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Abstract: In this paper, a predictive control scheme for a class of nonlinear systems is proposed which 
combines the model predictive control (MPC) and sliding mode control (SMC).We call this new algorithm 
sliding mode model predictive control (SMMPC). In this algorithm the pre-designed switching surface is 
predicted via MPC strategy. First the system nonlinearity is handled by converting the state-dependent 
state-space representation into the linear time varying representation, and then this model is descritised. 
Finally the control sequence may be found by solving an open-loop optimal control problem in which the 
cost function weights the norm of pre-designed sliding surface and control law. Simulation results 
illustrate that the closed-loop system has desired properties such as robustness and chattering elimination.  

 

1. INTRODUCTION 

The model predictive control (MPC), also known as receding 
horizon control or moving horizon control, is becoming 
popular in the recent years and is used extensively in industry. 
It was first introduced by Richalet et al (Richalet et al., 1978). 
The technique has been further developed by Clarke (Clarke 
et al., 1987), Bitmead (Bitmead et al., 1991) and Ronald 
(Ronald, 1992). Extensions to the nonlinear case are due to 
Abu (Abu el Ata-Doss, 1992).  

On the other hand, sliding mode control (SMC) is an effective 
robust control strategy since it appeared in 1950s, however, 
Chattering is its undesired phenomenon which can excite the 
high frequency oscillation of controlled system. Hence the 
application of the SMC is limited. 

To solve this problem we propose an approach that uses an 
advantageous combination of SMC and MPC. In this 
approach closed-loop system obtains desired performance by 
choosing appropriate value for weighting matrices as tuning 
knobs in MPC cost function and chattering is eliminated due 
to an inexplicit use of “sign” term in the proposed control 
signal. In addition robustness is guaranteed because it is an 
inherent property of SMC.  

In the proposed predictive control, first sliding surface is 
designed off-line to make the sliding mode asymptotically 
stable and also control law to steer the states to reach the 
sliding surface. Second the state-dependent state-space 
representation converts to the linear time varying 
representation, then the linear time varying state-space model 
is discretised using Euler integration method (Dutka, 2003). 
Finally, by predicting system states, the sliding surface is 
predicted and the control sequence can be found by solving an 
open-loop optimal control problem which the cost function 
weights the norm of pre-designed sliding surface and control 
law.  

 

The remainder of this paper is organized as follow: Section 2 
describes the nonlinear predictive control (Dutka, 2003). The 
new sliding mode model predictive algorithm is proposed in 
section 3. Section 4 gives the simulation results.      

                    2. NONLINEAR PREDICTIVE CONTROL 

Consider the following nonlinear continuous time system: 

))t(x(h)t(y,)t(u))t(x(g))t(x(f)t(x =+=&              (1) 

Suppose the system (1) is arranged into state and control 
dependent linear form of the state-space model, so the 
nonlinearity is handled by converting the state-dependent 
state-space representation into the linear time varying 
representation: 

)t(x))t(x(C)t(y
)t(u))t(x(B)t(x))t(x(A)t(x

=
+=&            (2) 

 Where the matrices elements may be constant or state-
dependent. Since in MPC algorithm, N (prediction horizon) 
step ahead control signal is generated in each sampling time, 
system (2) should be discretised by using Euler integration 
method: 

nnn

nnnn1n

x)x(Cy
u)x(Bx)x(Ax

=
+=+                                          (3) 

In the model predictive control strategy, the vector of current 
and future control is calculated in each sampling time. The 
first element or current control is used as the plant input 
manipulation and the remaining parts are employed to predict 
future trajectory of the states of the system in the next 
sampling time, it is because of the fact that deriving the 
nonlinear predictive control algorithm is based on the 
assumption that the future trajectory of the states must be 
known. 
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 For state-space model (3), the MPC cost function is defined 
as: 
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 Where is a vector of set point of size . 
and are symmetric weighting 

matrices, and are positive integer numbers, greater or 
equal to one. 
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 Current and future values of the control input and future 
values of states and outputs , construct the following 
vectors: 
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Vector form of the cost function (4) with notation (5) is: 

uN,n
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Where and . Next 

the future states prediction may be obtained from the 
following equation ( :  

)q,...,q(diagQ yN1=
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Hence to obtain the state prediction at time instant jn + , the 
matrices  and  should be 

calculated. Now consider the following notation: 
1jnn A...A −+ )uN,jmin(1nn B...B +−
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Then (7) is simplified by introducing (8): 
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From (5) and (9) the future states prediction vector is 
obtained: 

uN,nyN,nnnyN,nyN,1n UxAX Ψ+Ω=+
        (10) 
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From (3) it is clear that: 

 jnjnjn xCy +++ =                                                               (11) 

By Combining (5) and (11), the following relationship 
between vectors and is obtained: 

yN,1nX + yN,1nY +

yN,1nyN,nyN,1n XY ++ Θ=          (12) 

Where 

)C,...,C,C(diag yNn2n1nyN,n +++=Θ  

Finally replacing in (12) by (10), the output 

prediction is obtained: 
yN,1nX +

uN,nyN,nnnyN,nyN,1n UTxAY +Φ=+
        (13) 

Where 

yN,nyN,nyN,nyN,nyN,nyN,n T, ΨΘ=ΩΘ=Φ  

Substituting in the MPC cost function by (13), the 

control vector is calculated by minimizing (6): 
yN,1nY +

)xAf(Re

QT)RTQT(U

nnyN,nyN,1n

T
yN,n

1
yN,n

T
yN,nuN,n

Φ−

×+=

+

−

       (14) 

Note that as it was mentioned before, all elements of (14) are 
going to be used. The first element for the input manipulation 
of the controlled object, and the others for predicting the 
future states, to calculate the matrices Q and T in the next 
sampling time. 

3. A NOVEL SLIDING MODE MODEL PREDICTIVE   
CONTROL (SMMPC) 

Consider the system (3) again. Firstly designing sliding 
surface )x(ss nn = to make the sliding mode asymptotically 
stable and finding variable structure control law to )x(uvsc n
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steer the states reach the sliding surface from the initial state 
in finite horizon. 

For SMMPC the cost function is defined as (Zhou, 2001): 

)}uvscu(

r)uvscu{(sqsJ

1in1in

sN

1i

uN

1i
i

T
1in1inini

T
inSMMPC

−+−+

= =
−+−+++

−

×∑ ∑ −+=  (15) 

iq and are weighting matrices, is the sliding surface 
prediction horizon and is the control horizon. Minimizing 
cost function (15) means when the states reach the sliding 
surface, the control signal is equal to the pre-designed variable 
structure control law. 
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Now it is possible to write the cost function (15) in the 
following vector form:  

)UvscU(R

)UvscU(SQSJ

uN,nuN,n

T
uN,nuN,nsN,1n

T
sN,1nSMMPC

−

×−+= ++  (17) 

Where  and . )q,...,q(diagQ sN1= )r,...,r(diagR uN1=

Before minimizing the cost function (17), vectors  

and should be written in state and control 

dependent linear form. We do this in continue. 

sN,1nS +

uN,nUvsc

Suppose the pre-designed sliding surface can be arranged into 
the state-dependent linear form as: 

nnn xcs =            (18) 

By repeating the sliding surface in the future sampling times, 
the sliding surface prediction vector is constructed: 

sN,1nsN,nsN,1n XS ++ Θ=           (19) 

Where 

)c,...,c,c(diag sNn2n1nsN,n +++=Θ  

sN,1nX + can be expressed as (20) in the similar way of (10): 

uN,nsN,nnnsN,nsN,1n UxAX Ψ+Ω=+         (20) 

Where and are obtained by replacing by 

 in (10). 
sN,nΨ sN,nΩ yN
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By Replacing (20) in (19): 
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Where 
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In continue we do the same procedure for in (17). 
uN,nUvsc

Consider the general form of variable structure control law: 

)s(signuvsc nnnn β+α=          (22) 

Where nα and nβ are state-dependent components. Suppose 
(22) can be written as: 

nnn xeuvsc =            (23) 

By repeating (23) in the future sampling times, the sliding 
mode variable structure control vector is constructed as: 
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By replacing from (20) in (24): 
sN,1nX +

uN,nuN,nnuN,nnN,nuN,n Ux)DA(Uvsc ε++ξ=         (25) 

 Where 

  
sN,nuN,1nuN,nsN,nuN,1nN,n E,E Ψ=εΩ=ξ ++

Finally by replacing (21) and (25) in the cost function (17) 
and solving the minimization problem, the control input 
vector is obtained: 
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(26)   

By changing the matrices Q and R the performance is tuned. 
In order to make the cost function (17) richer, we add the new 
term as follow:  
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Where is the control signal which is obtained in the 

previous sampling time and P is another tuning knob like R 
and Q. The control input according to (27) is:   

uN,nUpre

                                                                              (28)                        

In the next section results of the proposed algorithm are 
shown. 

}UpreP
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                           4. SIMULATION RESULTS 

In order to illustrate the proposed algorithm, consider the 
following system (Khalil, 2003): 

b,a,
)t(uxxx
)xsin(xxx

21
1

2
222

21121 <θ<θ
⎩
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++θ=
θ+=

&

&              (27)                                      

Where and are uncertain parameters and only their 
upper band (a and b) are known. Sliding surface and sliding 
mode variable structure control signal for (27) according to 
uncertainties and , are designed:  

1θ 2θ

1θ 2θ

2
21

21

12

bxx)a1(a)x(

)ssgn()x(x)a1(xuvsc
x)a1(xs

++=β

β−+−−=
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                              (28) 

Suppose a=1 and b=2. System (1) is descritised with the 
sampling time . In SMMPC algorithm, the 
sliding surface horizon and control horizon are equal to 7 and 
weighting matrices are constant and chosen as:  

sec01.0Ts =

])1000,1000,1000,1000,2000,4000,8500[1.0(diagQ ×=  

])1.0,1.0,1.0,1.0,1.0,1.0,2.1[1.0(diagR ×=  

])0,0,0,0,0,0,2[1.0(diagS ×=  

The results of the SMMPC algorithm are shown in Fig. 1. In 
order to make comparison, we plot the discrete SMC results 
simultaneously. 
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Fig. 1.a. State-space trajectory (Q, R and P are constant) 
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Fig. 1.b. Plot of control signal (Q, R and P are constant) 
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Fig. 1.c. Plot of States (Q, R and P are constant) 

From the above simulation, we can see that the SMMPC 
algorithm can predict the sliding surface very fast and states 
regulate well, but the energy of control signal is 1.1021 in 
SMMPC and is 0.0284 in SMC. To decrease this energy in 
SMMPC, we do not select the constant value for weighting 
matrices and they change according to states distance from the 
sliding surface. At first Q is selected greater to force the states 
reach the sliding surface as fast as possible and after reaching 
the sliding surface, Q is decreased and we tune these matrices 
again to get the desired performance. The related simulation 
results are shown in Fig. 2. 
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Fig. 2.a. State-space trajectory (Q, R and P are variable) 
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Fig. 3.b. Plot of control input ( 8,7 21 <θ<θ ) Fig. 2.b. Plot of control input (Q, R and P are variable) 

In this case the energy of SMMPC decreases to 0.0572. Fig. 2 
shows that there is a trade off between the sliding surface 
prediction speed and the quality of control signal. As a rule of 
thumb, variation in Q changes the sliding surface prediction 
speed and changes in R and P lead to changes in quality of a 
control signal.  

We can see that despite the increase in uncertainty bands of 
parameters, speed and quality of sliding surface prediction do 
not change in SMMPC algorithm, while chattering increases 
in SMC algorithm.  
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