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Abstract: This paper is devoted to nonlinear feedback design for irrigation canals. Such systems
are classically described by Saint-Venant nonlinear partial differential equations.
Here instead, an ordinary differential equation model (still nonlinear) with a state-dependent
input delay is used, on the basis of a model previously proposed in Litrico et al [2003]. The
control design approach is based on a state prediction computation and the state predictor is
constructed from a dynamic inversion in the same spirit as in Georges et al [2007]. The proposed
methodology is analyzed and tested in simulation, first on the basis of the control model, and
then using some ”more accurate” model.

1. INTRODUCTION

Irrigation canals are used to conduct water from its up-
stream source towards downstream users. Managing ir-
rigation canals efficiently (i.e satisfying users needs) and
at the same time reducing water waste is an increasingly
important issue. For these reasons, control approaches
have been more investigated in the last decade (see for
example [Mareels et al, 2005, Litrico et al, 2005, Halleux
et al, 2003, Georges et al, 2002, ...] and references therein).

Canals belong to the class of transport systems, where the
delay plays a major role in the dynamics. Those dynam-
ics are usually mathematically described by Saint-Venant
nonlinear hyperbolic partial differential equations. Saint-
Venant equations don’t have a known analytical solution,
unless for special cases with no friction and no slope
(Malaterre et al [1998]). To obtain an approximate solution
of Saint-Venant equations different techniques have been
developed. The most used numerical scheme for hydro-
dynamic is the implicit Preissmann scheme (Chaudhry
[1987]).
There are two classical politics to control irrigation canals:
the local upstream control and the distant downstream
control (for more details see Malaterre et al [1998]). In the
present paper, we focus on the distant downstream politics
which consist in controlling the downstream water level
using the upstream control variable. Its main advantage
lies in reducing water waste.

Different methodologies have been used to design con-
trollers which are classified from linear to nonlinear ones.
Among the most cited linear controllers, we find the clas-
sical linear PID approach (Malaterre et al [1998]). Despite
of its simple implementation, it does not however take into
account the time delay explicitly, and including a Smith
predictor makes the control sensitive to modeling errors.
In order to better take into account perturbations and
modeling errors, robust approaches have been developed
( Malaterre et al [2000], Litrico et al [2006]). A predictive

approach has also been investigated in Rodellar et al [1989]
or in Bogovich et al [2007].
Those controllers on the other hand neglect the nonlin-
ear dynamics of the canal, which might limit the per-
formances obtained with linear controllers. Therefore, a
nonlinear approach can be of interest. Dulhoste et al
[2004] have developed a nonlinear control law based on
an Input/Output linearization method. Interesting results
have been obtained in simulation, as well as in real-time
experiments performed by Besançon et al [2004]. However,
this approach is limited so far to upstream local control
and the time delay is not explicitly taken into account
in the model. In the approaches cited above, the control
law is determined from a finite dimension model. In Coron
et al [2007], by means of a Lyapunov approach a stabilizing
boundary control laws is proposed from the Saint-Venant
equations.

The objective of the present work is to develop a nonlinear
control law for irrigation canal based on a nonlinear model
where the delay explicitly appears.

To that end, the canal is described by a nonlinear state-
dependent input delay model of the form:

ẋ(t) = A(x(t))x(t) +B(x(t))u(t− τ(x(t))) (1)

derived from the recent work of Litrico et al [2003].

The control law is based on a state predictor which is
constructed by a dynamic inversion.
In order to illustrate the control performances (transient
and steady-state responses), we first test the method on a
model (1), and then on a more realistic model given by a
Preissmann scheme.

The paper is organized as follows: section 2 focuses on
the canal modeling. We will first recall classical Saint-
Venant equations and then present the input-delay model
that will be considered for control design. In section 3, the
proposed control approach is presented on the basis of a
state predictor. Section 4 then gives some corresponding
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simulation results on the basis of a delayed-input simulator
for the canal on one hand, and a more accurate Saint-
Venant based model on the other one. Finally, some
conclusions and extensions of our work are proposed in
section 5.

2. CANAL MODEL

The classical representation of water flow dynamics in a
canal is given by so-called Saint-Venant equations of the
following form:

L
∂h

∂t
+
∂Q

∂x
= 0

∂Q

∂t
+

1

L

∂[Q2/h]

∂x
+ gLh

[

∂h

∂x
− I + J(h,Q)

]

= 0
(2)

with t: time variable, x: space variable,Q: water flow rate,
h: water level, L: canal width, g: gravitational acceleration,
I: canal slope, and J : friction (in general nonlinearly
depending on h,Q).
In the present work, following Litrico et al [2003], we will
instead use an ODE model with state-dependent input
delay.
In Litrico et al [2003] indeed, the authors have proposed
a nonlinear output delay ODE model, where the delay
depends on the discharge (water flow). This model is based
on the diffusive wave model (equation 3) obtained after
simplification of Saint-Venant equations. This model is
valid assuming uniform flow and rectangular wide channel.

∂Q

∂t
+ ν(Q)

∂Q

∂x
− ∆(Q)

∂2Q

∂x2
= 0 (3)

where Q(x, t) is the water flow at point x and time t, ν is
the celerity coefficient, and ∆ the diffusion one, given by:

ν(Q) =
5I0.3Q0.4

3L0.4n0.6

∆(Q) =
Q

2LI
with n the Manning friction coefficient (characterizing the
friction J).
The boundary conditions are given by Q(x = 0, t) = u(t)

where u is the control input, and limx→∞
∂Q
∂x

= 0.
In Litrico et al [2003], from linearization around different
equilibrium points, a family of linear ODEs is first ob-
tained. It is then shown that it can be represented by one
nonlinear ODE with a delayed output of the form:

ẋ(t) = A(x2(t))x(t) +B(x2(t))u(t)
y(t) = x2(t− τ(x2(t)))

(4)

where: x = (x1 x2)
T is the state vector, x2 = Q(x = X, t)

is the downstream water flow (for a canal of length equal to
X), x1 is its time derivative and A, B are recalled bellow:

A =

(

− S
P

− 1

P
1 0

)

B =

(

1

P
0

)

τ =
X

ν
− S

S = 2

√

2X∆

ν3
cos(

φ

3
)

P =
2X∆

ν3
(1 −

3∆

Sν2
)

φ =
π

2
+ arctan

√

9∆

2Xν − 9∆
Based on recently developed control methodologies for
nonlinear systems with delayed input (Georges et al [2007],
?]), our idea is to derive from equation (4) a nonlinear
model with delayed input.
Using the transfer function resulting from the linearization
of the diffusive wave equation:

F =
Geτs

1 + Ss+ Ps2
(5)

and the proof in Litrico et al [2003], it can easily be shown
that system (4) can be written as follows:

ξ̇(t) = A(ξ2(t))ξ(t) +B(ξ2(t))u(t− τ(ξ2(t)))
y(t) = ξ2(t)

(6)

with A,B as above.
In the same spirit as in Georges et al [2007], where the
case of time-varying input delay has been considered, we
will propose a control scheme for system (6).

3. CONTROL SCHEME

There is a wide literature on linear time-delay systems (see
Niculescu et al [2004] for a recent picture of this area),
and for nonlinear systems (see Maza-Casas et al [2000],
Mazenc et al [2004, 2006], Zhang et al [2006]), but very
few of them are dedicated to time-varying or even state-
dependent delays as in Verriest [2002], and a fortiori for
nonlinear systems.

In this section, the purpose is to propose a control method-
ology for nonlinear systems with state-dependent input
delay, as in model (6) of irrigation canals presented above.
The chosen approach is based on the so-called ’finite spec-
trum assignment’ which already exists for linear delayed-
input systems (Manitius et al [1979], Mondie et al [2003]).
This approach also follows our recent work presented in
Georges et al [2007] for the case of time-varying input
delays. It can be presented for systems of the form:

ẋ(t) = F (x(t), u(t− τ(x(t)))) (7)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control input, and τ(x(t)) is a varying delay with known
evolution w.r.t. its arguments, assumed to remain larger
than 0 for any t, x (for causality). Our approach is based on
the following principle: firstly a prediction of the state at
an appropriate prediction time δ, denoted by xp(t, t + δ),
is computed from the available state x(t) at time t and
input controls u(θ), θ ∈ [t− δ, t]. Then the predicted state
is used to compute the control law. The prediction time
is chosen so that the effect of the delay vanishes and the
closed-loop system is no more a time-delay system. This
can be obtained by choosing δ such that:

τ(x(t+ δ(t))) = δ(t)

The control law is chosen according to the non-delayed
system, yielding a state feedback law u = Φ(x), and from
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this we get the control law to be applied to the delayed
system as:

u(t) = Φ(xp(t, t+ δ)).

According theorem 1 of Besançon et al [2007], the control
law u(t) can be calculated as for nonlinear systems without
delay. The next point is to compute the predicted state
xp(t, t + δ(t)): we propose to do this comptuation in an
approximate way for instance by using one step of an
implicit Euler method as follows:

x̂p(t, t+ δ(t)) = x(t) + δ(t)F (x̂p(t, t+ δ(t)), u(t)). (8)

The problem now turns to be the on-line computation of
the fixed point X(t) := x̂T

p (t, t+ δ(t)) solution of

x̂p(t, t+ δ(t)) = x(t) + τ(x̂p(t, t+ δ(t)))×
F (x̂p(t, t+ δ(t)),Φ(x̂p(t, t+ δ(t))))

(9)

which can be written as:

X(t) = H(X(t), x(t)). (10)

This fixed point computation could be performed for
example by using a Newton-Raphson method.
This technique being time consuming - and therefore not
appropriate for on-line computation - we instead propose
another approach based on ”dynamic inversion”.

Suppose that we seek for the solution of G(x, t) = 0, where
G is a nonlinear C1-function : Rn × [0,+∞(→ Rn and
the Jacobian matrix ∂G

∂x
is supposed to be invertible. The

main idea is how to compute the solution of the differential
equation

Ġ+ ΛG = 0 (11)

where Λ is any positive definite matrix ensuring the
asymptotic stability of this equation. In the coordinates
x, the equation (11) is equivalent to

∂G

∂x
ẋ+

∂G

∂t
+ ΛG(x, t) = 0. (12)

Since ∂G
∂x

has full rank, (12) is equivalent to

ẋ = −

[

∂G

∂x

]−1 [

∂G

∂t
+ ΛG(x, t)

]

. (13)

The motivation may be found in the fact that if the
initial state x0 is a solution of G(x, t = 0) = 0, then
the trajectory x(t) of (11), is a solution of G(x(t), t) = 0,
∀t > 0. Since (11) is asymptotically stable, even when
the initial state is not a solution of G(x, t = 0) = 0,
x(t) will reach asymptotically the manifold G(x, t) = 0,
since the solution of (11) is G(x, t) = e−ΛtG(x(0), 0) and
lim

t→+∞
G(x(t), t) = 0 for all Λ > 0. The coefficient Λ can

be used to control the speed of convergence.

The application of this approach to (10) leads to the state-
prediction-based control law given by:

Ẋ = (Id −
∂H

∂X
)−1[F (x(t), u(t− τ(x(t))))

−Λ(X −H(X,x(t)))]
(14)

u(t) = Φ(X(t)) (15)

with
∂H

∂X
=
∂τ

∂x
F + τ

∂F

∂x
+ τ

∂F

∂x

∂Φ

∂x

Notice that the stability of the closed-loop system resulting
from control (14)-(15) can now be analyzed in a similar
spirit as in Georges et al [2007], but taking into account
the fact that the delay now depends on the state.

To that end, it can be noticed that this practical realization
of the control law introduces an additive perturbation term
depending on the state x(t) for the closed-loop dynamics
expressed at time t+ δ(t).
From the fixed point problem (10) indeed it is first clear
that there exists a function ψ such that x̂p(t, t + δ) =
ψ(x(t)) (using the implicit function theorem).
With the notation z(t) = x(t + δ(t)), the closed-loop
system can be expressed as

ż(t) = (1 + δ̇)F (z(t),Φ(ψ(x(t))))

= (1 + δ̇)F (z(t),Φ(z(t)))

+(1 + δ̇)[F (z(t),Φ(ψ(z(t− δ))))−F (z(t),Φ(z(t)))]

= (1 + δ̇){F (z(t),Φ(z(t)))+P (z(t), z(t− δ))}

(16)

Notice that from a Taylor series expansion of z(t) at time
t−δ, we get an expression of z(t) w.r.t. z(t−δ) and clearly
P vanishes when its arguments are zero. Consequently, on
some neighborhood of the origin small enough, we can get:
‖P (z(t), z(t − δ))‖ ≤ γ‖z(t − δ)‖ for some γ. Considering
first the control law obtained by on-line solving of the
fixed point equation (10), this motivates the following
statement:

Theorem 1. If the following conditions hold:

• There exists a smooth control law Φ and a Lyapunov
function V (x) such that the following assumptions
hold. , ∀x ∈ D, where D ⊂ Rn is a domain that
contains the origin:
(1) c1‖x‖

2 ≤ V (x) ≤ c2‖x‖
2

(2)
∂V (x)

∂x
F (x,Φ(x)) ≤ −c3‖x‖

2

(3) ‖
∂V (x)

∂x
‖ ≤ c4‖x‖

where c1, c2, c3 and c4 are some positive scalar
numbers.(Khalil [1996])

• The perturbation term P (z(t), z(t − δ)) satisfies
‖P (z(t), z(t − δ))‖ ≤ γ‖z(t − τ)‖, ∀z(t) ∈ D and γ
”small enough”, e.g. γ ≤ c3

4c4

,

then the closed-loop system (16) is locally asymptotically
stable.

Proof. Let us consider the Lyapunov-Krasovskii function

candidate W (zt) = V (z) + µ

t
∫

t−δ

‖z(θ)‖2dθ, where zt =

z(t + θ), θ ∈ [−δ, 0] as usual in Lyapunov-Krasovskii
formalism (see e.g. Hale et al [1993]), and µ > 0 is to
be specified later on.
Then the time derivative of W is given by:

Ẇ = (1 + δ̇)
∂V (z)

∂z
F (z,Φ(z))

+ (1 + δ̇)
∂V (z)

∂z
P (z(t), z(t− τ))

+ µ[‖z(t)‖2 − (1 − δ̇(t))‖z(t− δ)‖2].

(17)

Now notice that from the definition of δ we have:
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[1 −
∂τ

∂x
(z)f(z)]δ̇ =

∂τ

∂x
(z)f(z) (18)

From this we get that: 1−δ̇ ≥ ε whenever
∣

∣

∂τ
∂x
F (z,Φ(z))

∣

∣ ≤
1−ε
2−ε

for any 0 < ε < 1. Moreover, this also guarantees that

1 + δ̇ > ε̃ with ε̃ = 2−ε
3−2ε

> 0.

Finally, it is also clear that in this case, 1 + δ̇ < 2.
Hence, given such an ε, and using conditions (1) and
(2) of the theorem, we can obtain on some small enough
neighborhood of the origin:

Ẇ ≤ −c3ε̃‖z(t)‖
2 + 2c4γ‖z(t)‖‖z(t− δ)‖

+ µ[‖z(t)‖2 − ε‖z(t− δ)‖2]
(19)

Ẇ ≤ − ( ‖x(t)‖‖x(t− τ)‖ )

×

(

c3ε̃− µ −c4γ
−c4γεµ

)(

‖x(t)‖
‖x(t− τ)‖

)

.
(20)

Hence choosing µ < c3ε̃, we get that for:

γ <

√

(c3ε̃− µ)εµ

c4
(21)

the right-hand side of the above inequality is negative
definite, and thus Ẇ ≤ −ρ‖z(t)‖ for some ρ > 0 which
gives the local asymptotical stability of z = 0 by the
Lyapunov-Krasovskii stability result, and finally that of
x = 0 for the system in time t.
Notice that choosing e.g. µ = c3ε̃

2
, condition (21) becomes

γ < c3ε̃
√

ε

2c4
. Since the right-hand side can be made arbi-

trarily close to c3

2c4

by choosing ε close enough to 1 (by

lower values), this can in turn make (21) to be satisfied
whenever γ ≤ c3

4c4

, which ends the proof.

Now if we consider the control law with the ”dynamic
inversion” for the fixed point resolution, then the stability
can still be guaranteed by invoking Tikhonov’s theorem
Khalil [1996], in a similar way as in Georges et al [2007]
for constant input delays.

We are now ready to provide a new control scheme for
irrigation canals, by following this approach for model (6).

4. SIMULATION RESULTS

In this section, let us present some simulation results
obtained with the here above proposed control design
when applied to model (6).
The considered control purpose will be that of controlling
the downstream flow y = ξ2 by acting on the upstream
one u.
The simulated model for the canal is first chosen as in
(6), as an illustration of theorem 1, and then as a more
accurate model given by a classical Preissmann scheme
for Saint-Venant equations (2), for further validation of
the proposed control.
The numerical values are also taken from the case study
of Litrico et al [2003], namely a 10km-long and 8m-wide
channel, with a 0.04% slope.
The control is thus designed as in (14)-(15), where the
non-delayed law Φ is chosen as a classical state feedback
linearization law, ensuring a time response to set-point
changes of about 5h. In this simulation, Λ is chosen:

Λ =

(

10 0
0 10

)

This control law is then tested under set-point changes
from y = 0.93[m3/s] - which corresponds to a downstream
water level h = 0.5[m] - to y = 1.24[m3/s] (i.e. h = 0.6[m])
at time t = 51 min.
In order to validate the proposed approach, let us first
present simulation results obtained with the approximated
model (6). For the sake of comparison, the results obtained
by an IMC controlled as proposed in Litrico et al [2003] are
given altogether. From the corresponding figure (1), it can
be seen how our controller can perform very similarly to
the IMC one (and can actually be tuned a little bit faster),
when facing a step change of set-point. It can further be
observed how the delay indeed varies during operation on
figure (2).
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Fig. 1. Comparaison between IMC controller and instan-
taneous predictor
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Fig. 2. State-dependent delay

In view of those promising results, and in order to better
validate the approach, we have then performed the same
simulations with a canal simulated by a Preissmann im-
plementation of Saint-Venant equations instead of model
(6). The obtained results in this case are illustrated on
figure 3. It can here be seen that the control still achieves
its target in a similar way as in the simulations based on
the simplified model.
It can also be checked that the prediction performs pretty
well on figure (3).
Now a purpose of higher interest in irrigation system is
the disturbance rejection. In such systems indeed, there
are various kinds of perturbations (leak, withdrawal,...etc).
The controller as it is developed does not allow the per-
turbation rejection, which brought us back to add an
integrator into the controller. After 31 hours, one applies
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Fig. 3. Downstream water flow step response
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Fig. 4. Prediction error

a withdrawal perturbation (10% of the downstream water
flow, located at the downstream of the canal). The cor-
responding simulation results are then presented on figure
(5) for the tracking result, and figure (6) for the prediction
error.
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Fig. 5. Downstream water flow step response with with-
drawal perturbation
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It can be noted that the modified controller rejects the
perturbation.

Noting however that x1, the downstream flow derivative
which is to be used in the control, is not measured, the
implementation of an observer to estimate it becomes
judicious. In view of the model structure (6), one can think
of a high gain observer in the spirit of Gauthier et al [1992]:
(

˙̂
ξ1
˙̂
ξ2

)

=

(

0 0
1 0

)(

ξ̂1
ξ̂2

)

+

(

φ(ξ̂, u(t− τ(ξ̂2)))
0

)

−

S−1

θ CT (y − ŷ)

(22)

where φ follows from the expressions of A,B, and S is
given by:

θSθ = ATSθ + SθA− CTC

for θ large enough.

Notice that the ”non-standard” nonlinearity u(t − τ(ξ̂2))
in (22) could be removed from the observation error equa-
tions by injecting the measured value of ξ2 in u instead of
its estimate.

Notice also that the stability of the resulting observer-
based control law is not here completely analyzed and
just checked in simulation. The corresponding results
when performing simulations on the basis of a Preissmann
scheme are shown in figures 3 (for the step response) and
4 for the observation error.
Clearly the observer-based control law still fairly achieves
the expected performances.
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Fig. 7. Downstream water flow step response under
observer-based control with a full Saint-Venant model
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Fig. 8. Observation error for x1
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5. CONCLUSION

In this paper, a new nonlinear control methodology for
irrigation canals has been proposed, taking into account
the diffusive nature of the canal dynamics and the presence
of a state-dependent delay. This control scheme is based
on some state prediction and exactly linearizing design,
relying on an appropriate nonlinear model. The approach
has been validated by successful simulations both on the
control model and on a ’more accurate’ Saint-Venant
model. Further validation studies, hopefully including ex-
perimentations, will be part of future developments.
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G. Besançon, D. Georges, V. Ruiz, O. Begovich and C.
Aldana. First experimental results of nonlinear control
in irrigation canals. IFAC Symp Systems Structure and
Control. Oaxaca, Mexico, 2004.

X. Litrico and JB. Pomet. Nonlinear Modelling and
Control of a Long River Stretch. European Control Conf.
Cambridge, GB,2003.
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