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Abstract: This paper presents a simple and fast solution to the problem of finding the time
variation of n contact forces that keep an object under equilibrium while one of the n contact
forces is removed/added from/to the grasp. The object is under a constant perturbation force,
like for instance its own weight. It is assumed no acceleration of the object during the regrasp
operation, as well as the knowledge of the starting and ending grasp configurations. The
procedure returns the set points of the n contact forces for a feed-forward control system of a
manipulator device in a regrasping action. The procedure was implemented and an illustrative
numerical example is included in the paper.

1. INTRODUCTION

The search for flexible end-effectors and the development
of grasping and manipulation strategies according to dif-
ferent criteria has become a growing research area during
the last two decades [2, 3, 7, 10].

One of the issues within this research field lies is the
regrasping of an object, i.e. the variation of the contact
points on the grasped object while some grasp proper-
ties are kept. This particular task implies finding the
initial/final grasp contact points, determining the finger
movements, and computing the proper forces to be ap-
plied by the fingers when a contact is removed or a new
contact is established in order to keep the equilibrium
conditions and to satisfy the dynamic constraints of the
system [12, 11]. Regrasping operations are typically needed
when the pick-up grasp configuration is not compatible
with the actions to be done with the object or with
the object placement itself, for instance due to physical
constraints in the environment, due to the non-holonomic
constraints of the finger contacts, or due to the limits in
the articulation ranges of the grasping device.

Different approaches have been presented in the regrasping
problem. A detailed description including a discussion
about the use of two manipulators can be found in [6].
Some relevant works are those of Tournassoud et al. [12],
who proposed a system based on polyhedral models for
manipulators equipped with parallel jaw grippers, and
Kerr et al. [5] who used a multi-finger hand (this type of
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end-effectors are expensive and rarely found in industrial
manipulators, but are useful in non repetitive tasks in
unstructured environments due to their high dexterity).
Recent works in regrasp [1, 8, 9] are focused on algorithms
to determine the sequence of grasps configurations to go
from an initial state to a desired final state, but they did
not deal with the forces needed to perform the regrasp,
which is the central point of this paper. The computation
of optimal grasping forces in a given grasp configuration
is presented in [4].

After this brief introduction the paper is organized as
follows. In Section 2 the problem to be solved is described
and formalized, followed by a particularization of the
problem for a planar objects in Section 3. In Section 4
the problem for planar objects is analyzed, the behavior
of the system dynamics is characterized, and a graphical
tool used to find the solution of the problem is introduced.
The proposed solution for planar objects is described in
Section 5. In Section 6 the solution for planar object is
generalized for 3D objects. An example is presented in
Section 7 to illustrate the proposed approach. Finally,
the last section of the paper gives some conclusions and
describes ongoing and future works.

2. PROBLEM STATEMENT

The problem to be solved can be summarized as follows:
Given a n contact point grasp of a 3D object that balances
an external perturbation force (it may be the own object
weight), we want to remove one of the contacts while
keeping, during the action, the balance of the external
force, or, as inverse situation, given a n − 1 contact point
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grasp add a nth contact point such that the additional
finger helps in the balance of the external perturbation.
Then, the problem to be solved is the determination
of the time variation of the force set point functions
for the contact forces that allows the nth contact to
be removed/added without loosing the force equilibrium
during the process.

This problem is found in regrasping manipulation of ob-
jects, when a finger is removed from one contact point
on the object surface to be place in another one. In this
particular case the stated problem appears twice, first
when retreating the finger and second when replacing it
on the desire new contact point.

3. PARTICULARIZATION OF THE PROBLEM FOR
PLANAR OBJECTS

Before solving the general problem, an initial study is done
for the case of a planar object in transition from three con-
tact point to two contact point grasp. The following basic
nomenclature will be used throughout the paper.

SA, SB : two grasp states in equilibrium (forces applied
at the contact points balance any external force)

CM : center of mass of the object.
fext : external force acting on the object (it may be the

own object weight).
Pi : contact point i on the object boundary.
ri : location of Pi with respect to CM.
f i : force applied on Pi.
Ci : friction cone at Pi (set of possible forces f i applicable

at Pi).
θi : angle between f i and the object normal direction at

Pi.
τ i : torque around CM produced by f i applied on Pi.
wi : generalized force wi = (f i, τ i).
Π0 : force plane in the wrench space (i.e. null torque

plane).
Πi : plane in the wrench space containing all wi generated

at Pi.
SΠi : subset of Πi containing wi generated at Pi due to

forces f i inside Ci.
SΠ′

i : representation of SΠi with all the force heads on
the cone origin.

Let SA be a grasp with three contact points Pi, i = 1, 2, 3,
on the object boundary (Figure 1a) and SB be another
grasp with only two contact points, which are points P1

and P2 from SA (Figure 1b). It is assumed that in SA and
SB the finger forces f i applied at Pi balance an external
perturbation force fext, i.e. the summations of the forces
and moments applied on the object are null.

The problem to be solved can now be stated as the search
of the time variation of the finger forces f1(t) and f2(t)
that balance fext while f3(t) varies from its value in SA

to zero in SB or vice versa. f1(t), f2(t) and f3(t) are the
setpoints values for the finger control system during the
manipulation action.
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Fig. 1. Grasp states: a) initial configuration, b) final
configuration.
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Fig. 2. Lines Li of constant torque τi due to forces f i

applied at Pi.

4. PROBLEM ANALYSIS

4.1 Torques generated by contact forces

A force f i applied at Pi produces, with respect to the
object center of mass CM, a torque τi = f i × ri, where ri

describes the position of Pi with respect to CM.

Consider a line Li parallel to ri (see Figure 2). Any f i

applied at Pi such that the vector f i represented with the
tail at Pi has its head on Li produces the same torque
τi, thus we refer to the lines Li as iso-torque lines. The
value of τi associated to a given Li is the product of ‖ri‖
(which is constant for a given point Pi) times the distance
di between Li and Pi, thus τ i linearly varies with respect
to di. This linearity means that, in the wrench space, all
the wrenches wi = (f i τi) (i.e. the wrenches produced by
a force f i applied at Pi) define a plane Πi (see Figure 3).
Since Pi is a contact point on the object boundary, f i

cannot have any direction, it is constrained to lie inside the
friction cone Ci, and therefore only a subset of Πi, called
SΠi, can be actually generated. SΠi is the projection along
the τ -axis of Ci over Πi (Figure 3).
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Fig. 3. Ci (light gray cone), and subset SΠi (dark gray
cone) of Πi (Ci and SΠi stretch out from Pi to
infinity).

4.2 Wrench loops

The system equilibrium under wrenches wi in the 3D
space due to forces f i applied on Pi, would be graphically
analyzed and characterized. The equilibrium condition is
that

∑

wi + wext = 0, being wext the wrench produced
by fext; note that if fext is the object weight then
wext = (fext, 0). Graphically, this condition can be seen as
a closed loop path in the 3D wrench space drawing all the
vectors wi and wext with the tail attached to the head of
another one. From now on, this loop will be called “wrench
loop”, and the set of all the possible wrench loops produced
by the possible wrenches generated at the contact points
will be called “Generic Wrench Loop” (GWL). Since the
grasp states SA and SB are assumed to be in equilibrium,
the GWL is always non null, and it can be graphically
constructed as follows (remind that wi can be represented
as free vectors so they can be translated in the wrench
space with no loss of significance).

(1) Consider first the vector representing the external
wrench wext = (fextx

fexty
0) (the vector with the

tail at the origin in Figure 4).
(2) The second vector to be considered is the wrench

w1 due to f1 applied on P1. Since f1 ∈ C1 then
w1 ∈ SΠ1, thus the entire SΠ1 is represented with
its vertex on the head of fext (Figure 4).

(3) The third vector to be considered in the path loop
is the wrench w2 due to f2 applied on P2. As in the
previous step, f2 ∈ C2 then w2 ∈ SΠ2, and the entire
SΠ2 can be represented with its vertex on the tail of
fext (i.e. the origin of the wrench space)(Figure 4);
this links the tail of the vectors w2 with the tail of
fext, in order to properly link the wrench vectors
(i.e. make the head of w2 matching the tail of fext),
the vectors in SΠ2 are graphically represented with
their heads on the vertex of SΠ2, defining in this way
the cone SΠ′

2 symmetrical of SΠ2 with respect to
the vertex, as it is illustrated in Figure 5 (for clarity
purpose, from now on the plane Π0 is not represented
in the figures).

LSB = SΠ1 ∩ SΠ′
2 is the set of points that define

all the combinations of w1 and w2 that balance fext

(see the enlargement in Figure 5), i.e. they indicate

τ
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SΠ2
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Fig. 4. fext and two friction cones SΠ1 and SΠ2.
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Fig. 5. GWL for SB, the enlargement shows LSB .

the combinations of forces f1 and f2 applied at P1

and P2 that balance fext and therefore a valid set
of forces to reach the equilibrium in SB . We refer
to LSB as the equilibrium loci for SB . Note that f2
could be considered in the Step 2 and then SΠ′

1 would
be considered in this step.

(4) Finally, the vector w3 due to the f3 applied at P3 is
added. Assuming that the value of w1 is known (it
is a point inside SΠ1), SΠ3 can be represented with
its vertex on to the head of the given value of w1

inside SΠ1. Doing this, LSA = SΠ3 ∩ SΠ′
2 is the set

of points that define all the combinations of w2 and
w3 that balance fext for the given w1, generating a
wrench loop and allowing therefore the equilibrium of
SA (see Figure 6).

5. PROPOSED SOLUTION

The graphical representation of GWL is used now to
determine the temporal evolution of w1, w2, and w3, to
change from SA to SB . Since the sets SΠi are convex, the
simplest way to change the wrenches wi from their value in
SA to their value in SB assuring that wi ∈ SΠi is to make
them follow a straight line, while keeping a closed wrench
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Fig. 6. GWL for SA showing the three friction cones SΠ1,
SΠ2 and SΠ3.

loop. Thus, consider that w1 varies on a straight segment
Path1 ∈ SΠ1 and w2 on a straight segment Path2 ∈ SΠ2.

The plane defined by Path1 and Path2, constrains w3 to
lie on the intersection of this plane with SΠ3 while the
vertex of SΠ3 slide on Path1 when w1 change from SA to
SB . This intersection defines Path3, which fix a constant
direction for w3 while its module decreases from the initial
value in SA to zero in SB . In order to keep a closed wrench
loop (i.e. the equilibrium), the three paths can be followed
changing in a synchronized way the magnitudes of w1, w2

and w3, this makes the triangle defined by the three paths
to decrease from the initial state SA up to disappear in
SB keeping the same shape. Figure 7 shows an example
of the vectors w1, w2 and w3 in an intermediate state
(white vectors) while changing from SA to SB , the final
vectors w1 and w2 in SB (white dashed line vectors), and
the Path1, Path2 and Path3.

Using the supraindex A and B to indicated the values of
wi in states SA and SB respectively, and letting T (t) be
a function that smoothly varies in time between one and
zero, the time variations of wi according to this behavior
can be expressed as,

w1(t) = wB
1 + (wA

1 − wB
1 ) T (t) (1)

w2(t) = wB
2 + (wA

2 − wB
2 ) T (t) (2)

w3(t) = wA
3 T (t) (3)

Note that w1 and w2 move, respectively, along the straight
segments Path1 and Path2 as linear functions of T (t) while
w3 decreases to zero keeping always the same direction.

6. GENERALIZATION TO 3D OBJECTS

The proposed solution can be generalized for the case of
3D objects considering 3-dimensional forces in

f i(t) = fB
i + (fA

i − fB
i ) T (t) i = 1..n (4)

or considering 6-dimensional wrenches in

wi(t) =

(

f i (t)
ri × f i (t)

)

= wB
i + (wA

i − wB
i ) T (t) (5)

fx
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w2(t)

w3(t)

Path1

Path2

Path3

CM

LSA

LSB

SA

SB

θ1(t)

θ2(t)

Fig. 7. GWL for SA and SB, including the initial forces in
SA, the final forces in SB , and the paths Pathi for the
three wrenches wi.

which are equivalent (applying the distributive property
of the cross product). In order to prove that the solution
given by equations (4) and (5) can be used as a general
solution for n contact points on a 3D object it must
be proved that: first, it satisfies the general equilibrium
condition

n
∑

i=1

wi (t) +

(

fext

0

)

= 0 for tA ≤ t ≤ tB (6)

and second, that f i(t), i = 1..n, lie inside the friction
cone at the respective contact points.

To prove the first statement the equilibrium conditions at
the initial grasp state SA and the final grasp state SB are
used. These conditions can be written as

n
∑

i=1

wi (tA) +

(

fext

0

)

=

n
∑

i=1

wA
i +

(

fext

0

)

= 0 (7)

and
n

∑

i=1

wi (tB) +

(

fext

0

)

=

n
∑

i=1

wB
i +

(

fext

0

)

= 0 (8)

which can be rewritten as
n

∑

i=1

wA
i =

n
∑

i=1

wB
i = −

(

fext

0

)

(9)

Replacing wi(t) in equation (6) by the expression given in
equation (5),

n
∑

i=1

[wB
i + (wA

i − wB
i ) T (t)] +

(

fext

0

)

= 0 (10)

rearranging equation (10)
n

∑

i=1

wB
i + (

n
∑

i=1

wA
i −

n
∑

i=1

wB
i ) T (t) +

(

fext

0

)

= 0 (11)

and replacing the summations in equation (11) using
equation (9)
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−

(

fext

0

)

+ (−

(

fext

0

)

+

(

fext

0

)

) T (t) +

(

fext

0

)

= 0

(12)
that gives zero ∀t, which is the first prove needed.

For the second proof consider that f i(t) is a vector
function defining in the force space points on the straight
line defined by fA

i and fB
i , now, since fA

i and fB
i belongs

to the friction cone and the friction cone is a convex space,
all the points defined by f i(t) lie inside the friction cone.

7. EXAMPLE

The proposed approach has been implemented and we
describe here an example in 2D to illustrate how it works.
The problem to be solved is the force transition for the
object and the states SA and SB shown in Figure 1.

Given the external force fext = [−1.5 − 3.5], and the
contact points P1 = [−4 −4], P2 = [4 −5] and P3 = [0 8],
the applied forces that produce equilibrium at SA and SB

are:

fA
1 = [3.7897 3.0034]

fA
2 = [−3.0096 4.4156]

fA
3 = [0.7199 − 3.9190]

fB
1 = [1.8557 2.4555]

fB
2 = [−0.3557 1.0445]

With these forces and contact points the following
wrenches are generated:

wA
1 = [3.7897 3.0034 3.1448]

wA
2 = [−3.0096 4.4156 2.6145]

wA
3 = [0.7199 − 3.9190 − 5.7593]

wB
1 = [1.8557 2.4555 − 2.3930]

wB
1 = [−0.3557 1.0445 2.3930]

In order to produce a smooth transition at the beginning
and at the end of the finger remove action the function T (t)
was defined by a spline with five control points (Figure 8),
which assures dT (t)/dt = 0 at the initial time (t = 0) and
at the desired final time (t = 4).

Using equations (1), (2) and (3), the functions w1(t),
w2(t) and w3(t) that allow the object equilibrium were
obtained; the results are graphically shown in Figure 9 that
shows the variation in the magnitude of f i(t), i = 1, 2, 3,
and Figure 10 that shows the variation in the angles
θi between the object normal direction and f i(t). Note
that the direction of f3(t) is constant while its module
decreases to zero, and that the directions of f1(t) and
f2(t) remains all the time inside the friction cone limits.
Figure 11 shows the physical object with the forces f i in
an intermediate situation between the states SA and SB

and the Path1, Path3 and Path3 being followed.

As an additional verification of the system equilibrium, it
was checked whether fT

ext − GfT
g = 0 is satisfied, being G

the grasp matrix and fg = [fP1

1 , fP2

2 , fP3

3 ]T with fPi

i the
force f i expressed in a coordinate system fixed at Pi; the
condition was satisfied ∀t.

8. CONCLUSIONS AND FUTURE WORKS

A fast non iterative solution to the problem of finding the
force variations that keep the object equilibrium when a
finger is removed from a n contact point grasp (or added
to a n − 1 contact point grasp) has been proposed and
implemented. The approach is simple and efficient.

The ongoing work includes the determination of a proce-
dure to change from a grasp with n contacts to another
grasp with n different contacts (doing in this way a full
regrasp of the object), automatically solving intermediate
consecutive grasps Sj that differ in only one contact point
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Fig. 8. Time function T (t).
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Fig. 11. Physical object, Path1, Path2 and Path3, and
forces f1, f2 and f3 during the state transition.

and changing the object orientation when necessary using
wrist movements. The whole procedure would generate
position and force set points for the control system of the
grasping device. Given the initial and final grasp with n
contact points (fingers) the approach includes the follow-
ing subproblems:

(1) Automatic determination of a sequence of grasp
states that balance the external force (object weight),
alternately considering grasps with n−1 and n fingers
(i.e. repositioning one finger at a time), which is
equivalent to automatically and alternately determine
for each step the grasp states SA and SB in this paper
(other than the given initial and final states in the
sequence). The search can be done using a ”Generic
Wrench Loop” (GWL) that describes the forces of
the fingers that do not change and selecting a proper
point on the corresponding region LS (equivalent to
the region LSB in Figure 5).

(2) Automatic determination, if necessary, of wrist move-
ments to change the object orientation and the force
variations to keep the equilibrium when these move-
ments are performed. Again, this can be done using
the GWL representation.

Besides, some dynamic considerations could be addressed
in future works, as well as some strategies to assure
robustness in front of different sources of uncertainty.
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