure 3(a).

The single classification threshold t is obtained from Fig-
ure 3(a) as the value for which sensitivity and specificity
are both equal to 91%. As listed in Table 1, this threshold
value leads to a misclassification of 9% of the training
images, with the false positives (i.e., the images obtained
from non-bulking sludge which are classified as bulking)
being more frequent than the false negatives (i.e., the
bulking situations where a good settleability is predicted).
Because the potential consequences of a missed bulking
event are more severe than those of a misclassified good
operation, as explained in Section 1, this is a valuable
result.
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Fig. 3. ROC curves for the linear classification based on
√

FL · Deq for (a) training (AuC = 0.97) and (b) validation
(AuC = 0.96).

Table 1 also lists the training results for the double-
threshold procedure. Similar to the determination of the
optimal single threshold t, the ROC curve is used for the
determination of the double-threshold values tl and tu. It
can be seen that a sensitivity and specificity of 95% lead to
a misclassification of approximately 5% of the images are
misclassified. Fewer than 15% of the samples are located
in the uncertainty area. Similar to the single-threshold
results, the false positives are more frequent than the false
negatives. Increasing the sensitivity and specificity to 99%
results in a larger uncertainty area, in which 22% of the
training batches are located. However, the misclassification
rate drops to about 1%, with an equal number of false
positives and false negatives.

It is clear that increasing sensitivity/specificity values lead
to smaller misclassification rates, while the fraction of
unclassified images, located in the uncertainty area, in-
creases. Depending on the required operating performance,
appropriate sensitivity and specificity values should be
selected.

6.3 Validation

The linear classification function is validated on the 46
measurements of experiment 4, the validation data set.
First, the ROC curve for the validation set is constructed
(Figure 3(b)), and an AuC of 0.96 is obtained. This very
high AuC value is nearly identical to the training AuC of
0.97 and indicates a very good separability of the bulking
and non-bulking images in the validation set based on the
√

FL · Deq parameter.

However, a high AuC is no guarantee for a good val-
idation, as the selectivity and specificity for a specific
threshold t might differ significantly between training and
validation. Therefore, Table 1 compares the misclassifica-
tion and uncertainty rates during training and validation
for both single- and double-threshold classification. While
the misclassification rates for the single threshold during
validation are slightly higher than those observed during
training, the difference is mainly caused by a higher false
positive rate; the false negative rate for both training and
validation is identical. For the double-threshold classifica-
tion, the validation misclassification and uncertainty rates
are nearly identical to the training results.

This leads to the conclusion that the simple linear classi-
fication function constructed in Section 6.2 is capable of
accurately labelling the activated sludge images as either
bulking or non-bulking, and is therefore suited for use
in an automated activated sludge wastewater treatment
monitoring system.

7. NONLINEAR CLASSIFICATION FUNCTION

7.1 Description

To further improve the quality of the linear classifier con-
structed in Section 6, the potential of a nonlinear clas-
sification function is investigated. Hereto, a least-squares
support vector machine [LS-SVM, Suykens et al., 2002]
structure is selected.

ŷ = sign

(

N
∑

n=1

(αnynK (x,xn) + b) − t

)

(5)

For a training set of N samples xn with corresponding class
labels yn, those samples with nonzero αn values are called
the support vectors. The parameter b is a real constant.

An LS-SVM is capable of solving highly nonlinear classi-
fication problems using the kernel function K, for which
the most common choice is the Gaussian (or radial basis
function) kernel, with kernel width σ2.

K (x,xn) = exp

(

−||x− xn||2
σ2

)

(6)

Similar to the linear classifier, the misclassification rate of
the LS-SVM can be decreased by using a double-threshold
procedure.

In contrast with the linear classification function described
in Section 6, the construction of an LS-SVM classifier re-
quires the identification of the support values αn, constant
b and kernel width σ2 in addition to the determination of
the single- or double-threshold values, respectively t, and
tl and tu. Furthermore, a regularization parameter γ must
be identified for the penalization of misclassifications.

For the identification of these parameters, the LS-SVMlab
MATLABr toolbox [Suykens et al., 2002] is used. The
optimal model and regularization parameters are obtained
through optimization in a Bayesian evidence framework
[Van Gestel et al., 2002].
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Table 1. Linear classification results for training and validation.

Training

Sensitivity & specificity 91% 95% 99%

Misclassification 14 (9.1%) 8 (5.2%) 2 (1.3%)
false positive 9 (5.8%) 5 (3.2%) 1 (0.7%)
false negative 5 (3.2%) 3 (2.0%) 1 (0.7%)

Uncertain — 21 (13.6%) 34 (22.1%)

Validation

Sensitivity & specificity 91% 95% 99%

Misclassification 6 (13.0%) 4 (8.7%) 1 (2.2%)
false positive 5 (10.9%) 3 (6.5%) 1 (2.2%)
false negative 1 (2.2%) 1 (2.2%) 0 (0.0%)

Uncertain — 4 (8.7%) 10 (21.7%)

Table 2. LS-SVM classifier input variables.

FL FL
2

√

FL · Deq

√

FL

√

Deq

√

FL · ln (Deq)

ln (FL) ln (Deq) ln (Deq) ·
√

Deq

/√

FL

7.2 Construction

In a first step, the optimal subset of the 52 available image
analysis parameters and their nonlinear transformations
and combinations is identified. Via automatic relevance
detection in a Bayesian framework [Suykens et al., 2002],
47 input variables are retained.

This very high number of selected input variables is
retained because an approximately equal importance is
assigned to all available image analysis parameters and
their simple nonlinear transformations and combinations.
Therefore, the number of candidate input variables is
reduced manually, and the variable selection is repeated.
This results in an input set consisting of the variables listed
in Table 2.

The optimal input variables are all derived from the fil-
ament length FL and/or the equivalent diameter Deq.
These parameters provide information on both the amount
of filamentous bacteria present in the activated sludge and
the shape of the sludge flocs, factors heavily influencing
the sludge settleability. However, because these nonlinear
transformations are arbitrarily chosen, a physical interpre-
tation is impossible.

After identification of the LS-SVM parameters αn, b, σ2

and γ, an AuC of 0.99 is obtained, indicating a nearly
perfect separation of the bulking and non-bulking images.
The corresponding ROC curve is depicted in Figure 4(a).

Finally, the single and double classification thresholds t,
tl and tu are determined, and the classifier performance is
summarized in Table 3. For the single-threshold procedure,
a sensitivity and specificity of 94% are obtained. This leads
to a misclassification rate of 6% of the training data. As
was the case with the linear classifier in Section 6, the false
positives are approximately twice as frequent as the false
negatives.

A selectivity and specificity of 95% is achieved using a
double threshold. Here, 4% of the training images are
located in the uncertainty area, and 5% are misclassified.
Again, the false positives outnumber the false negatives, a

valuable result. Increasing the selectivity and specificity to
99% decreased the misclassification rate to 1%. However,
the uncertainty area expands, and contains 14% of the
training images. As a result of the very small amount
of misclassifications, the observed false positive and false
negative rates are equal.

7.3 Validation

The obtained LS-SVM classifier is applied to the measure-
ments of the validation set. For the validation data set,
the AuC for the ROC curve given in Figure 4(b) is 0.97,
only slightly lower than the training AuC of 0.99. This
indicates a very good separability of the bulking and non-
bulking activated sludge situations.

As shown in Table 3, the validation misclassification and
uncertainty rates are identical to the training values for
both single- and double-threshold classifiers, provided the
limited resolution due to the relatively small data set size.

When comparing the training misclassification and un-
certainty rates of the nonlinear LS-SVM classifier with
those of the linear classifier (Table 1), it is evident that
the nonlinear classifier provides similar misclassification
rates. The number of uncertain classifications, however, is
significantly reduced.

It is concluded that the identified LS-SVM classification
function provides an accurate identification of bulking and
non-bulking situations using nonlinear transformations
and combinations of two image analysis parameters: the
filament length FL and equivalent diameter Deq.

8. CONCLUSIONS

In this paper, one linear and one nonlinear classifier for
activated sludge digital images is constructed. Using image
analysis parameters as inputs, these classifiers identify
bulking and non-bulking sludge conditions.

The simple linear classifier provides a very good separa-
tion between both classes during training. Using a single-
threshold classification, only 10% of the training samples
are misclassified. With the introduction of an uncertainty
area by means of a double-threshold classification, the
misclassification rate decreases to 5% and 1% for, re-
spectively, a sensitivity and specificity of 95% and 99%,
with corresponding uncertainty rates of 14% and 22%.
Of the misclassifications, the number of false positives
(i.e., the classification of non-bulking sludge as bulking) is
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Fig. 4. ROC curves for the nonlinear classification for (a) training (AuC = 0.99) and (b) validation (AuC = 0.97).

Table 3. LS-SVM classification results for training and validation.

Training

Sensitivity & specificity 94% 95% 99%

Misclassification 9 (5.8%) 8 (5.2%) 2 (1.3%)
false positive 6 (3.9%) 5 (3.2%) 1 (0.7%)
false negative 3 (2.0%) 3 (2.0%) 1 (0.7%)

Uncertain — 6 (3.9%) 22 (14.3%)

Validation

Sensitivity & specificity 94% 95% 99%

Misclassification 3 (6.5%) 2 (4.3%) 1 (2.2%)
false positive 2 (4.3%) 2 (4.3%) 1 (2.2%)
false negative 1 (2.2%) 0 (0.0%) 0 (0.0%)

Uncertain — 2 (4.3%) 7 (15.2%)

higher than the number of false negatives (i.e., the bulking
situations where a good settleability is nevertheless pre-
dicted). For use in an automated monitoring tool, this is
a valuable result, as false negatives have potentially worse
consequences.

The second classifier, using a nonlinear LS-SVM model
structure with nine input variables, achieves near perfect
classification during training. With a single threshold, a
misclassification rate of 6% is achieved. With a double
threshold, and 95% sensitivity/specificity, 5% of the train-
ing samples are misclassified, while 4% are located in
the uncertainty area. Increasing the sensitivity/specificity
to 99%, these values change to 1% misclassification and
22% uncertain classifications. Again, the false positives
outnumber the false negatives.

It is therefore concluded that the nonlinear LS-SVM
classification function outperforms the linear classifier.
While both models exhibit identical misclassification rates
in the double-threshold case, the LS-SVM achieves a
lower uncertainty rate. However, this better classification
performance requires the identification of a substantial
amount of model parameters, while the linear classifier is,
except for the threshold values, parameterless.
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R. Jenné, E.N. Banadda, N. Philips, and J.F. Van Impe.

Image analysis as a monitoring tool for activated sludge
properties in lab-scale installations. Journal of Envi-
ronmental Science and Health. Part A–Toxic/Hazardous
Substances and Environmental Engineering, A38(10):
2009–2018, 2003.
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